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Analytical Optimal Solution of Perimeter Traffic
Flow Control Based on MFD Dynamics:

A Pontryagin’s Maximum Principle Approach
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Abstract— Perimeter traffic flow control, based on the macro-
scopic fundamental diagram (MFD), has been introduced for traf-
fic control and congestion management in large-scale networks.
The perimeter controller is a set of traffic signals on the border
between the regions manipulating the transfer flows with the aim
to maximize the number of trips that reach their destinations.
This paper tackles the optimal perimeter control of MFD systems
for two-region urban networks which model heterogeneously
congested cities. The modeling of the system results in nonlinear
state dynamics, a non-quadratic cost function, and constraints
on control actions and traffic states. We prove the existence of
the optimal controller, analytically derive the optimal control
policy, and introduce a numerical method to solve the optimal
control policy. Based on the indirect optimal approach, HJB
equation, and Pontryagin’s maximum principal, we demonstrate
that the optimal controller is in the form of Bang–Bang control.
We apply the Chebyshev pseudospectral method to solve the
two-point boundary value problem (TPBVP) for the proposed
constrained optimal control problem. Consequently, the TPBVP
is reduced to determination of the solution of a nonlinear system
with algebraic equations. A numerical study is performed to
measure the effectiveness of the proposed method.

Index Terms— Large-scale urban networks, gating, network
fundamental diagram, indirect optimal approach (IOA).

I. INTRODUCTION

GROWING cities and unprecedented trend of urbaniza-
tion have resulted in excessive traffic congestion that

entails devising holistic congestion management techniques
to ameliorate transportation systems performance. Transporta-
tion networks are inherently complex to analyze and control
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Fig. 1. A schematic of a unimodal and low-scatter MFD. G(n) is the network
outflow [veh/sec] that is a function of network vehicle accumulation n [veh].

because of intricate dynamics of human decision making,
convolved interactions between individuals at the network
scale, and the spatial and temporal variations in the traf-
fic supply and demand characteristics. Specifically, mod-
eling the dynamics of traffic flow in urban environments
with closely-spaced intersections is not a trivial task due
to the unpredictability and immeasurability of micro-level
traffic states. Hence, parsimonious models of traffic flow in
large-scale urban networks are promising for developing traffic
congestion control strategies to reduce aggravation of traffic
jams.

Network Macroscopic Fundamental Diagram (MFD) is a
parsimonious traffic model that relates network vehicle accu-
mulation, n [veh], and aggregated network traffic outflow
[veh/sec], see Fig. 1. Geroliminis and Daganzo [1] demon-
strated the existence of such MFD relationship based on
field data of a part of Yokohama, Japan. There are sev-
eral studies on deriving the theoretical (MFD) functional
relation between network-wide traffic states [2]–[5]. More-
over, the effect of congestion heterogeneity [6]–[8] and traffic
assignment [9], [10] on the properties of MFD has been inves-
tigated. To address the effect of spatial pockets of congestion
on properties of MFD, a clustering technique is developed
in [11] to partition heterogeneous networks to homogeneous
regions considering directional traffic flows on links. In this
paper, similar to [12], we assume a heterogeneous urban
network which can be partitioned into two regions with
well-defined MFDs and the analytical optimal perimeter traffic
control of the two-region MFD model is established.
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The MFD has been used in several studies as the traffic flow
model to devise network-wide traffic control schemes. E.g.
perimeter control in [12]–[15], region-based routing in [16],
pricing in [17], design of transit systems in [18], and taxi
dispatching in [19]. Moreover, [20]–[22] have implemented a
classical feedback control method for traffic control based on
the MFD concept. Furthermore, a robust perimeter controller
with MFDs uncertainties based on a linearized system is
introduced in [23] and [24] that employ Quantitative Feedback
Theory (QFT) and interpolating-based approach, respectively.
This paper follows a similar MFD-based modeling approach
in formulation of the optimal perimeter control problem. The
related literature explores sub-optimal solutions whereas this
paper contributions are proving the existence of the optimal
policy, deriving the closed-form optimal policy, and solving
the optimal control numerically.

MFD estimation methods has been investigated in [25]–[28].
Recently, explicit modeling of boundary queues and their
effects on perimeter control policies at two-region cities has
been studied in [29]. Also, coupled and decoupled optimal
perimeter control in cities with one-region and the explicit
formulations of the optimal feedback control policies has
been investigated in [30]. This paper tackles the analytical
derivation of the optimal perimeter control of two-region
urban cities formulated based on MFD. The Indirect Optimal
Approach (IOA) based on Pontryagin’s Maximum Princi-
ple (PMP) framework, is used to obtain the optimal control
solution. We show that the optimal control is in the form
of Bang-Bang. For further derivations of PMP in optimal
control the reader can refer to [31]. The PMP has been
studied for traffic control problems, e.g. [32], to derive the
optimal signal settings of isolated signalized intersections. In
this paper, the PMP is implemented for the perimeter control
problem. It is worth to note that the optimal perimeter control
of the two-region system is generalizable to systems with
multiple regions. Consequently, the optimal perimeter control
of multiple-region systems with MFD dynamics is in the form
of Bang-Bang.

There are three steps required to implement indirect meth-
ods and derive the solution to the optimal problem: (i) form-
ing the Hamiltonian, (ii) deriving the necessary conditions,
and (iii) solving the boundary value problem using numeri-
cal methods. Note that the indirect methods benefit from a
higher accuracy compared to the direct methods since the
necessary conditions of optimality are satisfied by the solu-
tion. Pseudospectral methods are effective tools to solve the
Two-Point Boundary Value Problem (TPBVP) and ordinary or
partial differential equations with a high precision [33]–[35].
In this paper, the optimal perimeter control for two-region
urban cities results in a nonlinear TPBVP, that is solved by a
numerical method based on PMP and Chebyshev pseudospec-
tral method.

The remainder of the paper is organized as follows.
In Section II, the problem formulation for the two-region MFD
system is introduced. The optimal control solution is obtained
by applying the PMP approach in Section III. Section IV
presents a numerical method for solving the TRBVP based on
Pseudospectral method. We present results of the numerical

Fig. 2. Two-region MFDs system with two regions R1 and R2. q11(t), q12(t),
q21(t), and q22(t) are four exogenous traffic demands and u12(t) and u21(t)
are two perimeter controllers.

case study examples in Section V and compare them with
results of Model predictive Control (MPC) and Greedy Control
approaches. Finally, The paper is concluded in Section VI.

II. TWO-REGION MFD MODEL

The urban traffic model is described in this section where it
is assumed that the urban network is divided into two regions.
These two regions are modeled with a low-scatter MFD. Let
us denote traffic states, ni j , the number of vehicles categorized
based on their current region i and their destination region j .
This results in four traffic states, i.e. n11(t), n12(t), n21(t),
and n22(t). The MFD is represented by Gi (ni (t)), which is
the trip completion flow in region i while ni (t) denotes the
total accumulation of vehicles in region i at time t . Therefore,
dynamics of the traffic states are as follows:

ṅ11(t) = q11(t) + u21(t)M21(t) − M11(t) (1a)

ṅ12(t) = q12(t) − u12(t)M12(t) (1b)

ṅ21(t) = q21(t) − u21(t)M21(t) (1c)

ṅ22(t) = q22(t) + u12(t)M12(t) − M22(t), (1d)

where qi j (t), i, j = 1, 2 is the exogenous demand of vehicles
from region i to region j , and ni (t), i = 1, 2 is the total
number of vehicles in region i . Evidently, ni (t) = ∑

j ni j (t).
The region i trip completion flow, Gi (ni (t)), is the sum of both
the internal and external trip completions respectively, Mii (t)
and Mij (t). The internal and external trip completion flows
are modeled based on the proportion between accumulations
as Mii (t) = nii (t)/ni (t)·Gi (ni (t)) and Mij (t) = ni j (t)/ni (t)·
Gi (ni (t)). The schematic of a traffic network with two regions
is depicted in Fig. 2.

Empirical and simulation findings, e.g. [1] and [12], demon-
strate that the shape of MFD can be approximated by a
third-order function of ni (t), i.e. Gi (ni (t)) = ai Â·ni (t)3 +
bi Â·ni (t)2 + ci Â·ni (t), where ai , bi , and ci are estimated
parameters. Note that ni (t) lies within the range 0 to ni,jam,
where ni,jam denotes the accumulation at jammed traffic state
of region i . This function is a non-symmetric unimodal curve
skewed to the right, i.e. critical density that maximizes network
flow is less than half of the jammed density, see Fig. 1.

The perimeter controllers are denoted by u12(t) and u21(t).
The perimeter controllers can be realized and implemented by
a set of traffic signals that are located on the border between
the two regions manipulating the transfer flows between the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AALIPOUR et al.: ANALYTICAL OPTIMAL SOLUTION OF PERIMETER TRAFFIC FLOW CONTROL 3

two regions. Hence, values of both u12(t) and u21(t) lie within
the range 0 to 1. In practice, u12(t) and u21(t) might (i)
need to satisfy certain constraints that may lead to a tighter
bound than [0-1] and (ii) be dependent based on network
topology, intersection design, and signal timing. In this paper,
we assume u12(t) and u21(t) are independent. Note that only
the inter-region transfer flows, Mij (t), are controllable by the
perimeter controllers, contrary to the internal outflows Mii (t).
Moreover, it is assumed in (1) that vehicles pass the border
between the two regions only one time and the shape of the
MFDs will not be affected by the perimeter control. In the
next section, we demonstrate the analytical derivation of the
optimal perimeter control for system (1).

III. OPTIMAL PERIMETER CONTROL PROBLEM

In this section, a criterion is defined such that the number of
vehicles that arrive at their destination are maximized. Thus,
formulation of the optimal control problem for the two-region
MFD is as below:

J = max
u12(t),u21(t)

∫ tf

t0
(M11(t) + M22(t)) dt

= min
u12(t),u21(t)

∫ tf

t0
− (M11(t) + M22(t)) dt, (2)

subject to nonlinear dynamic equations (1), and

n11(t) + n12(t) ≤ n1,jam, (3)

n21(t) + n22(t) ≤ n2,jam, (4)

0 ≤ umin ≤ u12(t) ≤ umax ≤ 1, (5)

0 ≤ umin ≤ u21(t) ≤ umax ≤ 1, (6)

n11(t0) = n11,0; n12(t0) = n12,0;
n21(t0) = n21,0; n22(t0) = n22,0, (7)

where time tf is fixed and the final states, i.e. n11(tf), n12(tf),
n21(tf ), and n22(tf ), are free. The initial accumulations at t0
are ni j,0, i, j = 1, 2. Accumulations at the jammed density
are n1,jam and n2,jam [veh] for regions 1 and 2, respectively.
Constraints (3) and (4) represent the upper bound of region
accumulation. In Appendix A, we show that states of sys-
tem (1) are greater than or equal to zero, i.e. 0 ≤ ni j (t),
with positive initial accumulations and positive exogenous
demands. The lower and upper bounds of u12(t) and u21(t)
are defined as umin and umax, respectively. Note that without
loss of generality, we assume umin and umax are unique for
both u12 and u21. This assumption can be readily relaxed.

The optimal control problem (1)-(7) is associated with
a nonlinear non-quadratic cost function and nonlinear state
dynamics, and inequality state and control constraints. To
proceed with the derivation of the optimal solution, we refor-
mulate the state constraints (3) and (4) according to the
state inequality constraints given in (40) in Appendix B.
Hence, an extra state variable, i.e. ne(t), is formed based
on (41) with initial condition equal to zero. For the
sake of brevity, we define xT = (x1(t), · · · , x5(t)) =
(n11(t), n12(t), n21(t), n22(t), ne(t)).

We obtain the optimal perimeter control problem solution
by applying the PMP based on procedure proposed in [31]

and [36]. Interested reader can further refer to [37]–[39] for
other methods to address states constraint in optimal control
problems. To find the solution of the optimal problem by
the IOA, at first, the Hamiltonian should be formed. State,
i.e. x, and co-state, i.e. p, dynamic equations are then obtained
by the Hamiltonian. Afterward, the optimal perimeter control
problem can be solved. Formulating the Hamiltonian is as
follows:

H (x, u, p, t)
= −M11(t) − M22(t) + pT (t) · [f(x(t), u(t), q(t)), ṅe(t)]
= −M11(t) − M22(t)

+ p1(t) · (
q11(t) + u21(t)M21(t) − M11(t)

)

+ p2(t) · (q12(t) − u12(t)M12(t)
)

+ p3(t) · (
q21(t) − u21(t)M21(t)

)

+ p4(t) · (q22(t) + u12(t)M12(t) − M22(t)
)

+ p5(t) · (
(n1,jam − x1(t) − x2(t))

2

×U(−(n1,jam − x1(t) − x2(t)))

+ (n2,jam − x3(t) − x4(t))
2U(−(n2,jam − x3(t) − x4(t)))

)
,

(8)

where f(x(t), u(t), q(t)) is the compressed form of (1),
p = [p1(t), ..., p5(t)] is the co-states vector, q(t) =
[q11(t), q12(t), q21(t), q22(t)]T is the vector representation of
the traffic demands, u(t) = [u12(t), u21(t)]T is controller
vector, and U(.) is a unit Heaviside step function that is defined
in (42).

In the second step, the necessary optimality conditions for
the states are obtained by ẋ∗ = ∂ H

∂p . As a result, we can write
these conditions as follows:

ẋ∗
1 (t) = q11(t) + u∗

21(t)M∗
21(t) − M∗

11(t) (9a)

ẋ∗
2 (t) = q12(t) − u∗

12(t)M∗
12(t) (9b)

ẋ∗
3 (t) = q21(t) − u∗

21(t)M∗
21(t) (9c)

ẋ∗
4 (t) = q22(t) + u∗

12(t)M∗
12(t) − M∗

22(t) (9d)

ẋ∗
5 (t) = (x∗

1 (t) + x∗
2 (t) − n1,jam)2

×U(−(n1,jam − x∗
1 (t) − x∗

2 (t)))

+ (x∗
3 (t) + x∗

4 (t) − n2,jam)2

×U(−(n2,jam − x∗
3 (t) − x∗

4 (t))). (9e)

In a similar manner, the required optimality conditions for
the co-states are derived by ṗ∗ = − ∂ H

∂x . Therefore, we have

ṗ∗
1(t) = (1 + p∗

1(t)) · ∂M11

∂x1
+(p∗

2(t) − p∗
4(t)) · u∗

12(t) · ∂M12

∂x1

− 2 × p∗
5(t) · [(x∗

1 (t) + x∗
2 (t) − n1,jam)

×U(−(n1,jam − x∗
1 (t) − x∗

2 (t)))] (10a)

ṗ∗
2(t) = (1 + p∗

1(t)) · ∂M11

∂x2
+(p∗

2(t) − p∗
4(t)) · u∗

12(t) · ∂M12

∂x2

− 2 × p∗
5(t) · [(x∗

1 (t) + x∗
2 (t) − n1,jam)

×U(−(n1,jam − x∗
1 (t) − x∗

2 (t)))] (10b)

ṗ∗
3(t) = (1 + p∗

4(t)) · ∂M22

∂x3
+(p∗

3(t) − p∗
1(t)) · u∗

21(t) · ∂M21

∂x3

− 2 × p∗
5(t) · [(x∗

3 (t) + x∗
4 (t) − n2,jam)

×U(−(n2,jam − x∗
3 (t) − x∗

4 (t)))] (10c)
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ṗ∗
4(t) = (1 + p∗

4(t)) · ∂M22

∂x4
+(p∗

3(t) − p∗
1(t)) · u∗

21(t) · ∂M21

∂x4

− 2 × p∗
5(t) · [(x∗

3 (t) + x∗
4 (t) − n2,jam)

×U(−(n2,jam − x∗
3 (t) − x∗

4 (t)))] (10d)

ṗ∗
5(t) = 0. (10e)

Note that the terminal conditions for co-states (10), i.e.
(p1(tf), . . . , p4(tf)), are zero because there is no terminal cost
in objective function (2). In the third step, existence of the
solution to the optimal perimeter control problem is discussed.
In the above equations, ṗ∗

5(t) is zero because Hamiltonian (8)
does not include x5(t). That is p∗

5(t) is a constant. It is evident
in Equation (9e) that ẋ∗

5 (t) ≥ 0. We further set the initial
condition of this state as x∗

5 (t0) = 0, see Equation (16).
Therefore, if the terminal condition is obtained as x∗

5 (tf ) = 0,
then ẋ∗

5 should be zero during interval t ∈ [t0 tf ]. Accordingly,
the state constraints (3) and (4) are satisfied in t ∈ [t0 tf ] if
and only if ẋ∗

5 = 0 for t ∈ [t0 tf ].
To implement this, the constant value of p5 (i.e. the

corresponding co-state of x∗
5 ) needs to be determined in

order to ensure x∗
5 (tf) = 0. The procedure of finding an

appropriate constant value for p5 can be done by an iterative
algorithm or a search method. It is worth to mention that
the proposed approach (defining new state variable x∗

5 and
finding p5 such that x∗

5 (tf ) = 0) provides a sufficient but
not necessary condition to satisfy constraints (3) and (4).
Nevertheless, in the following Proposition we show that under
a certain condition there exist an optimal control solution and
the optimal controller is in the form of Bang-Bang.

Proposition 1: If there exist a feasible set of control inputs
for system (1) to satisfy (3)-(6), then the optimal perimeter
control for two-region system (1)-(7) exists and is in the form
of Bang-Bang.

Proof: The integrand in (2) is continuous and locally
Lipschitz. Due to constraints (3) and (4) on the states and
Appendix A, the integrand in (2) is finite and bounded. In addi-
tion, given constraints (3) and (4) and bounds on perimeter
controllers, Hamiltonian (8) can be minimized. Hence, optimal
controllers exist and can be obtained. By omitting the terms
not related to control inputs, i.e. u12 (t) and u21 (t), we can
express the Hamiltonian as:

H ∗ = u12(t)M12(t) (p4 (t) − p2 (t))

+ u21(t)M21(t) (p1 (t) − p3 (t)). (11)

Due to the linear relationship between H and the perimeter
controllers u12(t) and u21(t) (and M12(t) and M21(t) being
positive), the optimal controllers are

u∗
12(t) = umax + umin

2
+ umax − umin

2
· sgn

(
p2 (t) − p4 (t)

)
,

(12)

u∗
21(t) = umax + umin

2
+ umax − umin

2
· sgn

(
p3 (t) − p1 (t)

)
.

(13)

Remark 1: The result of Proposition 1 can be extended to
a generalized multiple R-region system following the same
modeling approach in (1) and similar constraint optimal

control problem in (2)-(7). The optimal perimeter controllers
are in form of Bang-Bang.
Objective function (2) includes no measures of perimeter con-
trollers. In addition, perimeter controllers are bounded, see (5)
and (6). For these reasons, optimal controllers are obtained in
the form of Bang-Bang. Note that, Proposition 1 is consistent
with [40] where a similar conclusion is derived for a single
region MFD system. Equation (12) demonstrates that based on
relative difference between p2 and p4 (which are time-varying)
optimal perimeter controller u∗

12(t) might be either umax or
umin. In the same manner, relative difference between p1
and p3 in (13) determines optimal perimeter controller u∗

21(t)
might be either umax or umin. Thus, to obtain optimal perimeter
controllers (12) and (13), co-states are needed. Having initial
values of states and final values of co-states, leads us to a
TPBVP that is extremely difficult to solve analytically. Hence,
numerical methods are needed to solve the TPBVP, which is
introduced in the next section.

IV. NUMERICAL METHOD FOR SOLVING TWO-POINT

BOUNDARY VALUE PROBLEMS

Solving the constrained optimal control problem, requires
the solution to a TPBVP in which initial conditions of the
states of the system, i.e. ni j,0, and the terminal conditions
of the co-states, i.e. (p1(tf ), . . . , p4(tf)), are known (equal
to zero). To solve a TPBVP of ordinary differential equa-
tions (ODE) similar to (9) and (10), shooting methods are
well-studied techniques [41]. However, if a small change
occurs in the initial conditions, a significant change can appear
in the terminal conditions. This is the main drawback of shoot-
ing methods. In addition, a precise estimation of the Jacobian
matrix in Newton iterations is needed, which is numerically
expensive to obtain because of nonlinearity of the ODEs.

In this section, briefly, the main properties and elements of
Chebyshev pseudospectral approach, which has been recently
proposed and developed in [42], are presented. By implement-
ing Chebyshev pseudospectral method, TPBVP ODE in (9)
and (10) is reduced to a set of algebraic equations. The main
reason of using Chebyshev polynomials as the basis functions
is that the partial sums of a Chebyshev approximation of a
continuous function converge faster in comparison with other
orthogonal polynomials like Legendre, see [33]. Description
of Chebyshev pseudospectral method is given in Appendix C.
For further information, the reader is referred to [33], [43],
and [44].

Assume nonlinear system (1) and objective function (2)
are associated with a fixed final time tf . After minimizing
Hamiltonian (8) with respect to the states and co-states and
substituting the optimal controllers (12) and (13) in the dif-
ferential equations (9) and (10), we obtain

ẋ(t) = h(t, x(t), p(t)), (14)

ṗ(t) = g(t, x(t), p(t)), (15)

where h and g are nonlinear vector functions of (9) and (10),
respectively, with the boundary conditions as

x(0) = (n11,0, n12,0, n21,0, n22,0, 0) = x j0, j = 1, ..., 5,

(16)
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p(tf ) = (0, 0, 0, 0, c) = p j N , j = 1, ..., 5 (17)

where c is a constant.
Proposition 2: Implementing Chebyshev pseudospectral

method, a set of 10(N + 1) nonlinear algebraic equations

RESx(t) � ẋN (t) − h(t, xN (t), pN (t))

and

RESp(t) � ṗN (t) − g(t, xN (t), pN (t))

are generated from (14) and (15), where N is the number of
function approximators. With N −→ ∞, difference between
Chebyshev approximation and the optimal solution converges
to zero.

Proof: Given t0 and tf are the two endpoints, roots of
Ṫ ∗

N (t) called shifted Chebyshev-Gauss-Lobatto nodes are

tl = (tf − t0)

2

(

1 + cos

(
(N − l)π

N

))

, l = 0, ..., N.

(18)

Using the following approximations

x j (t) ≈ x N
j (t) = (t−t0)

N∑

k=0

X jkT ∗
k (t) + x j0, j = 1, ..., 5,

(19)

p j (t) ≈ pN
j (t) = (t−tN )

N∑

k=0

PjkT ∗
k (t)+ p j N , j = 1, ..., 5,

(20)

yields

x N
j (t0) = x j0, j = 1, ..., 5, (21)

pN
j (tN ) = p j N = (0, 0, 0, 0, c), (22)

where the approximation error uniformly decreases by increas-
ing N [42]. Employing (19) and (20), the approximated first
derivatives of x j (t) and p j (t) are

ẋ N
j (t) =

N∑

k=0

X jkT ∗
k (t) + 2(t − t0)

(tf − t0)

N∑

k=0

X (1)
j k T ∗

k (t)

=
N∑

k=0

[

X jk + 2X (1)
j k

(tf − t0)
(t − t0)

]

T ∗
k (t), j = 1, ..., 5,

(23)

ṗN
j (t) =

N∑

k=0

PjkT ∗
k (t) + 2(t − tN )

(tf − t0)

N∑

k=0

P(1)
j k T ∗

k (t)

=
N∑

k=0

[

Pjk + 2P(1)
j k

(tf − t0)
(t − tN )

]

T ∗
k (t), j = 1, ..., 5.

(24)

Using X jk and Pjk , the coefficient X (1)
j k and P(1)

j k are given by

X (1)
j k = 2

ck

N∑

s=k+1
(s+k)odd

s X js, k = 0, ..., N −1, X (1)
j N = 0, (25)

P(1)
j k = 2

ck

N∑

s=k+1
(s+k)odd

s(s2−k2)Pjs, k = 0, ..., N −1, P(1)
j N = 0,

(26)

where c0 = 2 and ck = 1, k ≥ 1. Now, implementing
(18)-(26), the residual functions can be written as

RESx(t) = ẋN (t) − h(t, xN (t), pN (t)), (27)

RESp(t) = ṗN (t) − g(t, xN (t), pN (t)), (28)

where

xN (t) = (x N
1 , . . . , x N

5 ), (29)

pN (t) = (pN
1 , . . . , pN

5 ). (30)

Setting RESx(t) and RESp(t) to zero at collocation points
{tl}N

l=0, a set of 10(N + 1) nonlinear algebraic equations are
generated as follows:

RESx(tl) = 0, l = 0, 1, . . . , N, (31)

RESp(tl) = 0, l = 0, 1, . . . , N. (32)

Finally, the coefficients X jk and Pjk , k = 0, · · · , N , are
obtained by solving (31) and (32) using numerical methods.

V. NUMERICAL EXPERIMENTS

In this section, first two-region MFD Plant is presented
followed by the introduction of another Bang-Bang controller
for comparison purposes. Then, two case studies are demon-
strated to examine the properties of the proposed IOA. The
IOA controller is also compared with a controller based on
Model Predictive Control (MPC) approach.

A. Two-Region MFD Plant (Process Model)

In this paper, two sources of uncertainty in the modeling
dynamics are accommodated, (i) the MFD modeling error
and (ii) measurement noise in the exogenous traffic demands.
The MFDs with errors are indicated by G̃1 and G̃2 for regions
1 and 2, respectively. We assume the MFD uncertainty is
uniformly associated with the accumulation as:

ε(ni (t)) ∼ U(−αi · ni (t), αi · ni (t)), (33)

where αi , i = 1, 2, is a constant parameter. Hence, plant
MFDs, i.e. G̃1 and G̃2, are

G̃i (ni (t)) = Gi (ni (t)) + ε(ni (t)). (34)

Exogenous demand noise indicates stochastic recurrent and
non-recurrent within-day variations in demand. The demand
with noise considering a Gaussian distribution for demand
noise is

q̃i j (t) = max(qi j (t) + N (0, σ 2
i j ), 0), (35)

where i, j = 1, 2 and σ 2
i j (veh2/sec2) is the variance of the

demand qi j (t).
Let us denote q̃(t) = [

q̃11(t), q̃12(t), q̃21(t), q̃22(t)
]T

as the
vector representation of the noisy traffic demand. Substituting
the MFDs with errors (34), along with the noisy demand (35)
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Fig. 3. Case study 1. Regions 1 and 2 are initially congested (without errors in MFDs and noise in demands): (a) Evolution of accumulations; (b) Demands;
(c) Evolution of co-states; (d) Cumulative trip completion; (e) Perimeter controllers; (f) MFDs.

in dynamic equations (1), would results in compressed form
of the two-region MFDs plant as fallows:

dñ(t)

dt
= f(ñ(t), u(t), q̃(t), ε(t)), (36)

where ε(t) = [
ε(ñi (t))

]T, i = 1, 2.

B. Greedy Control (GC)

To further investigate the performance of the IOA perimeter
controller, comparisons are carried out with a Bang-Bang con-
troller, namely Greedy Controller (GC). GC is a state feedback
control specified through the current regional accumulations
n1(t) and n2(t) and relative congestion level of each region
to the critical accumulation, i.e. n1,cr and n2,cr [veh] where
G1 and G2 are at maximum value, respectively. The GC
control actions are listed in Table I.

C. Case Studies

Two case studies with time-varying traffic states are con-
sidered to evaluate the performance of the IOA. Comparisons
are performed by applying the IOA, GC, MPC, and no
controller (NC) to the nonlinear and noisy plant (36) with
different levels of uncertainty. One case study is tested on the
noisy plant where there are significant measurement errors
on exogenous demands and MFD modeling. This is crucial
to investigate the performance of the proposed optimal IOA

TABLE I

GREEDY CONTROL ACTIONS, u12(t) AND u21(t)

where modeling mismatch is expected between a well-defined
MFD and measured MFD.

Without loss of generality, we consider the well-defined
MFDs for both regions are identical, where Gi (ni (t)) =
(1.4877 · 10−7 · n3

i − 2.9815 · 10−3 · n2
i + 15.0912 · ni )/3600,

i = 1, 2; n1,cr = n2,cr = 3400 [veh]; G1(n1,cr) = G2(n2,cr) =
6.31 [veh/s]; and n1,jam = n2,jam = 10000 [veh]. This is in
accordance with the MFD estimated in [1]. The lower and
upper bounds of the perimeter controller are set to umin = 0.1
and umax = 0.9, respectively, to capture the policy restrictions
on minimum and maximum green phase durations. The num-
ber of function approximators is set to N = 60 in all case
studies. Moreover, the initial accumulations n1(t0) = 5400
and n2(t0) = 4000 are in congested regime (MFD part with
the negative slope), where n2(t0) is 18% higher than n2,cr and
n1(t0) is 59% higher than n1,cr.

The results of Case study 1, which is associated with the
IOA controller, with no noise in the demands and no errors
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in the MFDs (α1 = α2 = 0) are depicted in Fig. 3. The
time-varying demands are illustrated in Fig. 3(b), in which a
peak hour with directional flows to Region 2 (i.e. the common
destination of trips) is simulated. The evolution of accumula-
tions ni j (t) and co-states over time are shown in Fig. 3(a)
and Fig. 3(c), respectively. The cumulative trip completion,
i.e. objective function (2), associated to the proposed IOA
controller is depicted in Fig. 3(d). The control sequences
u12(t) and u21(t) are depicted in Fig. 3(e) where the optimal
perimeter controllers are in form of Bang-Bang. At t = 600
[sec], u21(t) switches from umin to umax that is associated
with the event that the value of p3 becomes greater than p1.
As illustrated in Fig. 3(f), MFDs G1(n1(t)) and G2(n2(t))
coincide, while the circle points are obtained based on (34) as
G̃1 and G̃2. Note that in this case study, there are no errors
in both MFDs.

Further to demonstrate the effectiveness of the proposed
IOA controller, the same case study is tested with no controller
(NC), GC, and MPC. Interested reader is refered to [12] for
comprehensive description of MPC method. The evolution of
accumulations corresponding to the NC, GC, and MPC are
presented in Fig. 4(a), (c), and (e), respectively. With NC, both
perimeter controllers are equal to umax independent of traffic
states, see Fig. 4(b). This scenario represents the lack of a
network-scale type of traffic control scheme. The NC results
in the gridlock of Region 1 (i.e. n1 = n1,jam) which happens
at t = 2280 [sec]. (This is an example where the states of the
system become unbounded and reach to njam).

Fig. 4(d) depicts the GC perimeter controller. Initially,
GC assumes Region 1 as the region to be protected (from
transfer flows from Region 2) by the perimeter controller
because it is more congested than Region 2. Hence u12 = umax
and u21 = umin until t = 660 [sec], when accumulation
of Regions 1 and 2 become equal and afterwards the GC
results in chattering perimeter control actions as the relative
accumulation of regions toggle at each control step, which
is set to 60 [sec]. This leads to simultaneous increase of
accumulation in both regions, see Fig. 4(c). The MPC control
actions follow a similar trend to IOA control actions. That is,
u12 always equals to umax and u21 starts from umin increasing
to umax, though for a long period of time u21 is between
umin and umax. MPC control actions are not in form of
Bang-Bang and result in keeping the accumulation of Region 1
around 5000 [veh] and reducing Region 2 accumulation from
4000 [veh] to 3000 [veh].

The trip completions related to NC, GC, MPC, and IOA, for
Case study 1 (error-free plant) are listed in Table II. The GC,
MPC, and IOA controllers increase the total trip completion
respectively by 26.4%, 74.3%, and 81.5% with respect to
the No Control scenario. Evidently, the performance of MPC
is less than of IOA because MPC is a sub-optimal control
approach. It is worth to mention that the MPC requires a
state feedback from the plant every control step (which is
set to 60 [sec]), whereas IOA approach does not require a
recurrent state feedback. This inherent structural feature of
MPC helps to tackle modeling error. Case study 2 is devised
to investigate the performance of IOA dealing with modeling
error and demand prediction noise.

Fig. 4. Case study 1. Regions 1 and 2 are initially congested (with no
error in MFDs and no noise in demands): (a) Evolution of accumulations
with No Control; (b) Perimeter controllers when No Control is active
(u12(t) = u21(t) = umax); (c) Evolution of GC accumulations; (d) GC
perimeter controllers; (e) Evolution of MPC accumulations; (f) MPC perimeter
controllers. Note that the range of accumulation axes are different.

Figure 5 illustrates the results of Case study 2 where the
IOA controller is applied to the system similar to Case study 1
but with noise (σ 2

i j = 0.5, i, j = 1, 2) in the demands
(Fig. 5(b)) and errors (α1 = α2 = 0.2) in the MFDs (Fig. 5(c)).
To derive the IOA, error-free MFD and noise-free demand
are considered in formulations, hence the IOA controls of
Case study 1 and 2 are similar though the system outputs
are different.

Table II shows the trip completion of every controller for
Case studies 1 and 2. Note that the results of Case study 2 are
averaged over 20 runs to provide a more statistically accurate
performance index. In both case studies, GC shows around
20-25% improvement compare to NC, whereas with noisy
demands and errors in MFD the performance of MPC and IOA
decreases. This is expected because modeling mismatch and
error in prediction deteriorate the performance of model-based
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Fig. 5. Case study 2 with noise in demand and errors in MFDs: (a) Evolution of accumulations applying IOA; (b) Demands; (c) MFDs.

TABLE II

TOTAL TRIP COMPLETION [veh.103] FOR THE PROPOSED OPTIMAL
IOA, MODEL PREDICTIVE CONTROLLER (MPC), GREEDY

CONTROLLER (GC), AND NO CONTROL (NC). THE VALUES

IN PARENTHESES INDICATE THE RELATIVE IMPROVEMENT

OF GC, MPC, AND IOA WITH RESPECT TO THE NC
PERFORMANCE. CASE STUDY 2 CONSIDERS MODELING

ERROR AND MEASUREMENT NOISE

control approaches such as MPC and IOA. Nevertheless, MPC
and IOA are still significantly more efficient than NC and
GC. In Case study 2, IOA shows more than 1% improvement
compare to MPC, which demonstrates that the proposed IOA is
practical to tackle modeling mismatch. Note that MPC is more
robust by design because of its rolling-horizon structure that
requires recurrent state feedback to hinder the accumulation
of error in states over time. Although decrease in MPC
performance between Case studies 1 and 2 is less than of IOA,
outcome of IOA is still higher than of MPC. It is expected
that very high level of errors and noise deteriorate more the
performance of IOA.

Numerical results of Case studies 1 and 2 demonstrate
that the proposed IOA controller is effective, outperforms
Bang-Bang GC, NC, and MPC and can tackle uncertainties
in demand estimation and undesired patterns in aggregated
MFD modeling such as hysteresis loops.

VI. CONCLUSION

In this paper, traffic flow dynamics of a heterogeneous
large-scale urban network are modeled based on the MFD
concept. A two-region MFD model was used to develop an
optimal traffic control problem. The optimal perimeter control
problem for two urban regions with nonlinear state dynamics,
non-quadratic cost, and input and state constraints has been
solved by applying the IOA scheme. Using HJB equation and
Pontryagin’s maximum principal, we analytically prove that if

a perimeter controller stabilizes the system then the optimal
controller exists and is in the form of Bang-Bang.

The optimal control actions depend on the definition of
co-states that leads to a set of ordinary deferential equations
for traffic states (i.e. accumulation of vehicles in each region
based on the destination) and co-states. Obtaining the optimal
control problem requires to solve the set of states and co-states
ODEs where the initial conditions of (traffic) states and
final conditions of the co-states are known. Hence, the con-
strained optimal control problem was solved numerically as
a Two-Point Boundary Value Problem (TPBVP). Chebyshev
pseudospectral method was implemented to solve the TPBVP
for the proposed constrained optimal control. As a result,
the TPBVP were reduced to solve a system with algebraic
equations. Numerical case studies show the performance and
properties of IOA.

Future work involves integration of robustness and optimal-
ity in the control methodology. This is a crucial step towards
designing large-scale control strategies because modeling and
measurement uncertainties are inevitable at the city level.
Furthermore, the theoretical investigation on optimal control of
multimodal MFDs (e.g. with public transport, taxis, etc.) is of
great importance for devising holistic congestion management
frameworks. This is a challenging future research direction.

APPENDIX A
POSITIVITY OF THE SYSTEM

Lemma 1: The set

{0 ≤ n11(t), n12(t), n21(t), n22(t)}, (37)

is an invariant set for system (1) given 0 ≤ qi j (t).
Proof: The Lemma states that if 0 ≤ ni j,0 then 0 ≤ ni j (t).

When ni j (t) becomes zero in system (1), the negative term at
the RHS, i.e. Mij (t), becomes zero, hence the RHS will be
positive or equal to zero. Thus, ṅi j (t) will not be negative. So,
states cannot be negative.

Intuitively, system (1) is a physical system where n rep-
resents the number of vehicles which cannot be a negative
variable.
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APPENDIX B
PENALTY FUNCTION METHOD FOR CONSTRAINED

OPTIMAL PROBLEM

The following mathematical description is based on [31]
pages 352-354. Consider system (38) and the performance
index as (39).

ẋ(t) = f(x(t), u(t), t), (38)

J = h(x(tf)) + min
u(t)

∫ tf

t0
V (x, u(t), t)dt, (39)

where x(t) and u(t) are state and control vectors and n is
dimension of the state vector. The constraints of the system
are expressed as the following inequalities:

g1 (x1 (t) , ..., xn (t) , t) ≥ 0
...

gp (x1 (t) , ..., xn (t) , t) ≥ 0. (40)

A new variable xn+1 (t) is defined by:

ẋn+1 (t) � fn+1 (x (t) , t)

= [g1 (x (t) , t)]2U
(

− g1 (x (t) , t)
)

+ · · · + [
gp (x (t) , t)

]2U
(

− gp (x (t) , t)
)
, (41)

where U is a unit Heaviside step function defined as:

U (−gi ) =
{

0, if gi (x (t) , t) ≥ 0

1, if gi (x (t) , t) < 0.
(42)

When any of the constraints (40) are violated, ẋn+1 (t)
becomes positive, while in case of satisfaction of the con-
straints, ẋn+1 (t) equals zero.

APPENDIX C
CHEBYSHEV PSEUDOSPECTRAL METHOD

The following mathematical description is extracted
from [33], [42], and [43].

The Chebyshev polynomials, Tn(x), n = 0, 1, 2, ..., arise as
the solution to the singular Sturm-Liouville problem

(
1 − x2

)
T 



n (x) − xT 

n (x) + n2Tn (x) = 0. (43)

On the interval [−1, 1], the Chebyshev polynomials are
orthogonal with respect to L2

ω inner projection, i.e.,
∫ 1

−1

Tn (x) Tm (x)√
1 − x2

dx = π

2
cnδnm, (44)

where ω (x) = 1√
1−x2

is the weight function, c0 = 2, cn = 1
for n ≥ 1, and δnm is the Kroneker delta function. The
Chebyshev polynomials can also be defined by the recurrence
equation as follows:

Tn+1 (x) = 2xTn (x) − Tn−1 (x) , n = 1, 2, . . . , (45)

where T0 (x) = 1 and T1 (x) = x .

Using Chebyshev polynomials, a function f (x) ∈
L2

ω (−1, 1) can be represented as

f (x) =
∞∑

j=0

f j Tj (x), (46)

where the coefficients f j are acquired by

f j = 2

πc j

∫ 1

−1

f (x) Tj (x)√
1 − x2

dx, j = 0, 1, 2, . . . . (47)

To use the Chebyshev polynomials on interval [0, T ], we need
to shift the defining domain. This is obtained by the following
variable substitution

x = 2

(
t

T

)

− 1. (48)

Denoting the shifted Chebyshev polynomials as T ∗
n �

Tn
(
2

( t
T

) − 1
)
, they are given by the following recurrence

equation

T ∗
n+1 (t) =

(

4

(
t

T

)

− 2

)

T ∗
n (t)−T ∗

n−1 (t) , n = 1, 2, . . . ,

(49)

where T ∗
0 (t) = 1 and T ∗

1 (t) = (
2

( t
T

) − 1
)
. For the shifted

Chebyshev polynomials, the orthogonally condition is written
as

∫ T

0

T ∗
n (t) T ∗

m (t)√
T t − t2

dt = π

2
cnδnm . (50)

Using shifted Chebyshev polynomials, any function f (t) ∈
L2

ω (0, T ) can be approximated in the form

f N (t) ≈
N∑

j=0

f ∗
j T ∗

j (t), (51)

where

f ∗
j = 2

πc j

∫ 1

−1

f
(( T

2

)
(t + 1)

)
Tj (t)√

1 − t2
dt, j = 0, . . . , N.

(52)

We can also write the first derivative of f N (t) as

ḟ N (t) ≈ 2

T

N∑

j=0

f (1)
j T ∗

j (t), (53)

in which the coefficients f (1)
j are achieved using f j

f (1)
j = 2

c j

N∑

p= j+1
(p+ j) odd

p f ∗
p , j = 0, ..., N − 1, f (1)

N = 0. (54)
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