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a b s t r a c t 

Individual vehicles experience a large variability of delay at signalized intersections in ur- 

ban networks. Existing traffic signal optimization frameworks often overlook the impli- 

cations of delay variability and spillback for design and analysis of signal timing plans. 

This paper presents an analytical solution based on the shockwave theory to estimate de- 

lay variability at an undersaturated intersection. We also propose a new optimal signal 

timing formulation that minimizes the delay variability and probability of spillback in ad- 

dition to total delay. Several algorithms are proposed to attain the global optimal signal 

timing for prefixed (given) and dynamic (optimal) cycle length control strategies. Illustra- 

tive microsimulation and numerical studies demonstrate the effectiveness of the proposed 

formulated models and signal optimization algorithms. 
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1. Introduction 

Signal optimization at isolated intersections has been widely studied (see e.g. Wardrop, 1952; Webster, 1958; Gazis, 1964;

AKÇELIK, 1981 ). The seminal work of Webster (1958) proposed an analytical formula based on queuing theory for the opti-

mal cycle length at an isolated undersaturated intersection. In another seminal work, Gazis (1964) proposed an optimization

framework based on a semi-graphical approach that was also formulated using Pontryagin’s minimum principle for oversat-

urated intersections. Nevertheless, the introduction of the kinematic shockwave theory (also called LWR or shockwave theory)

Lighthill and Whitham (1955) and Richards (1956) provided an alternative method for modelling and analyzing the traffic

flow on arterial roads (see e.g. Dion et al., 2004; Skabardonis and Geroliminis, 2008; Liu et al., 2009; Cheng et al., 2011;

Ramezani and Geroliminis, 2015 ). Estimation of delay at intersections using the shockwave theory was first presented in

Michalopoulos and Pisharody (1981) . Dion et al. (2004) present a comprehensive literature review on different approaches

to model delay including deterministic queuing algorithms ( Haddad et al., 2010; Aboudolas et al., 2010; Ioslovich et al., 2011;

Varaiya, 2013a, 2013b; Haddad et al., 2014 ), shockwave based models ( Michalopoulos et al., 1981; Ban et al., 2009; Zheng

et al., 2017; Wada et al., 2017 ), and microscopic simulation based models ( Dowling et al., 2004 ). 

The literature on the optimization of traffic signals can be classified into studies that focus on optimizing (i) a single

isolated intersection ( Lee et al., 2017; Wang et al., 2017; Yu et al., 2017; Yu et al., 2018 ), (ii) multiple coordinated intersec-
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Nomenclature 

q a 
i 

The arrival flow of Approach i [veh/unit time] 

q c 
i 

The saturation flow (or capacity) of Approach i [veh/unit time] 

k a 
i 

The arrival traffic density of Approach i [veh/unit distance] 

k c 
i 

The saturation (critical) traffic density of Approach i [veh/unit distance] 

k 
j 
i 

The jam density of Approach i [veh/unit distance] 

R i , G i Respectively, the red time and green time of Approach i during a cycle [unit time] 

C The cycle time [unit time] 

L i The loss time of Approach i [unit time] 

�i The length of Approach i [unit length] 

x 
j 
i 

and t 
j 
i 

The position and the time of queue clearance at Approach i , respectively 

ˆ i ∈ � The complement of i in set �

δ( t ) The Dirac delta function which is infinity at t = 0 and zero otherwise 

H ( t ) The Heaviside step function which is zero for t ≤ 0 and one otherwise 

tions ( Dinopoulou et al., 2006; Kosmatopoulos et al., 2007; Ramezani et al., 2017; Wada et al., 2017 ), and (iii) network-wide

signal control (e.g. Diakaki et al., 2002; Keyvan-Ekbatani et al., 2015; Kouvelas et al., 2017; Ramezani et al., 2015; Aalipour

et al., 2018 ). The main outcome of network-wide signal control strategies (e.g. perimeter control) is to manage the conges-

tion level of different regions of the network such that each region remains uncongested. The perimeter control is based on

macroscopic and large-scale models and is expected to enable undersaturated traffic conditions at the intersections. Thus to

complement the perimeter control, this paper studies local-level (i.e. intersection) signal control while offering a new focus

on reliability measures. 

Haddad et al. (2010, 2014) proposed a discrete-event max-plus approach to model the traffic flow at a two-way isolated

undersaturated intersection and considered a weighted sum of queue lengths at the intersection as the optimization crite-

rion. In addition, the above theory is applied in Ioslovich et al. (2011) to optimize an oversaturated intersection assuming

a continuous-time model as in Gazis (1964) . Moreover, Varaiya (2013b) proposed the concept of max-pressure and applied

it to the store and forward queuing model to stabilize an arbitrary network of intersections under uncertain demands and

turning ratios. This theory has been recently applied to control isolated intersections in Lee et al. (2017) . 

Despite the vast literature on signal timing optimization, very few studies have considered delay variability and spillback

avoidance. The literature on the investigation of delay variability has mostly concentrated on the mathematical or numerical

approaches to estimate the delay variability at a single approach considering stochastic arrival/departure flow rates ( Zheng

et al., 2017; Fu and Hellinga, 20 0 0; Chen et al., 2016 ). Zheng et al. (2017) proposed a LWR theory based approach to mathe-

matically model the delay distribution at a single approach of two adjacent signalized intersections addressing deterministic

and stochastic upstream flow rates and signal coordination effects. Very recently, Wada et al. (2017) proposed a two-level

mixed-integer linear programming optimization algorithm based on the variational LWR model of traffic flow to adjust the

timings and offsets of coordinated traffic signals for deterministic traffic conditions and their stochastic extensions. 

Spillback avoidance has been the subject of a few studies in the literature (see e.g. Ramezani et al., 2017; Liu and

Chang, 2011; Li and Zhang, 2014 ). Ramezani et al. (2017) proposed a queue spillback avoidance control framework for an

arterial based on the link partitioning approach. Liu and Chang (2011) proposed a heuristic genetic algorithm-based sig-

nal optimization framework with the priority given to minimizing the possibility of spillback occurrence. Moreover, Li and

Zhang (2014) attempted to minimize the probability of spillback using a linear program with an objective representing the

spillback’s risk, assuming a prefixed cycle length. Those works employ the queuing theory for estimating the queue length

at the intersection. Nevertheless, studies based on the store and forward queuing model do not provide full spatial and

temporal characteristics of queuing dynamics. This is particularly essential to accurately analyze the possibility of spillback,

since when the queue at an approach exceeds the detector’s location, models based on the queuing theory face observability

problems ( Liu et al., 2009; Cheng et al., 2011 ). 

This paper investigates the traffic signal control problem using the shockwave theory. We present an analytical model to

estimate the delay variability of queued vehicles, and the queue lengths at the intersection. Using the model, we formulate

the optimal cycle time and the green phase allocations at the intersection considering constant flow rates and taking loss

times into account. Furthermore, prefixed (given) cycle length scenarios are also studied. We optimize the signal timing by

minimizing the following objective functions: (i) delay variability, and (ii) probability of spillback. The delay distribution

at the intersection is established, and the variance of delay is introduced as a criterion for increasing the performance

reliability of the signal control. Furthermore, undersaturation condition and spillback avoidance are formulated to define

the optimization constraints. Accordingly, each problem is formulated as a convex program, and descriptive algorithms are

proposed to achieve the analytical global optimal signal setting for various optimization scenarios. 

The rest of the paper is organized as follows. Preliminaries of shockwave theory and delay estimation are given in

Section 2 . The opimization algorithms for dynamic and prefixed cycle length strategies are given in Section 3 , where sev-

eral frameworks for minimizing the delay variability and probability of spillback objectives are proposed in Sections 3.2 and
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Fig. 1. (a) The time-space, and (b) the fundamental diagrams of each approach of a two-way undersaturated intersection. The generated shockwaves are 

shown by thick lines. The minimum effective green time at each approach to maintain the undersaturation property is depicted, and the effect of loss times 

in enlarging the vehicle delay at each approach is highlighted. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 , respectively. Comprehensive microsimulation and numerical studies are conducted in Section 4 to highlight the impor-

tance and efficacy of various proposed signal optimization algorithms. The summary and future directions are provided in

Section 5 . 

2. Preliminaries 

Variable t i ∈ [0 , t 
j 
i 
] , i = { 1 , 2 } is defined as the time that a vehicle joins the queue at Approach i . We use the time-space

diagram (TSD) that contains the trajectory of every vehicle entering and exiting the system, and the traffic flow fundamental

diagram (FD). The TSD and FD are related through the definition of shockwave ( Lighthill and Whitham, 1955 ). Fig. 1 depicts

the TSD, FD, and shockwaves at a two-phase homogeneous and undersaturated intersection. 

To derive the analytical formulations of the paper, we assume: [A] infinite acceleration; [B] the arrival and discharge

flows and speeds of each approach are constant and known during the cycle time; [C] a triangular FD ( Fig. 1 (b)); [D] a

two-phase intersection; and [E] the loss times at the intersection are known and constant. For simplicity in notations we

first study a two-phase intersection, then extend the algorithms to multi-phase intersections. Note that the arrival flow

rates can vary cycle by cycle and Assumption [B] is not a limiting assumption for an isolated intersection. However, the

assumption may not be valid for closely spaced intersections when the spillback is imminent Haddad and Mahalel (2014) .

This motivates us to also investigate the spillback and design the signal timings to minimize the probability of spillback. In

the microsimulation case study (Section 4.1), the above assumptions are relaxed, which enables to scrutinize the effect of

the assumptions on the theoretical outcomes. 

From Fig. 1 (assuming zero loss times), the queue clearance point can be formulated as follows: 

t j 
i 
= βi (R i + L i ) , (1)

x j 
i 
= 

q a 
i 

k j 
i 
− k a 

i 

t j 
i 
, (2)

where 

βi � 

k c 
i 

(
k j 

i 
− k a 

i 

)
k j 

i 

(
k c 

i 
− k a 

i 

) > 1 . 

Formulas (1) and (2) are obtained based on the fact that the speed of arrival and discharge shockwaves at Approach i are

the slopes of lines A J and C J in the FD depicted in Fig. 1 b, respectively. 
i i i i 
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Fig. 2. (a) The description of the notations and auxiliary axes used in the proof of Theorem 1 on the TSD; (b)-(d) The delay PDFs at each approach and 

the whole intersection. 

 

 

 

 

 

 

 

 

The delay experienced by each individual vehicle can be formulated based on the time and position of the vehicle when

joining the queue ( t i and x i ) from Fig. 1 . Given that a vehicle that joins the back of the queue at time t i and position x i 
discharges the queue at time ˜ t i > t i , simple trigonometric calculations based on the shockwave theory can be carried out,

together with previously derived formulas (1) and (2) to obtain the delay experienced by the vehicle from formulas below:

D i (t i ) = − t i 
βi 

+ R i + L i ∀ t i ∈ [0 , t j 
i 
] . (3a)

D i (x i ) = −k j 
i 
− k a 

i 

βi q 
a 
i 

x i + R i + L i ∀ x i ∈ [0 , x j 
i 
] . (3b)

If the cycle length is prefixed (given and equal to C ), the decision variable in the optimization framework is either R 1 
or R 2 . Let us assume hereafter that R 1 is the decision variable of interest. Therefore, (1) –(3) can be rewritten, substituting

R 2 = C − R 1 . 

3. Signal optimization 

We formulate the optimization problem using two alternatives objective functions: (i) the variance of delay distribution

and (ii) the probability of spillback, taking into account a spillback avoidance constraint. The first objective is a measure to

model and minimize travel time variability at the intersection. 
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3.1. Formulating the constraints 

Given the red time R i , to discharge the queue at Approach i the minimum green time of the approach must fulfill the

following inequality, which is obtained after some trigonometric calculations based on Fig. 1 : 

G 

min 
i + L i = R 

min 
ˆ i 

≥ t j 
i 
− R i + 

k a 
i 

q a 
i 

x j 
i 

i = { 1 , 2 } , (4)

where ˆ i ∈ { 1 , 2 } is the complement of i in the set {1, 2} (e.g. if i = 1 , then 

ˆ i = 2 ). Substituting (1) and (2) into (4) it is

obtained that 

R ˆ i 
− ηi ( R i + L i ) − L i ≥ 0 . (5)

where 

ηi � 

k a 
i 

k c 
i 
− k a 

i 

> 0 i = { 1 , 2 } . 
In addition, it is well-known and can be shown from the queuing theory that the necessary and sufficient condition for

keeping an intersection undersaturated is ( Gazis, 1964 ): 

∑ 

i =1 , 2 

q a 
i 

q c 
i 

+ 

L 

C 
≤ 1 . (6)

As such, for an intersection with bounded loss times controlled by a dynamic cycle length, the necessary and sufficient

condition for undersaturation is expressed as 

∑ 

i =1 , 2 

q a 
i 

q c 
i 

< 1 . (7)

Taking the speed-flow relationship in the FD into account, Condition (7) is equivalent to η1 η2 < 1. 

To avoid the spillback phenomena at Approach i , the position of the back of the queue at the clearance time, i.e. x 
j 
i 
,

should be less than or equal the length of the approach. This constraint can be expressed as the following inequality : 

R i + L i − k j 
i 

(
1 

q a 
i 

− 1 

q c 
i 

)
�i ≤ 0 , (8)

where �i is the length of Approach i ∈ {1, 2}. 

Under the prefixed cycle length control strategy, constraints (5) and (8) are reformulated as follows (replace R 2 = C − R 1 ):

(1 + η1 ) R 1 + η1 L 1 + L 1 − C ≤ 0 (9a)

(1 + η2 ) R 1 − η2 (C + L 2 ) − L 2 ≥ 0 (9b)

R 1 + L 1 − k j 
1 

(
1 

q a 
1 

− 1 

q c 
1 

)
�1 ≤ 0 (10a)

R 1 − L 2 + k j 
2 

(
1 

q a 
2 

− 1 

q c 
2 

)
�2 − C ≥ 0 (10b)

Considering constant and bounded free flow speed of vehicles, there should be at least a minimum amount of time for

every vehicle as well as pedestrian to pass through the intersection that is represented by 

R 

min 
i ≤ R i . (11)

3.2. Minimizing the delay variability 

3.2.1. Optimized cycle length 

The distribution of delay can provide crucial information about the reliability of the signal control approach. A traffic

signal control that minimizes this objective provides candid green times to all approaches. As such, vehicles on minor ap-

proaches will experience more equitable delays compared to the case when the total delay at the intersection is minimized.

In light of that, the forthcoming theorem summarises our contributions on this problem using the shockwave theory. It

is emphasized that the continuous model of the distribution of delay is studied, which is a more convenient layout with

respect to the discrete model for optimization purposes. 

Theorem 1. The following statements hold for a two-phase undersaturated intersection wherein Assumptions [A–E] are satisfied:
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Fig. 3. The feasibility area (shaded) and the solution domains (bold solid lines) of the delay variability optimization problem assuming no loss time at the 

intersection: (a,b) Case (1); (c) Case (2). The green dashed line represents R 1 − R 2 = 0 ; and R max 
i 

= k j 
i 

(
1 
q a 

i 

− 1 
q c 

i 

)
�i . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

(

 

(  

(

a) The delay probability density function (PDF) of Approach i , i = { 1 , 2 } , can be expressed as 

f D i (d) = 

˜ n i 

Cq a 
i 

δ(d) + θi ( H(d) − H(d − R i − L i ) ) , (12) 

where θi = 

βi k 
j 
i 

C(k 
j 
i 
−k a 

i 
) 
, δ( · ) is the Dirac delta function, d ≥ 0 is the delay experienced by a vehicle, and ˜ n i is the estimated number

of undelayed vehicles at Approach i: 

˜ n i = Cq a i − q a i � i βi (R i + L i ) , (13) 

where � i � 

k 
j 
i 

k 
j 
i 
−k a 

i 

. 

b) Without loss of generality if Approach i is the dominant approach and thus R ˆ i + L ˆ i ≥ R i + L i , then for every d ≥ 0 the delay

PDF at the whole intersection can be expressed as 

f D (d) = ζ1 δ(d) + ζ2 ( H(d) − H(d − R i − L i ) ) + ζ3 

(
H(d − R i − L i ) − H(d − R ˆ i 

− L i ) 
)
, (14) 

where 

ζ1 = 

˜ n 1 + 

˜ n 2 

C(q a 
1 

+ q a 
2 
) 
, 

ζ2 = 

2 ∑ 

i =1 

βi � i q 
a 
i 

C(q a 
1 

+ q a 
2 
) 
, 

ζ3 = 

βˆ i 
� ˆ i 

q a 
ˆ i 

C(q a 
1 

+ q a 
2 
) 
. 

c) The variance of delay at the intersection assuming that Approach i is the dominant approach is 

D var = σ 2 [ f D ] = ζ1 ̄D 

2 
μ + 

1 
3 
(ζ2 − ζ3 ) 

(
R i + L i − D̄ μ

)3 + 

1 
3 
ζ2 ̄D 

3 
μ + 

1 
3 
ζ3 

(
R ˆ i 

+ L ˆ i − D̄ μ

)3 
, (15) 
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C  
where D̄ μ is the expected value of delay that is obtained from the following formula: 

D̄ μ = E[ f D ] = 0 . 5 ζ2 (R i + L i ) 
2 + 0 . 5 ζ3 

(
(R ˆ i 

+ L ˆ i ) 
2 − (R i + L i ) 

2 
)
. (16)

Proof. The proof is given in Appendix A . �

Given that cycle time is the summation of the decision variables ( R 1 and R 2 ), ζ 1 , ζ 2 , ζ 3 , and D̄ μ are nonlinear. Hence, D var

is also a nonlinear function of R i , i = { 1 , 2 } . Furthermore, investigating the convexity of the variance function (see Figs. 10

and 11 in Section 4 ) confirms that D var is a non-convex function of R i , thus, the infimum of the objective function is not

necessarily on the border of the feasibility set. This makes the analytical calculation of the optimal solution cumbersome.

Nevertheless, it can be shown after carrying out comprehensive mathematical manipulations that given R ˆ i + L ˆ i ≥ R i + L i ,

D var ( R 1 , R 2 ) is strictly increasing with respect to R ˆ i and it is a convex function of R ˆ i . A proof of this statement is given in

Appendix B . Hence, the optimal cycle length and red time allocations at the intersection based on the minimization of the

variance function is on the line R ˆ i = R min 
ˆ i 

in the ( R 1 , R 2 ) plane. 

Algorithm 1 provides an analytical optimization framework assuming zero loss times for simplicity in the explanations.

Algorithm 6 given in Appendix C is the extension of the algorithm addressing the loss times at the intersection. 

Algorithm 1 Signal optimization for minimizing the delay variability at the intersection assuming optimized cycle length. 

I. If inequality (6) is realized, there exists a global optimal solution and one may proceed to the next step. Otherwise, the

intersection is over-saturated and the algorithm terminates with no solution. 

II. Calculate η1 and η2 according to their definitions and identify the category of the optimization: (1) if ηˆ i 
≥ 1 , i, ̂  i ∈ { 1 , 2 } ,

proceed to Step III; and (2) if η1 < 1 and η2 < 1 , jump to Step IV. 

III. It can be assumed that R ˆ i ≤ R i . If ηˆ i 
R min 

ˆ i 
≥ R min 

i 
, then the global optimal solution is (R min 

ˆ i 
, ηˆ i 

R min 
ˆ i 

) (the order may change

depending on the value of ˆ i ). The optimal point is demonstrated as the blue bold points in Fig. 3(a,b). Otherwise, the 

following optimization problem should be solved using a numerical approach such as the method of Lagrange 

multipliers: 

minimize 
R i = R min 

i 
,R ˆ i 

D var (R ˆ i 
) 

ηˆ i 
R ˆ i 

− R 

min 
i 

≤ 0 , 

−R ˆ i 
+ R 

min 
ˆ i 

≤ 0 , 

−R ˆ i 
+ ηi R 

min 
i 

≤ 0 , 

R ˆ i 
− k j 

ˆ i 

(
1 
q a 

ˆ i 

− 1 
q c 

ˆ i 

)
�ˆ i 

≤ 0 , 

R 

min 
i 

− k j 
i 

(
1 
q a 

i 

− 1 
q c 

i 

)
�i ≤ 0 . 

( O1-1)

The solution lies in the feasible closed set with R i = R min 
i 

, as demonstrated in the upper Fig. 3(a,b). 

IV. Let us assume that R min 
i 

≥ R min 
i 

. The optimal solution can be found after solving the following problem (see Fig. 3(c)): 

minimize 
R i ,R ˆ i = R min 

ˆ i 

D var (R i ) 

ηˆ i 
R 

min 
ˆ i 

− R i ≤ 0 , 

−R i + R 

min 
i 

≤ 0 , 

R i − R 

min 
ˆ i 

≤ 0 , 

R i − k j 
i 

(
1 
q a 

i 

− 1 
q c 

i 

)
�i ≤ 0 , 

R 

min 
ˆ i 

− k j 
ˆ i 

(
1 
q a 

ˆ i 

− 1 
q c 

ˆ i 

)
�ˆ i 

≤ 0 . 

( O1-2)

3.2.2. Prefixed cycle length 

After substituting R 2 = C − R 1 into (15) , the following formula are obtained for the variance of delay: 

D varc = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

( a . ) ζ1 c ̄D 

2 
μc 

+ 

1 

3 

( ζ2 c − ζ3 c ) 
(
R 1 + L 1 − D̄ μc 

)3 + 

1 

3 

ζ3 c 

(
C + L 2 − R 1 − D̄ μc 

)3 + 

1 

3 

ζ2 c ̄D 

3 
μc 

R 1 ≤ C 

2 

( b . ) ζ1 c ̄D 

2 
μc 

+ 

1 

3 

(
ζ2 c − ˜ ζ3 c 

)(
C + L 2 − R 1 − D̄ μc 

)3 + 

1 

3 

˜ ζ3 c 

(
R 1 + L 1 − D̄ μc 

)3 + 

1 

3 

ζ2 c ̄D 

3 
μc 

R 1 ≥ C 

2 

(17)

where D̄ μc � 0 . 5 β1 � 1 q 
a 
1 
(R 1 + L 1 ) 

2 /N T + 0 . 5 β2 � 2 q 
a 
2 
(C − R 1 + L 2 ) 

2 /N T ; 

ζ1 c � 1 − q a 
1 
� 1 β1 (R 1 + L 1 ) /N T − q a 

2 
� 2 β2 (C − R 1 ) /N T , ζ2 c � 

∑ 2 
i =1 q 

a 
i 
� i βi /N T , ζ3 c � β2 � 2 q 

a 
2 
/N T , 

˜ ζ3 c � β1 � 1 q 
a 
1 
/N T , and N T �

 

(
q a 

1 
+ q a 

2 

)
. The optimization problem for minimizing the delay variability at the intersection can thus be formulated as
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minimize 
R 1 

D varc (R 1 ) 

subject to: 
˜ R 

min 
1 ≤ R 1 ≤ ˜ R 

max 
1 

(O3) 

Investigating (17) indicates that D varc is a continuous 6th degree polynomial function of R 1 , which is non-convex. Hence,

its derivative ˙ D varc = ∂ D varc /∂ R 1 is a 5th order polynomial. Therefore, ˙ D varc = 0 would have at most 5 different admissible

solutions R � varc ∈ [ ̃  R min 
1 

, ˜ R max 
1 

] . This observation results in Algorithm 2 for seeking the analytical global optimal solution of

(O3) if ˜ R min 
1 ≤ ˜ R max 

1 
. 

Algorithm 2 Signal optimization for minimizing the delay variability at the intersection assuming prefixed cycle length. 

I. Calculate η1 and η2 according to their definitions and identify the category of the optimization: (1) if ηˆ i 
≥ 1 , ˆ i ∈ { 1 , 2 } , 

proceed to Step II; and (2) if η1 < 1 and η2 < 1 , jump to Step III. 

II. If η1 ≥ 1 ( η2 ≥ 1 ), it can be assumed that R 1 ≤ C/ 2 ( R 1 ≥ C/ 2 ) and (17.a) ((17.b)) can be selected as the objective 

function. Then, the optimal solution can be found from the set of critical points { ̃  R min 
1 , R � varc , 

˜ R max 
1 

} . 
III. The optimization problem O3 should be solved once assuming (17.a) as the objective function and changing the 

constraint to ˜ R min 
1 

≤ R 1 ≤ C/ 2 , and once considering (17.a) and constraint C/ 2 ≤ R 1 ≤ ˜ R max 
1 

to this aim. The global 

optimal solution can then be selected as the one that returns a smaller delay variability. 

3.3. Minimizing the probability of spillback 

Signal optimization for minimizing the probability of spillback occurrence can be better scrutinized using the shockwave

theory instead of the queuing theory. Spillover phenomena at an approach can happen due to various reasons including

high arrival flow rates, or short link lengths. This is highly undesirable as spillback can propagate through the network and

eventually result in gridlock ( Mahmassani et al., 2013; Geroliminis and Skabardonis, 2011 ). Hence, strong attention should

be devoted to minimizing the probability of spillover at a signalized intersection. 

3.3.1. Optimized cycle length 

An appropriate objective function to this aim is the reciprocal of the left-hand-side of (8) : 

D sb = 

∑ 

i =1 , 2 

εi 

k j 
i 

(
1 
q a 

i 

− 1 
q c 

i 

)
�i − R i − L i 

, (18) 

where ε i > 0, 
∑ 

i =1 , 2 εi = 1 , are weighting gains. The function returns small positive values when the probability of spillback

is low, and very large values as the back of the queue approaches to the end of the link. Hence, the optimization problem

is reconfigured to ( i, ̂  i ∈ { 1 , 2 } ): 
minimize 

R 1 ,R 2 
D sb (R 1 , R 2 ) 

Subject to (5), (8), and (11) 
(O4) 

An alternative objective function for minimizing the possibility of spillback can be defined as 

D sb 2 = 

∑ 

i =1 , 2 

εi (R i + L i ) 

k j 
i 
�i 

(
1 
q a 

i 

− 1 
q c 

i 

) , (19) 

which is equivalent to 
∑ 

i =1 , 2 εi x 
j 
i 
/ �i . However, D sb responds more strongly and abruptly to situations where the spillback

probability increases to critical levels. This point is demonstrated in the simulation studies in Section 4 . 

Program (O4) is convex, and both D sb and D sb 2 
are strictly increasing functions of the optimization variables. It can be

analytically shown using the method of Lagrange multipliers that the optimal solution lies on the border of the feasibility

set, demonstrated in Fig. 4 (a–c) for an intersection without loss time and in Fig. 4 (d–g) for an intersection with loss time.

In other words, the optimal solution is attained from two non-zero values of the Lagrange multipliers which correspond to

two constraints that can also be identified graphically ( Fig. 4 ). Therefore, four outcomes for the global solution of program

(O4) are possible depending on the location of the point D 

� � (R min 
1 , R min 

2 ) in the solution space. The solution can be sought

from Algorithm 3 . The point R � defined in the algorithm is the intersection of the hyper lines associated with the constraints

(5) that are depicted in Fig. 4 . 

It is evident that increase in loss time would increase the probability of spillback at the intersection. Fig. 4 demonstrates

the effect of loss time on the feasibility region of the intersection. Furthermore, inequality (8) , i.e. the spillback avoidance

constraint, implies an upper-bound for the red time at each approach (see Fig. 4 ). 
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Fig. 4. The feasibility regions and possible optimal solution outcomes of the optimized cycle length control: (a–c) intersection without loss time and (d–g) 

intersection with loss times. The black dot point in each figure indicates the optimal signal setting, and R max 
i 

= k j 
i 

(
1 
q a 

i 

− 1 
q c 

i 

)
�i − L i . 

Algorithm 3 Global optimal signal timing 
(
R 

opt 
1 

, R 
opt 
2 

)
for minimizing the probability of spillback at the intersection assum- 

ing optimized cycle length. 

1. R � � 

(
η2 (η1 +1) 
1 −η1 η2 

L 1 + 

η2 +1 
1 −η1 η2 

L 2 , 
η1 (η2 +1) 
1 −η1 η2 

L 2 + 

η1 +1 
1 −η1 η2 

L 1 

)
, if the point D 

� lies on the left and below of the 

point R � (the bold point in Fig. 4(d)). 

2. 
(
R min 

1 , L 1 + η1 (R min 
1 + L 1 ) 

)
, if the point D 

� lies on the right of the point R � and right of the hyper line 

η1 (R 1 + L 1 ) − R 2 + L 1 = 0 (the dark bold point in Fig. 4(e)). 

3. 
(
L 2 + η2 (R min 

2 
+ L 2 ) , R 

min 
2 

)
, if the point D 

� lies on the top of the point R � and left of the hyper line −R 1 + L 2 + η2 

(R 2 + L 2 ) = 0 (the dark bold point in Fig. 4(f)). 

4. D 

� , if the point D 

� lies on the top of the point R � and between the hyper lines −R 2 + L 1 + η1 (R 1 + L 1 ) = 0 and 

η2 (R 2 + L 2 ) − R 1 + L 2 = 0 (the dark bold point in Fig. 4(g)). 

 

 

 

 

Note that total delay at the intersection can be formulated as 

D T = 

∑ 

i =1 , 2 

∫ x j 
i 

0 

k j 
i 
D i (x i )d x i 

= 

∑ 

i =1 , 2 
γi ( R i + L i ) 

2 
. (20)

where γi � 0 . 5 βi 
q a 

i 

k 
j 
i 
−k a 

i 

k 
j 
i 
, which is in agreement with the Webster’s deterministic formula. Since D T is also a convex function

of the signal timing variables, the feasibility region for minimizing the total delay is as demonstrated in Fig. 4 and the

analytical optimal solution can be obtained from Algorithm 3 . 

3.3.2. Prefixed cycle length 

After replacing R 2 by C − R 1 in (18) and (19) , objective functions D sb and D sb 2 
are respectively modified to: 

D sbc = 

ε1 

δ − R 

+ 

ε2 

δ + R 

, (21)

1 1 2 1 
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Fig. 5. The feasibility set of the solution space of the prefixed cycle length control scenario. 

 

 

 

 

 

 

 

 

D sbc 2 = 

ε1 (R 1 + L 1 ) 

k j 
1 
�1 

(
1 
q a 

1 
− 1 

q c 
1 

) + 

ε2 (C − R 1 + L 2 ) 

k j 
2 
�2 

(
1 
q a 

2 
− 1 

q c 
2 

) , (22) 

where δ1 � k 
j 
1 

(
1 

q a 
1 

− 1 
q c 

1 

)
�1 − L 1 and δ2 � k 

j 
2 

(
1 

q a 
2 

− 1 
q c 

2 

)
�2 − C − L 2 . Moreover, the undersaturation and spillback avoid-

ance constraints respectively follow (9) and (10) that imply lower-bounds and upper-bounds of R 1 . Let us define

˜ R min 
1 � max { R min 

1 ; ( η2 (C + L 2 ) + L 2 ) / (1 + η2 ) ;C + L 2 − k 
j 
2 

(
1 

q a 
2 

− 1 
q c 

2 

)
�2 } and 

˜ R max 
1 

� min { R max 
1 

; ( C − η1 L 1 − L 1 ) / (1 + η1 ) ; −L 1 +

k 
j 
1 

(
1 

q a 
1 

− 1 
q c 

1 

)
�1 } . Accordingly, the optimization problem can be summarized as 

minimize 
R 1 

D sbc (R 1 ) 
(
or D sbc 2 (R 1 ) 

)
subject to: 
˜ R 

min 
1 ≤ R 1 ≤ ˜ R 

max 
1 

(O5) 

The feasible set of the optimization problem (O5) is highlighted using a bold line in Fig. 5 . Note that the necessary and

sufficient condition for the existence of a solution for problem (O5) is ˜ R min 
1 ≤ ˜ R max 

1 
. The undersaturation constraint (6) and

the spillback avoidance condition (8) are embedded in 

˜ R min 
1 ≤ ˜ R max 

1 
respectively through 1 / (1 + η2 ) ( η2 (C + L 2 ) + L 2 ) ≤

1 / (1 + η1 ) ( C − η1 L 1 − L 1 ) and C + L 2 − k 
j 
2 

(
1 

q a 
2 

− 1 
q c 

2 

)
�2 ≤ −L 1 + k 

j 
1 

(
1 

q a 
1 

− 1 
q c 

1 

)
�1 . 

It is clear that D sbc2 ( · ) is monotonic (i.e. strictly increasing or decreasing), and thus it is convex. Moreover, the convexity

of D sbc2 ( · ) can also be confirmed after taking the second derivative of it. Hence, if ˜ R min 
1 

≤ ˜ R max 
1 

, using the method of Lagrange

multipliers the analytical global optimal solution of (O5) can be obtained using Algorithm 4 . 

Algorithm 4 Global optimal signal timing R 
opt 
1 

for minimizing the probability of spillback at the intersection with prefixed

cycle length. 

i. If D sbc is the objective function, the solution is: 

1. R � 
sb 

, which is the positive solution of 

( ε1 − ε2 ) R 

2 
1 + 2 ( ε1 δ2 + ε2 δ1 ) R 1 + ε1 δ

2 
2 − ε2 δ

2 
1 = 0 , (23) 

if ˜ R min 
1 ≤ R � 

sb 
≤ ˜ R max 

1 
. 

2. ˜ R min 
1 , if R � 

sb 
≤ ˜ R min 

1 . 

3. ˜ R max 
1 

, if R � 
sb 

≥ ˜ R max 
1 

. 

ii. If D sbc 2 
is the objective function, the solution is: 

1. ˜ R min 
1 if ˜ δ � 

ε1 
δ1 + L 1 −

ε2 
δ2 + C+ L 2 > 0 . 

2. ˜ R max 
1 

if ˜ δ < 0 . 

3. Any R 1 ∈ [ ̃  R min 
1 , ˜ R max 

1 
] if ˜ δ = 0 . 
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Another objective could be primarily minimizing the total delay, while minimizing the probability of spillback. Since D sb

returns small values when the probability of spillback is minor and large values as it increases, a weighted sum of the total

delay and spillback probability objective functions, i.e. D Tsbc = ε3 D Tc + ε4 D sbc (with ε i > 0, 
∑ 

i =3 , 4 εi = 1 ), can be chosen for

the optimization, where D Tc = γ1 ( R 1 + L 1 ) 
2 + γ2 ( C + L 2 − R 1 ) 

2 formulates the total delay at the intersection. Alternatively,

D sbc 2 
could be employed in lieu of D sbc in D Tsbc to define D Tsbc 2 

. 

After recalling the method of Lagrange multipliers, the analytical global optimal solution of (O5) with D Tsbc as the ob-

jective function is obtained following Algorithm 5 . Moreover, if D Tsbc 2 
is chosen as the objective function as a substitute of

D Tsbc , then R � 
Tsbc 

in Algorithm 5 should be replaced by 

R 

� 
Tsbc 2 

� ε3 R 

� 
1 + ε4 ̃

 δ/ 2 . 

Algorithm 5 Global optimal signal timing R 
opt 
1 

for minimizing the weighted sum of the total delay and the probability of

spillback at the intersection, represented as D Tsbc , assuming prefixed cycle length. 

1. R � 
Tsbc 

, which is the positive solution of 

ε4 ( ε1 − ε2 ) R 

2 
1 + 2 ( ε4 ( ε1 δ2 + ε2 δ1 ) + ε3 (γ1 + γ2 ) ) R 1 + ε4 

(
ε1 δ

2 
2 − ε2 δ

2 
1 

)
+ ε3 ( γ1 L 1 − γ2 (C + L 2 ) ) = 0 , 

provided that ˜ R min 
1 ≤ R � 

Tsbc 
≤ ˜ R max 

1 
. 

2. ˜ R min 
1 

, if R � 
Tsbc 

≤ ˜ R min 
1 

. 

3. ˜ R max 
1 

, if R � 
Tsbc 

≥ ˜ R max 
1 

. 

For further analysis, let us assume that ε1 = ε2 , and L 1 = L 2 . Then the optimal red time to minimize the probability of

spillback D sbc is R � 
sb 

= 0 . 5(δ1 − δ2 ) , and 

˜ δ > 0(< 0 ) if and only if δ1 − δ2 < C(> C). In other words, if δ1 − δ2 < C(> C) then

taking D sbc as the objective function, the optimal red time lies in 

˜ R min 
1 ≤ R � 

sb 
< 0 . 5 C ( 0 . 5 C < R � 

sb 
≤ ˜ R max 

1 
), and taking D sbc 2

as the objective function, the optimal red time is ˜ R min 
1 

( ̃  R max 
1 

). Recalling that δi is proportional to the link length �i , the

term δ1 − δ2 represents the relative link length difference of the two approaches. As such, if for instance Approach 1 has a

relatively shorter link length, then it receives a larger green time to reduce the possibility of spillback using either criteria.

However, D sbc 2 
as the objective function devotes the highest possible green time to the approach, ignoring other factors that

can have impact on the possibility of the spillback phenomenon. 

In addition, if δ1 − δ2 = C that results in 

˜ δ = 0 , the objective D sbc 2 
does not provide an optimal solution. On the other

hand, minimizing D sbc indicates that the optimal red time at each approach is exactly 0.5 C , regardless of any symmetrical

conditions at the approaches (e.g. arrival flow and density discrepancies). 

Remark 1. As a critical comparison with the relaxed cyclic discrete-event max-plus (R-CDMP) signal optimization method

proposed in Haddad et al. (2010, 2014) , the following points are remarkable: 

• The R-CDMP method is a optimized cycle length control approach minimizing an objective that is a function of the back

of the queues in lieu of the green times at the intersection. 
• The method is based on the queuing theory. Although queuing theory is not capable of providing an accurate estimation

for x 
j 
i 
, the closest objective function to the one used in Haddad et al. (2010, 2014) is 

J = 

2 ∑ 

i =1 

ω i x 
j 
i 
= 

2 ∑ 

i =1 

ω i q 
a 
i βi / (k j 

i 
− k a i ) R i . 

The function is a strictly increasing function of its variables, hence, the global optimal solution for the optimization

problem is unique and can be achieved from Algorithm 3 . Indeed, three possible outcomes for the solution is expectable,

depending on the minimum green times at each approach of the intersection (see Fig. 4 (a–c)). 

Hence, the results of R-CDMP algorithm can be achieved from Algorithm 4 , with more accuracy in estimating the queue

lengths coming from using the shockwave theory. 

Remark 2. It can be shown that due to Assumption [C] the delay variability objective function (15) and total delay (20) are

functions of arrival flows and saturation flows of the critical movements at the intersection, but not the jam densities.

However, the probability of spillback objective functions (18) and (19) are in addition functions of jam densities and links

lengths. This helps to increase the sensitivity of the probability of spillback objectives to the link lengths and capacity of the
links in storing vehicles. 



56 R. Mohajerpoor, M. Saberi and M. Ramezani / Transportation Research Part B 119 (2019) 45–68 

Fig. 6. (a) Time-space diagram of the shockwave generated at Phase m ≥ i of the intersection during a cycle. The number of vehicles that experience 

a delay between R i −1 and R i in this phase can be obtained using h m 
i −1 ,i 

. (b) Probability distribution of delay at an intersection with 4 phases assuming 

R 1 + L 1 ≤ · · · ≤ R 4 + L 4 . 
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3.4. Extension of the algorithms to multiple phases 

To show how we can address a more general and practical situation, this section is devoted to the extension of the pro-

posed signal optimization algorithms to multiple phases. Let us assume that the intersection has in general N ≥ 2 phases

and N critical lanes. It can be shown that the time and position of queue clearance at the critical approach i can be calcu-

lated from (1) and (2) , respectively. Moreover, the spillback avoidance constraints (8) remain the same with i = { 1 , · · · , N} .
However, from (4) the undersaturation constraints is modified noting that G i + L i = C − R i = 

∑ 

j � = i R j : 
∑ 

j � = i 
R j − ηi ( R i + L i ) − L i ≥ 0 , i, j ∈ { 1 , · · · , N} . (24)

In addition, it is clear that the necessary and sufficient condition of the undersaturation of the intersection is 
∑ 

i =1 , ··· ,N 
q a 

i 
q c 

i 

+
L 
C ≤ 1 . 

Under the prefixed cycle length control scheme, we consider parameters R 1 , · · · , R N−1 as the independent variables and

R N = C − ∑ 

j � = N R j . Accordingly, the undersaturation and spillback avoidance constraints can be modified to suit the fixed-

cycle length control strategy. 

3.4.1. Minimizing the delay variability 

Without loss of generality, let us assume that R 1 + L 1 ≤ R 2 + L 2 ≤ · · · ≤ R N + L N , i.e. the first critical approach is the most

dominant approach and the N ’th critical approach is the least dominant one (the higher q a 
i 
/q c 

i 
, the more dominant the

approach i is). Assuming constant and uniform arrival and departure flow rates, it is clear that the delay distribution at the

intersection resembles Fig. 6 (b) (for an intersection with 4 phases). Accordingly, the probability density function, expected

delay, and variance of delay can be calculated as an extension of Theorem 1 , that is illustrated in the following corollary. 

Corollary 1. The following statements hold for an N-phase undersaturated intersection, if Assumptions [A–E] are fulfilled: 

a) The delay PDF of Approach i ∈ {1, ���, N } can be expressed as 

f D i (d) = 

˜ n i 

Cq a 
i 

δ(d) + θi ( H(d) − H(d − R i − L i ) ) , (25) 

where ˜ n i = Cq a 
i 

− q a 
i 
� i βi (R i + L i ) , and θ i and ϱi are as defined in Theorem 1 . 

b) The delay PDF at the whole intersection can be written as (recall that d ≥ 0 is the delay experienced by a vehicle) 

f D (d) = 

ˆ ζ0 δ(d) + 

N ∑ 

i =1 

ˆ ζi (H(d − R i −1 − L i −1 ) − H(d − R i − L i )) , (26)



R. Mohajerpoor, M. Saberi and M. Ramezani / Transportation Research Part B 119 (2019) 45–68 57 

(

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where R 0 = L 0 = 0 and 

ˆ ζ0 = 

N ∑ 

j=1 

˜ n j 

Cq a 
j 

, 

ˆ ζi = 

∑ N 
j= i β j � j q 

a 
j 

C 
∑ N 

j=1 q 
a 
j 

i ∈ { 1 , · · · , N} , 

and β j and ϱj are defined in (1) and (13) , respectively. 

c) The variance of delay at the intersection can be calculated from the following formula: 

D var = 

ˆ ζ0 ̄D 

2 
E + 

1 

3 

ˆ ζ1 ̄D 

3 
E + 

1 

3 

N−1 ∑ 

i =1 

( ̂  ζi − ˆ ζi +1 )(R i + L i − D̄ E ) 
3 + 

1 

3 

ˆ ζN (R N + L N − D̄ E ) 
3 , (27)

where D̄ E is the expected value of delay at the intersection that is obtained from the formula below 

D̄ E = 0 . 5 

∑ N 

j=1 
ˆ ζ j 

(
(R j + L j ) 

2 − (R j−1 + L j−1 ) 
2 
)
. (28)

Proof. The corollary is proved in Appendix D . �

Now that the delay variability at the intersection is obtained, the following nonlinear optimization program can be solved

to obtain the associated optimum signal timings: 

minimize 
R 1 , ··· ,R N 

D var (R 1 , · · · , R N ) 

Subject to (25), (8), and (11) 
(O6)

3.4.2. Minimizing the probability of spillback 

Objective functions D sb and D sb 2 
can be straightforwardly extended to multiple phases as 

D sb = 

∑ 

i =1 , ··· ,N 

εi 

k j 
i 

(
1 
q a 

i 

− 1 
q c 

i 

)
�i − R i − L i 

, (29)

D sb 2 = 

∑ 

i =1 , ··· ,N 

εi (R i + L i ) 

k j 
i 
�i 

(
1 
q a 

i 

− 1 
q c 

i 

) , (30)

where ε i > 0, 
∑ 

i =1 , ··· ,N εi = 1 . Accordingly, the optimal signal timings ensuring the intersection’s undersaturation, spillback

avoidance, and minimum green times can be obtained solving the following optimization problem: 

minimize 
R 1 , ··· ,R N 

D sb (R 1 , · · · , R N )( or D sb 2 ) 

Subject to (25), (8), and (11) 
(O7)

Remark 3. Note that the probability of spillback ( D sb and D sb 2 
) and total delay objective functions for a multi-phase under-

saturated intersection are convex, thus their optimization will efficiently result in their global optimal solutions. However,

the delay variability ( D var ) objective function (27) is not convex. Therefore, using nonlinear optimization programs do not

necessarily result in the global optimal solution. However, if the initial condition for optimization is selected appropriately,

achieving the global optimal solution can be expected, since D var is a smooth and continuous function of signal timings. As

we do not expect a huge difference between the optimal solution minimizing the total delay and delay variability, a suitable

starting point for optimizing the delay variability is the optimal signal timing for the total delay minimization problem. 

4. Numerical examples 

This section provides a microsimulation case study and two numerical case studies to evaluate the proposed formulas

and signal optimization algorithms. Case study 1 is a microsimulation study aiming at validating the theoretical models

developed in the paper regarding the delay variability at the intersection. Case study 2 studies the optimization algorithms

following the dynamic cycle length signal setting, and case study 3 is devoted to the proposed signal optimization frame-

works for the prefixed cycle length control scenarios. 

4.1. Case study 1: microsimulation study 

Microsimulation is an effective tool in validating the proposed models for calculating the distribution and variance of

vehicles delays as well as the total delay formula at an intersection. This study is crucial to capture the effects of the

stochasticities of the arrival and departure flow rates, as well as acceleration/deceleration of vehicles on the proposed models
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Fig. 7. Comparison of the total delays at the hypothetical intersection obtained from the microsimulation model and theoretical model (20) . (a) Total 

delays are obtained for the intersection by fixing the signal timings at R 1 = R 2 = 60 [s] and L 1 = L 2 = 4 [s], and changing the arrival flow rates q a 2 = 1 / 3 q a 1 ∈ 
[30 0 , 70 0] [veh/h]. (b) Total delays are obtained for the intersection given fixed arrival flow rates q a 2 = 1 / 3 q a 1 = 700 [veh/h] and diversified signal timings 

R 1 = R 2 ∈ [60 , 90] [s]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that have been established based on some simplifying assumptions (Assumptions [A-D]) including deterministic flows and

infinite acceleration/deceleration of vehicles. 

As such, a microsimulation study was conducted in Aimsun environment Aimsun (2014) on a hypothetical two-leg in-

tersection with two approaches. The major and minor approaches had three and one lanes, respectively, and the average

capacity flows and densities were measured to be q c 
2 

= 1 / 3 q c 
1 

= 1800 [veh/h] and k c 
2 

= 1 / 3 k c 
1 

= 90 [veh/km]. The arrival and

departure flow rates were stochastic and the program takes the dynamics of every vehicle into consideration to replicate a

real-world traffic flow. Simulation time-step was 0.9 s and to obtain a valid average response, the results for every experi-

ment were aggregated over 10 replications that each took 30 min duration. 

Firstly, the total delay experienced by vehicles were examined under two cases to make sure the two models (microsim-

ulation and theoretical) comply under different arrival flows and signal settings: (a) fixing signal timings R 1 = R 2 = 60 [s]

and L 1 = L 2 = 4 [s] and changing the arrival flow rates q a 
2 

= 1 / 3 q a 
1 

∈ [30 0 , 70 0] [veh/h], and (b) fixing the arrival flows

q a 
2 

= 1 / 3 q a 
1 

= 700 [veh/h] and changing the signal settings R 1 = R 2 ∈ [60 , 90] [s]. The comparison of the results obtained

from microsimulation and the total delay formula (20) in Fig. 7 suggests an excellent agreement between the two models. 

Secondly, the distribution of vehicles delays were measured from the microsimulation model. To this aim, arrival flow

rates, loss times and cycle time were fixed at q a 
1 

= 1200 [veh/h] and q a 
2 

= 500 [veh/h], L 1 = L 2 = 5 [s] and C = 120 [s], re-

spectively. Microsimulation experiments were conducted for various green times for the major and minor approaches. The

uniform delay PDF at the intersection for each experiment is demonstrated in Fig. 8 , where the results are compared against

the PDFs obtained from our theoretical model (12) . The delay PDFs of the vehicles in the microsimulation study are ob-

tained following the same terminology of the theoretical model, wherein equal probability for delays larger than zero and

less than the maximum delay experienced by vehicles on the approach that receives a lower red time (let us call it d M 

1 ) is

assumed. Similarly, an equal probability for delays larger than d M 

1 and lower than the maximum delay experienced by ve-

hicles ( d M 

2 
> d M 

1 
) is assumed. In other words, three bins are considered in deriving the delay PDFs: (i) d = 0 , (ii) 0 < d ≤ d M 

1 
and (iii) d M 

1 
< d ≤ d M 

2 
. Moreover, standard deviations (STDs) of delays obtained for various microsimulation experiment are

compared against STDs obtained from our model (square root of (15) ) in Fig. 9 . 

It can be observed from Fig. 8 that ignoring the top left sub-figure (associated with G 1 = 75 [s]) the maximum delay

experienced by vehicles on each approach in the microsimulation studies are consistently slightly higher than their expected

value that is the effective red time ( R i + L i ) of the approach. This difference corresponds to acceleration/deceleration effects

and the time required for each vehicle to pass the intersection and enter the next road segment, as well as variability

(stochasticity) in arrival flow rates. The same reasoning applies to the observation that the model (12) consistently slightly

overestimates (by about 10%) the number of non-stopped vehicles (microsimulation returns lower probability for zero delays

ζ 1 ). This corresponds to consistently higher ζ 2 values for the microsimulation results in the figure. However, the figure

confirms that ζ 3 values obtained from the theory and microsimulation are almost equal. 

In addition, according to Fig. 9 STDs of delays obtained from the theoretical model and microsimulation are close and

in agreement for experiments with G 2 ≥ 40 [s]. However, for the first experiment with G 2 = 35 [s], i.e. when the minor

approach experiences its largest red time, there is a significant difference between the two models. This observation can be

justified by the fact that the minor approach has a higher per lane arrival rate, and taking the stochasticity of the arrival

rate this green time does not provide a sufficient margin for all the queued vehicles to pass the intersection. Therefore,

occasionally there might be a vehicle that has to stop for the next cycle. This phenomena violates the undersaturation of the

intersection and results in larger errors in the theoretical model results. This reasoning can be further justified from Fig. 8 ,
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Fig. 8. Probability distribution of vehicles delays at the intersection for various signal timings given fixed cycle length C = 120 [s] and arrival flow rates 

q a 1 = 1200 [veh/h] and q a 2 = 500 [veh/h] obtained from the microsimulation model and theoretical model (12) . It can be seen that the number of undelayed 

vehicles obtained from microsimulation is consistently lower than the theoretical model ˜ n 1 + ̃  n 2 . Moreover, the maximum delays experienced by vehicles 

on each approach are generally slightly higher than the effective red times of the approach. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 9. Standard deviation of delay at the intersection obtained from the microsimulation model and the theoretical model (square root of (15) ). The cycle 

time was fixed at C = 120 [s] and the arrival flow rates were constant q a 1 = 1200 [veh/h] and q a 2 = 500 [veh/h]. The results are obtained for various signal 

timings R 1 ∈ [45, 85] [s]. Note that at R 1 = 45 [s] there is a higher disagreement between the microsimulation and theoretical results due to formation of 

occasional residual overflow queues at the minor approach in the microsimulations. 

 

 

 

 

 

 

 

where it can be seen that the difference between the maximum delays obtained from the two models in this experiment is

much larger than the other experiments. 

4.2. Case study 2: Optimized cycle length signal settings 

Here, we consider three scenarios with varying arrival flow rates at an intersection with fixed parameters given in case

study 1. In scenario (i), Approach 2 is dominant with q a 
1 

= 300 [veh/h] and q a 
2 

= 1100 [veh/h]. In scenario (ii), Approach 1 is

dominant with q a 
1 

= 10 0 0 [veh/h] and q a 
2 

= 20 0 [veh/h]. In scenario (iii), there is no significantly dominant approach with

q a 
1 

= 700 [veh/h] and q a 
2 

= 600 [veh/h]. 

Assuming 20 s of minimum red time at each approach and L 1 = L 2 = 10 [sec], the feasibility region for each scenario is

shown in Fig. 10 . The link length of each approach is 210 [m]. The optimal signal setting, the queue clearance point, and

the total delay for each scenario are summarized in Table 1 , where the results are compared with the prefixed cycle length
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Fig. 10. Left: the feasibility regions and the D var contour map in the ( R 1 , R 2 ) space, and Right: delay variability in 3D space for various scenarios. Filled 

circles demonstrate the point R � (in black) and the optimal point minimizing the total delay (in orange). Minimum red times are shown by dotted pink 

lines. The red dashed lines and blue lines in the left hand side figures demonstrate the boundaries of the undersaturation condition. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

control strategy adapting the Webster’s deterministic formula to obtain the cycle length. In each scenario the optimized

cycle length control algorithm ( Algorithm 3 ) is significantly more efficient than the prefixed cycle length control strategy in

reducing the total delay and queue length at the intersection. 

It can be seen from Table 1 that the prefixed cycle length control strategy cannot handle Scenario (i), which is due to

spillback at Approach 2. Accordingly, total delay and the probability of spillback considerably increase when the optimization

is based on the cycle length attained from the Webster’s formula. Note that shorter cycle lengths than those obtained from

Algorithm 3 result in the oversaturation of the intersection. It demonstrates that applying the proposed optimized signal

optimization algorithms in lieu of the conventional Webster’s formula, mitigate congestion by reducing the total delay and

the probability of spillback at the intersection. 
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Table 1 

Optimal signal settings for minimizing the total delay at the intersection in case study 2, and the resulted back of 

the queues (x j 
1 
, x j 

2 
) and total delay (TD). The results from optimized cycle length control algorithm ( Algorithm 3 ) 

are compared against the prefixed cycle length strategy. C w is the given cycle length obtained from the Webster’s 

deterministic formula, and C opt = R opt 
1 

+ R opt 
2 

. n.a. = not applicable. 

Scenario Optimal cycle length Prefixed cycle length 

(R opt 
1 

, R opt 
2 

) [s] (x j 
1 
, x j 

2 
) [m] TD [veh.s] R opt 

1 
[s] (x j 

1 
, x j 

2 
) [m] C w / C 

opt [s]/[s] TD [veh.s] 

L 1 = L 2 = 10 [s] 

(i) (65,25) (46.4,140.3) 762 n.a. n.a. n.a. n.a. 

(ii) (20,47.5) (89.3,21.2) 384 21.7 (96.7,37.2) 105/67.5 588 

(iii) (34,38) (77.3,67.9) 594 54.2 (123.3,128.1) 126/72 1494 

L 1 = L 2 = 5 [s] 

(i) (44.3,20) (31.6,112.2) 366 70 (50,112.2) 90/64.3 528 

(ii) (20,36.25) (89.3,16.2) 246 20 (89.3,17.9) 60/56.2 258 

(iii) (20,20.9) (45.4,37.3) 186 31.1 (70.6,73.1) 72/40.9 468 

Table 2 

The optimal signal setting and queue clearance point (x j 
1 
, x j 

2 
) for minimizing the delay variability at the intersection in case study 2 (employ- 

ing Algorithm 6 ), and for minimizing the total delay ( Algorithm 3 ). Moreover, TD = Total Delay, and STD = Standard Deviation of delay at the 

intersection. 

Objective function Delay variability Total delay and probability of spillback 

(R opt 
1 

, R opt 
2 

) [s] (x j 
1 
, x j 

2 
) [m] TD [veh.s] STD [veh.s] (R opt 

1 
, R opt 

2 
) [s] (x j 

1 
, x j 

2 
) [m] TD [veh.s] STD [veh.s] 

Scenario (R min 
1 , R min 

2 ) = (20 , 20) [s] 

(i) (44.3,20) (31.6,122.2) 367 10.4 (44.3,20) (31.6,122.2) 367 10.4 

(ii) (20,36.2) (89.3,16.2) 248.5 8.7 (20,36.2) (89.3,16.2) 248.5 8.7 

(iii) (20,20.9) (45.4,37.3) 183.3 7.5 (20,20.9) (45.4,37.3) 183.3 7.5 

Scenario (R min 
1 , R min 

2 ) = (40 , 10) [s] 

(i) (40,17.1) (28.6,96.2) 293.8 9.5 (40,14) (28.6,78.2) 243.1 9.8 

(ii) (40,61.2) (178.6,27.3) 770 14.9 (40,61.2) (178.6,27.3) 770 14.9 

(iii) (40,33.7) (90.9,60.2) 509.8 13.3 (40,33.6) (90.9,60.1) 508.8 13.3 

Scenario (R min 
1 , R min 

2 ) = (10 , 40) [s] 

(i) (75.7,40) (54.1,224.5) 1.1 × 10 3 17.3 (75.7,40) (54.1,224.5) 1.1 × 10 3 17.3 

(ii) (19.2,40) (85.9,17.9) 247.1 9.5 (10.6,40) (47.4,17.9) 139.6 9.7 

(iii) (29.5,40) (67.1,71.4) 442.7 12.6 (27.5,40) (62.5,71.4) 421.2 12.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To scrutinize the effect of loss times in the optimal signal settings, the study was repeated for an intersection with

shorter L 1 and L 2 equal to 5 [s]. The results are reported in Table 1 , where it can be observed that smaller loss times

drastically reduces the total delay, as well as the queue lengths at the intersection. 

Assuming L 1 = L 2 = 5 [s], the optimal dynamic signal timings for minimizing the delay variability obtained from

Algorithm 6 are summarized in Table 2 . We examine three sets of minimum red times for each scenario. When R min 
1 

=
R min 

2 
= 20 [s], the optimal signal setting for minimizing the total delay and delay variability are similar. However, this is

not the case for Scenario (i) when (R min 
1 

, R min 
2 

) = (40 , 10) [s], Scenario (ii) when (R min 
1 

, R min 
2 

) = (10 , 40) [s], and Scenario (iii)

when either of the two latter minimum red times are initiated. In either of these cases, minimizing the delay variability

results in a larger red time at one of the approaches, thus larger cycle length and larger total delay at the intersection.

However, these changes result in less difference in the red times at the two approaches, and thus more equitable waiting

times for drivers. 

The intersection total delay variability is plotted in Fig. 10 both in 3D and in terms of isoline contours for different studied

scenarios. The delay variability is also depicted in Fig. 11 in terms of various R i and fixed R ˆ i , i = { 1 , 2 } . When R i ≥ R ˆ i , the

variance of delay is strictly increasing with respect to R i , but can be increasing or decreasing with respect to R ˆ i . 

4.3. Case study 3: Prefixed cycle length signal optimization 

In this case study, the cycle length is adopted as the Webster’s deterministic formula, and various prefixed cycle length

optimization algorithms are evaluated. We assume q c 
1 

= 1800 [veh/h], q c 
2 

= 1400 [veh/h], k c 
1 

= 30 [veh/km], k c 
2 

= 20 [veh/km],

and k 
j 
1 

= k 
j 
2 

= 140 [veh/km]. Analogous to the previous case study, three scenarios for the arrival flow rates and the links

lengths are considered. In scenario (i), Approach 1 is dominant with q a 
1 

= 10 0 0 [veh/h], q a 
2 

= 20 0 [veh/h], �1 = 20 0 [m],

and �2 = 50 [m]. In scenario (ii), Approach 2 is dominant with q a 
1 

= 400 [veh/h], q a 
2 

= 900 [veh/h], �1 = 200 [m], and �2 =
450 [m]. In scenario (iii), there is no significantly dominant approach with q a 

1 
= 700 [veh/h], q a 

2 
= 600 [veh/h], �1 = 300 [m],

and �2 = 240 [m]. 

Let us assume that R min 
1 

= R min 
2 

= 15 [s], L 1 = L 2 = 10 [s], and εi = 0 . 5 , i = { 1 , · · · , 4 } . Table 3 summarizes and compares

the calculated optimal cycle length from Webster’s formula, together with the feasibility region bounds, optimal red time
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Table 3 

Results of prefixed cycle length optimization problem for various scenarios in case study 3. Objec- 

tive functions D Tc , D sbc and D sbc2 , D Tsb and D Tsb2 , and D varc represent the total delay, probability of 

spillback, mixed total delay and spillback probability, and the delay variability at the intersection, 

respectively. Moreover, TD = Total Delay, SD = Standard Deviation of delay, PoS1 = Probability of 

Spillback (21) , and PoS2 = Probability of Spillback (22) at the intersection. 

Scenario Boundaries 

C [s] ˜ R min 
1 [s] ˜ R max 

1 [s] 

(i) 116.1 26.6 34.8 

(ii) 259.4 179.4 186 

(iii) 191.7 92.2 107.2 

Objective D Tc 

Scenario R opt 
1 

[s] (x j 
1 
, x j 

2 
) [m] TD [veh.s] SD [veh.s] PoS1 [1/h] PoS2 

(i) 26.6 (118.7,41.4) 738.8 21.2 430.1 0.87 

(ii) 186 (189.8,367.1) 5.2 × 10 3 47.1 ∞ 0.96 

(iii) 92.2 (209.5,207.4) 3.4 × 10 3 32.4 379.8 0.86 

Objective D sbc (defined in (21) ) 

Scenario R opt 
1 

[s] (x j 
1 
, x j 

2 
) [m] TD [veh.s] SD [veh.s] PoS1 [1/h] PoS2 

(i) 26.6 (118.7,41.4) 738.8 21.2 430.1 0.87 

(ii) 182.7 (186.4,383.5) 5.3 × 10 3 45.6 1.1 × 10 3 0.97 

(iii) 104.3 (237,182.2) 3.5 × 10 3 32.9 203.1 0.86 

Objective D sbc2 (defined in (22) ) 

Scenario R opt 
1 

[s] (x j 
1 
, x j 

2 
) [m] TD [veh.s] SD [veh.s] PoS1 [1/h] PoS2 

(i) 26.6 (118.7,41.4) 738.8 21.2 430.1 0.87 

(ii) 186 (189.8,367.1) 5.2 × 10 3 47.1 ∞ 0.96 

(iii) 107.2 (243.6,176.2) 3.5 × 10 3 33.4 208.6 0.85 

Objective D Tsb 

Scenario R opt 
1 

[s] (x j 
1 
, x j 

2 
) [m] TD [veh.s] SD [veh.s] PoS1 [1/h] PoS2 

(i) 26.6 (118.7,41.4) 738.8 21.2 430.1 0.87 

(ii) 179.4 (183.1,400) 5.3 × 10 3 44.2 7.2 × 10 16 0.98 

(iii) 92.2 (209.5,207.4) 3.4 × 10 3 32.4 379.8 0.86 

Objective D Tsb2 

Scenario R opt 
1 

[s] (x j 
1 
, x j 

2 
) [m] TD [veh.s] SD [veh.s] PoS1 [1/h] PoS2 

(i) 34.8 (155.4,37.6) 897.1 19.3 ∞ 0.9 

(ii) 179.4 (183.1,400) 5.4 × 10 3 44.2 7.2 × 10 16 0.98 

(iii) 92.2 (209.5,207.4) 3.4 × 10 3 32.4 379.8 0.86 

Objective D varc (defined in (17) ) 

Scenario R opt 
1 

[sec] (x j 
1 
, x j 

2 
) [m] TD [veh.sec] SD [veh.sec] PoS1 [1/hr] PoS2 

(i) 34.8 (155.4,37.6) 897.1 19.3 5.5 × 10 10 0.9 

(ii) 179.4 (183.1,400) 5.4 × 10 3 44.2 2.7 × 10 9 0.98 

(iii) 95.6 (217.2,200.3) 3.4 × 10 3 32.4 267.3 0.86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

signal at approach 1 estimated using various criteria proposed in Algorithms 2, 3, 5 , and 6 , and the back of the queues at the

queue clearance time (i.e. x 
j 
i 
, i = { 1 , 2 } ). The delay variability is plotted for R 1 ∈ [ ̃  R min 

1 
, ˜ R max 

1 
] for each scenario in Fig. 12 (a,

c, and e). In this particular example, the variance function D varc ( R 1 ) is convex over the feasibility region in each scenario,

such that in Scenario (i) and (ii) it is strictly decreasing and increasing, respectively. This is confirmed by the numerical

solution given in Table 3 . Moreover, it is observed that the optimal signal setting that minimizes the total delay is different

from the optimal R 1 that minimizes the variance of total delay in each scenario. Interestingly, the optimal signal timing

that minimizes the delay variability creates longer queues at the dominant approach and tries to fairly distribute the green

times between the conflicting approaches. The latter observation comes from the fact that the optimal R 1 attained from

minimizing D varc is always closer to C /2. 

In addition, the comparison of the optimal results from the two proposed objective functions for minimizing the prob-

ability of spillback indicates that the optimum red time for minimizing the second objective (i.e. D sbc2 ), which is a linear

function of R 1 , is always on the boundary of the feasibility region. This is not the case for the results obtained from the

first objective (i.e. D sbc ), where the possibility of spillback is more realistically captured. Applying the first spillback proba-

bility objective in the mixed total delay and spillback probability minimization criterion has lower influence on the optimal

solution for minimizing the total delay. To provide further insights into this analysis, D sbc and D sbc2 are plotted against

R 1 ∈ [ ̃  R min , ˜ R max ] in Fig. 12 (b, d, and f) for various scenarios. 

1 1 
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Fig. 11. The variation of delay variability with respect to red times in three studied scenarios of case study 2. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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5. Summary and future works 

The paper has presented an analytical framework based on the shockwave theory to formulate and minimize the delay

variability at an undersaturated intersection. A closed-form formula for the variance of delay at the intersection has been ob-

tained that is employed for travel time reliability optimization using convex optimization techniques. The analytical global

optimal signal settings for minimizing various objectives comprising the delay variability and the probability of spillback

have been achieved ensuring the spillback avoidance, and adapting prefixed (given) and optimized (dynamic) cycle length

control strategies. Comprehensive microsimulation and numerical studies emphasized the effectiveness of the proposed sig-

nal optimization algorithms, as well as the superiority of dynamic cycle length over given cycle length control scenarios.

Moreover, it has been shown that minimum delay variability results in a more equitable distribution of delays. 

The theoretical findings of the paper can be further studied for signal optimization based on various criteria for over-

saturated intersections. Furthermore, the proposed signal optimization frameworks can be extended to multiple coordinated

signals to improve the travel time reliability on arterials and even the network level. Moreover, addressing stochastic arrival

flows at the intersection is crucial, particularly when the intersection is operating near saturation conditions. 
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Appendix A. Proof of Theorem 1 

a) There are ˜ n i ≈ Cq a 
i 

− k 
j 
i 
x 

j 
i 

vehicles that do not stop at Approach i . Every other vehicle joins the queue and experiences

a delay with a value in (0 , R i + L i ] (see Fig. 1 (a)). Hence, the PDF of each approach can be approximated as an impulse

function at d = 0 and a pulse function of length R + L at d > 0, as explained in (12) and depicted in Fig. 2 (b–c). Moreover,
i i 
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Fig. 12. (a,c,e) The variance of delay with respect to R 1 ∈ [ ̃ R min 
1 , ̃  R max 

1 ] , and (b,d,f) The comparison of the studied spillback probability objective functions 

for different scenarios of case study 3. 

 

(  

 

 

 

 

 

the coefficient of the impulse function δ( t ) should represent the probability that a vehicle at Approach i does not stop,

which depends on ˜ n i . Parameter θ i is obtained from the fact that the integration of the PDF function must be 1. 

b) The PDF at the whole intersection can be obtained from the superposition of the PDFs of the two approaches (see

Fig. 2 (d)) and (14) . The term ζ 1 , i.e. the probability that a vehicle do not stop at the intersection, follows from the fact

that the total number of vehicles and non-stopped vehicles in a cycle are C(q a 
1 

+ q a 
2 
) and ˜ n 1 + ˜ n 2 , respectively. Now, if

one assumes R ˆ i + L ˆ i ≥ R i + L i the possibility that a vehicle experience a delay between 0 and R i + L i is (see Fig. 2 (a) for

the representation of �t h 1 ): 

Pr [0 < d ≤ R i ] = 

q a 
i 
� i t 

j 
i 
+ q a 

ˆ i 
� ˆ i 

(t j 
ˆ i 
− �t h 1 ) 

C(q a 
1 

+ q a 
2 
) 

. 

Furthermore, the probability of vehicle delays between R i + L i and R ˆ i + L ˆ i is: 

Pr [ R i < d ≤ R ˆ i 
] = 

q a 
ˆ i 
� ˆ i 

k j 
ˆ i 
�t h 1 

C(q a 
1 

+ q a 
2 
) 
. 

The term �t h 1 can be obtained from h , where h is the queue length for vehicles that experience larger delays than

R i . To obtain h , let us define the speeds of the arrival and departure shockwaves at Approach i = { 1 , 2 } as u i and w i ,

respectively. From the FDs the absolute values of the speeds of the shockwaves are 

tan (u i ) = 

q a 
i 

k j 
i 
− k a 

i 

, tan (w i ) = 

q c 
i 

k j 
i 
− k c 

i 

. 

Thereafter, from Fig. 2 (a) we have h/ �t h 1 = tan (u ˆ i ) , h/ �t h 2 = tan (w ˆ i 
) , R ˆ i + L ˆ i + �t h 2 = R i + L i + �t h 1 , and 

R ˆ i 
+ L ˆ i − R i − L i = h 

(
1 

tan (u ˆ i 
) 

− 1 

tan (w ˆ i 
) 

)
. 

Accordingly, �t h 1 is obtained as 

�t h 1 = βˆ i 
(R ˆ i 

+ L ˆ i − R i − L i ) . 
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(  

 

 

 

 

 

Now, recalling ζ2 (R i + L i ) = Pr [0 < d ≤ R i + L i ] and ζ3 (R ˆ i + L ˆ i − R i − L i ) = Pr [ R i + L i < d ≤ R ˆ i + L ˆ i ] , the expressions of ζ i , i =
{ 2 , 3 } can be obtained as demonstrated in the theorem. 

c) This part of the theorem can be proved after direct substitutions into the definitions of the expected value and variance

of f D ( d ). 

Appendix B. Proving the convexity of D var ( R 1 , R 2 ) with respect to the larger red time 

Proposition 1. Let us assume R ˆ i ≥ R i , i, ̂  i ∈ { 1 , 2 } . Then the variance function D var ( R 1 , R 2 ) is a convex function of R ˆ i . 

Proof. Without loss of generality and for simplicity in notations we assume R 2 ≥ R 1 and L 1 = L 2 = 0 . The variance function

D var ( R 1 , R 2 ), (15) , can be formulated as follows: 

D var (R 1 , R 2 ) = 

(
1 − χ11 

R 1 

R 1 + R 2 

− χ12 
R 2 

R 1 + R 2 

)(
χ41 

R 

2 
1 

R 1 + R 2 

+ χ42 

R 

2 
2 

R 1 + R 2 

)2 

+ 

1 

3 

χ21 − χ31 

R 1 + R 2 

(
R 1 − χ41 

R 

2 
1 

R 1 + R 2 

− χ42 

R 

2 
2 

R 1 + R 2 

)3 

+ 

1 

3 

χ21 

R 1 + R 2 

(
χ41 

R 

2 
1 

R 1 + R 2 

+ χ42 

R 

2 
2 

R 1 + R 2 

)3 

+ 

1 

3 

χ31 

R 1 + R 2 

(
R 2 − χ41 

R 

2 
1 

R 1 + R 2 

− χ42 

R 

2 
2 

R 1 + R 2 

)3 

, (B.1)

where χ11 � 

β1 � 1 q 
a 
1 

q a 
1 
+ q a 

2 
, χ12 � 

β2 � 2 q 
a 
2 

q a 
1 
+ q a 

2 
, χ41 � 

0 . 5 q a 
1 
β1 � 1 

q a 
1 
+ q a 

2 
, χ42 � 

0 . 5 q a 
2 
β2 � 2 

q a 
1 
+ q a 

2 
, χ21 � 

∑ 

i =1 , 2 

βi q 
a 
i 
� i 

q a 
1 
+ q a 

2 
, and χ31 � 

β2 q 
a 
2 
� 2 

q a 
1 
+ q a 

2 
. Now, let us define

x = R 2 /R 1 ≥ 1 . Accordingly, (B.1) can be written as 

D var (x ) = C 6 
x 6 

( 1 + x ) 
4 

+ C 5 
x 5 

( 1 + x ) 
4 

+ C 4 
x 4 

( 1 + x ) 
4 

+ C 3 
x 3 

( 1 + x ) 
4 

+ C 2 
x 2 

( 1 + x ) 
4 

+ C 1 
x 

( 1 + x ) 
4 

+ C 0 
1 

( 1 + x ) 
4 
, (B.2)

where C i > 0, i = { 0 , · · · , 6 } are real constant scalars defined as 

C 6 = χ3 
42 χ21 + 3 χ2 

42 

1 − χ12 

R 1 

− χ3 
42 ( χ21 − χ31 ) − χ31 ( χ42 − 1 ) 

3 
, 

C 5 = 3 χ2 
42 

2 − χ11 − χ12 

R 1 

+ χ31 

(
(χ42 − 1) 2 + (2 χ42 − 2)(χ42 − 1) 

)
+ 3 χ2 

42 (χ21 − χ31 ) , 

C 4 = 3 χ2 
42 

1 − χ11 

R 1 

− (χ21 − χ31 ) 
(
2 χ42 + χ42 (2 χ42 (χ41 − 1) + 1) + χ2 

42 (χ41 − 1) 
)

− χ31 

(
2 χ42 + (χ42 − 1) ( 2 χ41 (χ42 − 1) + 1 ) + χ41 (χ42 − 1) 2 − 2 

)
+ 6 χ41 χ42 

1 − χ12 

R 1 

+ 3 χ41 χ
2 
42 χ21 , 

C 3 = χ31 ( 4 χ41 (χ42 − 1) + χ41 (2 χ42 − 2) + 1 ) + 6 χ41 χ42 
2 − χ11 − χ12 

R 1 

+ (χ21 − χ31 ) ( 4 χ42 (χ41 − 1) + χ42 (2 χ41 − 2) + 1 ) , 

C 2 = 3 χ2 
41 

1 − χ12 

R 1 

− χ31 

(
2 χ41 + χ41 ( 2 χ41 (χ42 − 1) + 1 ) + χ2 

41 (χ42 − 1) 
)

− (χ21 − χ31 ) 
(
2 χ41 + (χ41 − 1) ( 2 χ42 (χ41 − 1) + 1 ) + χ42 (χ41 − 1) 2 − 2 

)
+ 6 χ41 χ42 

1 − χ11 

R 1 

+ 3 χ2 
41 χ42 χ21 , 

C 1 = 3 χ2 
41 

2 − χ11 − χ12 

R 1 

+ 3 χ2 
41 χ31 + (χ21 − χ31 ) 

(
(χ41 − 1) 2 + (2 χ41 − 2)(χ41 − 1) 

)
, 

C 0 = χ3 
41 χ21 − (χ21 − χ31 )(χ41 − 1) 3 − χ3 

41 χ31 + 3 χ2 
41 

1 − χ11 

R 1 

. 

After differentiating (B.2) twice with respect to x , it follows that 

∂ 2 

∂x 2 
D var (x ) = 

2 

∑ 6 
i =0 

ˆ C i x 
i 

(1 + x ) 6 
, (B.3)
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where ˆ C i > 0 , i = { 0 , · · · , 6 } are constant scalars defined as: ˆ C 0 = 10 C 0 − 4 C 1 + C 2 ; ˆ C 1 = 6 C 1 − 6 C 2 + 3 C 3 ; ˆ C 2 = 3 C 2 − 6 C 3 + 6 C 4 ;
ˆ C 3 = C 3 − 4 C 4 + 10 C 5 ; ˆ C 4 = 15 C 6 ; ˆ C 5 = 6 C 6 ; and 

ˆ C 6 = C 6 . Therefore, according to Boyd and Vandenberghe (2004) due to the

positive-definiteness of the second derivative of D var ( x ), the variance function is convex with respect to R 2 . �

Appendix C. Signal optimization for minimizing the delay variability at the intersection with loss times 

In the sequel, an algorithm is proposed to obtain the analytical global optimal signal timings for minimizing the delay

variability at the intersection with loss times. 

Algorithm 6 

I. If Inequality (6) is realized, there exists a global optimal solution and one may proceed to the next step. Otherwise, 

the intersection is oversaturated and the algorithm terminates with no solution. 

II. If R � ≥ D 

� , then the optimal solution is R � . 

III. Determine if (i) ηi ≥ 1 ( i = 1 or 2), then proceed to Step IV, or (ii) η1 < 1 and η2 < 1 , then proceed to Step V. 

IV. It can be deduced that R ˆ i ≥ R i . Thereafter, 

1. If ηi R 
min 
i 

+ (ηi + 1) L i ≥ R min 
ˆ i 

, then the optimal solution is (R min 
i 

, ηi R 
min 
i 

+ (ηi + 1) L i ) . 

2. Otherwise, the solution lies on the line R ˆ i = R min 
ˆ i 

and the optimal R i is obtained from solving the following 

program: 

minimize 
R i ,R ˆ i = R min 

ˆ i 

D var (R i ) 

Subject to: 

−R i + R 

min 
i 

≤ 0 , 

−R i + ηˆ i 
R 

min 
ˆ i 

+ (1 + ηˆ i 
) L ˆ i ≤ 0 , 

R i − 1 
ηi 

R 

min 
ˆ i 

+ 

1+ ηi 

ηi 
L i ≤ 0 , 

R i + L i − k j 
i 

(
1 
q a 

i 

− 1 
q c 

i 

)
�i ≤ 0 , 

R 

min 
ˆ i 

+ L ˆ i − k j 
ˆ i 

(
1 
q a 

ˆ i 

− 1 
q c 

ˆ i 

)
�ˆ i 

≤ 0 . [ . 5 em ] 

( O2-1) 

V. Let us assume that R min 
i 

≤ R min 
ˆ i 

. 

1. If R � 
ˆ i 

≥ R min 
ˆ i 

, then the optimal solution is (R min 
i 

, ηi R 
min 
i 

+ (ηi + 1) L i ) . 

2. If D 

� > R � , one of the following conditions arise: 

a. If R min 
i 

≥ 1 
ηi 

R min 
ˆ i 

− 1+ ηi 
ηi 

L i , the optimal solution is (R min 
i 

, ηi R 
min 
i 

+ (ηi + 1) L i ) . 

b. Otherwise, the solution lies on the line R ˆ i = R min 
ˆ i 

and the optimal R i is attained from solving the following 

optimization problem: 

minimize 
R i ,R ˆ i = R min 

ˆ i 

D var (R i ) 

Subject to: 

−R i + R 

min 
i 

≤ 0 , 

R i − R 

min 
ˆ i 

≤ 0 , 

−R i + ηˆ i 
R 

min 
ˆ i 

+ (1 + ηˆ i 
) L ˆ i ≤ 0 , 

R i − 1 
ηi 

R 

min 
ˆ i 

+ 

1+ ηi 

ηi 
L i ≤ 0 , 

R i + L i − k j 
i 

(
1 
q a 

i 

− 1 
q c 

i 

)
�i ≤ 0 , 

R 

min 
ˆ i 

+ L ˆ i − k j 
ˆ i 

(
1 
q a 

ˆ i 

− 1 
q c 

ˆ i 

)
�ˆ i 

≤ 0 . [ . 5 em ] 

( O2-2) 

3. Otherwise, we have one of the following conditions: 

a. If R min 
ˆ i 

≤ ηˆ i 
R min 

ˆ i 
+ (1 + ηˆ i 

) L ˆ i , then the optimal solution is (ηˆ i 
R min 

ˆ i 
+ (ηˆ i 

+ 1) L ˆ i , R 
min 
ˆ i 

) . 

b. Elseways, the optimal solution can be sought solving the optimization program ( O2-2 ) noting that the 

constraint R i − 1 
ηi 

R min 
ˆ i 

+ 

1+ ηi 
ηi 

L i ≤ 0 is already satisfied. 
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Appendix D. Proof of Corollary 1 

The proof follows the same line of the proof of Theorem 1 . Part (a) indicates that the delay PDF of Phase i is composed of

a Dirac function associated with vehicles that do not stop at the intersection, and a uniform distribution function associated

with delayed vehicles that experience delays between 0 and R i + L i . Note that the number of vehicles from Phase i that do

not stop at the intersection during a cycle is simply ˜ n i = Cq a 
i 

− k 
j 
i 
x 

j 
i 

and the probability that a vehicle stops at the intersection

is k 
j 
i 
x 

j 
i 
/ (Cq a 

i 
) . 

The delay PDF at the whole intersection follows from the following facts: 

i. The probability that a vehicle does not experience delay at the intersection is 
∑ N 

j=1 ˜ n j / 
∑ N 

j=1 Cq a 
j 

which results in the

definition of ˆ ζ0 . 

ii. Pr [ R i −1 + L i −1 ≤ d ≤ R i + L i ] = 

∑ N 
j= i q 

a 
j 
� j β j ∑ N 

j=1 Cq a 
j 

(R i + L i − R i −1 − L i −1 ) = 

ˆ ζi (R i + L i − R i −1 − L i −1 ) . The expression can be deduced

from Fig. 6 (a), in a way that the number of vehicles in Phase m ≥ i that experience delay between R i −1 + L i −1 and

R i + L i is equal to k 
j 
m 

h m 

i −1 ,i 
, where h m 

i −1 ,i 
represents the queue length associated with those vehicles. Simple trigonometric

manipulations result in an expression for h m 

i −1 ,i 
as h m 

i −1 ,i 
= (R i + L i − R i −1 − L i −1 ) / (R m 

+ L m 

) x j m 

, which itself results in the

expression above. 

Finally, expected value of delay and variance of delay can be calculated directly from the expression of delay PDF (25) . 
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