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a b s t r a c t 

This paper proposes a demand management method that optimizes the network perfor- 

mance by manipulating departure times within limited cooperation settings. The frame- 

work builds on the restricted flexibility of travellers’ departure times and exposes the im- 

pact of minimal changes in travellers’ schedule on the overall network performance. The 

test-bed (the plant) is based on the trip-based Macroscopic Fundamental Diagram (MFD) 

that relates the network space-mean speed to the vehicle accumulation. Travellers in the 

trip-based MFD model are characterized by their specific desired arrival times, heteroge- 

neous trip lengths, and earliness and lateness scheduling penalties. The optimization prob- 

lem, on the other hand, is formulated based on the accumulation-based MFD model that 

relates the network production (i.e. length-weighted aggregated link flows) to the vehi- 

cle accumulation. The accumulation-based MFD is an aggregated parsimonious model and 

does not consider individual traveller attributes, which enables it to remain analytically 

tractable and makes it suitable for optimization purposes. The proposed demand man- 

agement method is also incorporated into a day-to-day evolution model where travellers 

adapt based on their historical departure times, experienced travel costs, and individual 

characteristics. The results highlight that the accumulation-based MFD can be efficiently 

used to develop travel demand management methods with realistic representation of traf- 

fic congestion within and across days. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

The equilibrium analysis in transportation networks has received extensive attention in the literature and has laid the

foundation for considerable applications in transportation planning and management. Specifically, departure time analysis

has been traditionally studied in the morning commute context from a Vickrey equilibrium perspective ( Vickrey, 1969 ).

Vickrey considers point bottleneck models with constant capacity (i.e. fixed outflow under congested conditions) and de-

fines equilibrium distribution of arrival times at the bottleneck over a morning peak period. In this framework, a traveller

experiences an actual delay (due to waiting in the queue) and a schedule delay (due to earliness or lateness). While all

travellers adjust their departure times to minimize their individual travel costs, equilibrium is reached when no traveller
� This paper has been accepted for a podium presentation at the 23 rd International Symposium on Transportation and Traffic Theory (ISTTT23) July 24–26, 
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has an incentive to change their departure time. Vickrey’s model has been extended to analyze existence and uniqueness

of Nash equilibrium ( Smith, 1984; Daganzo, 1985 ), consider heterogeneous travellers ( Newell, 1987 ), and develop optimum

toll strategies ( Arnott et al., 1990 ). Although the focus in Vickrey’s equilibrium is point bottlenecks, the theory has been

applied at the network level too ( Small and Chu, 2003; Geroliminis and Levinson, 2009 ). Nevertheless, FIFO assumption is

fundamental to the analytical Vickrey model, and heterogeneous trip lengths that travellers might have in a network set-

ting requires a careful investigation of its large-scale impacts ( Daganzo and Lehe, 2015; Fosgerau, 2015; Liu and Geroliminis,

2016; Lamotte and Geroliminis, 2018 ). 

Transportation networks exhibit intra-day (within-day) and inter-day (day to day) fluctuations in traffic states, due to

the highly-correlated, chaotic, and intricate dynamics of traffic and travellers’ decision making (departure time choice, route

choice, etc.). This raises the interest to scrutinize day-to-day models of transportation networks (e.g., Bie and Lo, 2010;

Cantarella et al., 2015; Xiao et al., 2016; Xiao and Lo, 2016; Liu and Geroliminis, 2017 and others). The day-to-day modeling

framework can be utilized to devise and evaluate congestion control strategies (e.g., Guo et al., 2015 ), pricing schemes (e.g.,

Tan et al., 2015 ), and demand management methods, such as this paper, to investigate the medium- and long-term effects of

travel optimization measures on transportation networks. Day-to-day models can also be integrated with models of within-

day traffic dynamics to capture the temporal propagation of congestion in the network during the day, i.e. doubly dynamic

models. 

The analytical models that rely on Vickrey equilibrium have focused on idealized cases and generated significant insights

onto the fundamental principles that should govern traffic planning and management systems. Although the problem be-

comes cumbersome due to observability issues in wished arrival times, heterogeneity across travellers, tediousness of the

analytical approach and fundamental assumptions underlying the traffic flow modeling, the findings from these studies lay

the foundation and produce the guidelines for effective planning and management schemes. Nevertheless, this paper inves-

tigates the problem from a control perspective. Therefore, the type of outcome/conclusions is different in nature from the

existing studies, as it focuses more on benefits from a management (or control) strategy, rather than insights for potential

applications. This paper aims at developing a novel travel demand management method that captures the (limited) flexibility

of departure time choice and exploits the potential benefit from the cooperation of users across time (e.g., non-peak usage,

flattening peak demand). The proposed travel demand management scheme manipulates the departure time of travellers in

a large-scale network and accounts for travellers’ reaction and adaptation through a day-to-day evolution model. Emerging

communication technologies will allow transportation authorities to easily interact with the users and intervene with their

travel decisions. It is, therefore, a timely effort to reformulate the departure time choice phenomenon as a central optimal

control problem. Macroscopic Fundamental Diagram (MFD) is adopted to maximize the system performance by rescheduling

travel demand and be integrated with a day-to-day model as a large-scale network modeling tool. MFD provides a unimodal,

low-scatter and demand-insensitive relationship between network-wide traffic states (e.g. accumulation, speed, production, 

and trip completion flow) for an urban region. 

The concept of MFD with an optimum accumulation is initiated by Godfrey (1969) . Similar ideas are later introduced by

Herman and Prigogine (1979) , Mahmassani et al. (1984) , Daganzo (2007) , while the empirical existence of MFD is shown

by Geroliminis and Daganzo (2008) . Despite having shortcomings related to heterogeneity (i.e., the region should have low

heterogeneity for a well-defined MFD to exist) and hysteresis (MFD may behave differently on the onset and offset of con-

gestion), MFD is a powerful modeling tool that enables the development of parsimonious and tractable dynamical models

for large-scale urban road networks. This modeling approach has offered the possibility of designing network-level traf-

fic management and control schemes. Some examples are perimeter control in urban networks ( Geroliminis et al., 2013;

Keyvan-Ekbatani et al., 2015; Ramezani et al., 2015; Kouvelas et al., 2017; Yang et al., 2018; Aalipour et al., 2018 ), regional

route guidance ( Yildirimoglu et al., 2015; Sirmatel and Geroliminis, 2017; Yildirimoglu et al., 2018 ), pricing ( Zheng et al.,

2016; Gu et al., 2018 ), and control of city-scale ride-sourcing systems ( Ramezani and Nourinejad, 2018 ). Further studies on

the properties of aggregated network modeling using MFD (e.g. Gonzales and Daganzo, 2012; Mahmassani et al., 2013; Laval

and Castrillón, 2015; Ambühl and Menendez, 2016; Laval et al., 2018; Amirgholy and Gao, 2017; Amirgholy et al., 2017 )

herald the progress towards a new generation of network-level traffic modeling and control schemes. 

The (traditional) MFD modeling builds a relation between the network production (i.e. length-weighted average link

flows) and the accumulation of vehicles. It does not consider individual vehicle attributes or driver decisions, and builds

upon an average vehicle trip length that casts speculations about the level of consistency, particularly for open-loop model-

ing purposes ( Yildirimoglu and Geroliminis, 2014; Leclercq et al., 2015 ). We refer to this model as the accumulation-based

MFD model. Recently, a few studies (e.g. Arnott, 2013; Mariotte et al., 2017; Lamotte and Geroliminis, 2018 ) explored ‘trip-

based’ MFD reformulation to address the effect of variable trip lengths on dynamics of congestion in single-reservoir net-

works. The trip-based MFD model tracks the travelled distance of all vehicles by assuming that a well-defined relationship

exists between network accumulation and average speed. 

This paper incorporates the two realistic representations of city-scale traffic dynamics, i.e. accumulation- and trip-based

MFD models into a day-to-day model to develop a novel travel demand management strategy. The accumulation-based

MFD model is embedded in the optimization problem to maximize the network performance without the need to acquire

characteristics of individual travellers such as wished arrival times, trip lengths, and scheduling penalties. In the day-to-

day framework, the optimized departure times are allocated to travellers and evaluated by the trip-based MFD model that

is capable of considering the detailed characteristics of individual travellers. This framework allows us to simultaneously

utilize the tractability of parsimonious accumulation-based MFD for optimization purposes and detailed features of the
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Fig. 1. Network structure: (a) Trip-based MFD model representation and (b) Accumulation-based MFD model representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trip-based MFD to provide a more-detailed representation of traffic dynamics. The results demonstrate promising outcomes

to reduce total travel time spent in the network and highlight the advantages of MFD modeling. 

The contributions of this paper are multi-fold. (1) We develop a demand management strategy that relies on limited

changes in departure times and analytical tractability of the accumulation-based MFD model. While MFD models have been

exploited to develop various management schemes, the aspect of cooperation in departure time choice has not been inves-

tigated before. (2) We explore the model-plant mismatch using the accumulation-based and trip-based models. Note that

these two models are inherently different in the way they model the congestion dynamics. (3) We integrate a day-to-day

evolution model with the trip-based MFD model and explore the medium term impacts of the proposed disruptive travel

demand management strategy. 

The remainder of this paper is structured as follows. In Section 2 , we elaborate the main modeling assumptions of the

day-to-day learning procedure and departure time optimization method, and present the traffic flow models. In Section 3 ,

we present the overall integrated framework that consists of the day-to-day model and the demand management method.

Finally, in Section 4 , we assess the proposed day-to-day and demand management model using numerical experiments and

analyze the properties of equilibrium solutions. Section 5 concludes the paper and outlines future research directions. 

2. Modeling preliminaries 

2.1. Modeling assumptions on network, decision mechanism, and control 

Assumption 1. We consider a single-region city, where the origins and destinations of travellers are located within the

region, see Fig. 1 . We assume there is no demand from the periphery of the city. Nevertheless, this assumption can easily

be relaxed in future works to allow a multi-reservoir network representation. 

Assumption 2. We employ two models that possess distinct features but are based on the same aggregated performance

function (i.e. MFD). The trip-based MFD model is used as the plant that is capable of modeling the departure time choice

of individual travellers ( i ) considering disaggregated desired arrival times, trip lengths, and schedule penalty costs. The trip-

based MFD model assumes the average speed of the region ( V ) is a function of region accumulation ( n ), see Fig. 1 (a).

The parsimonious accumulation-based MFD is used for departure time optimization to keep the problem tractable. It does

not require detailed information from each traveller. This model keeps track of region accumulation based on the total

production of the region ( P ), which is a function of accumulation ( n ), and aggregated inflow to the region ( I ), see Fig. 1 (b).

Using the two different yet consistent models (note that V = P/n ) in the travel demand management method highlights the

potential of aggregated network-scale models for congestion management. 

Assumption 3. Each traveller (or agent) has her/his own desired arrival time (to her/his destination), trip length, and earli-

ness/lateness cost (or penalty) coefficient. 

The trip-based MFD model, which is described in Section 2.3 , allows us to build a disaggregated, detailed and yet city-

scale model where travellers make departure time decisions with respect to their own desired arrival time and schedule

cost perceptions. Although in reality the travellers might update/change their routes within and across days in response

to the changing traffic conditions, in this work, we assume the trip distance is a constant value and does not depend on

traffic. Future work might relax this assumption considering a link-level representation of the traffic network and a route

assignment model that considers alternative paths between origin and destination of travellers. 

Assumption 4. The travellers’ decision making only involves the departure time choice over days. The route choice, origin

/ destination choices, mode choice and no travel option are not considered. Note that this assumption can be interpreted

such that the mode choice is done a priori where multiple modes are available in the network. In addition, the passenger
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occupancy of each vehicle is considered one; every one travels alone. This implies that the total car demand over days

(iterations) is fixed and also their trip lengths do not change. 

Assumption 5. Travellers adapt their departure time choice to minimize their total travel cost (travel time plus the schedul-

ing penalty). Travellers do not shift their departure times by more than τ [unit of time] in a day with respect to their

previous departure time. 

This assumption reflects the myopic capability of the travellers in perceiving the travel costs and changing their departure

time decisions. Generally, it is expected that the travellers have inertia to drastic changes in their departure time choice and

have tendency towards experimenting alternatives in the vicinity of their previous day choice. 

Assumption 6. In the day-to-day model, in addition to the travel cost they experience at the chosen (or allocated) departure

time, we assume travellers know the real-time instantaneous travel time (from, e.g., traveller information systems) for the

other (potential) departure times (in vicinity of their actual departure time ± τ ) at the end of each day. To the best of our

knowledge, most commercial traffic information apps provide instantaneous travel time information which is solely based

on current traffic conditions or historical travel times. Although there exists a certain level of inconsistency between the

instantaneous and experienced travel times (see Yildirimoglu and Geroliminis, 2013 ), we assume travellers can account for

that using the correction mechanism presented in the day-to-day evolution model (described more in detail in Section 3.2 ).

Assumption 7. The average trip length is assumed to be known from the demand management (or traffic control) perspec-

tive. 

While the travellers have heterogeneous trip lengths in the network, we assume an accurate estimate of the average trip

length across all the travellers is available. In reality, the trip length of the travellers can be monitored with data from probe

vehicles, Bluetooth sensors, etc., and an accurate average value can be estimated even with low penetration rates. 

Assumption 8. An online platform (e.g., a website, a smart phone app) is introduced to establish the communication be-

tween the travellers and the central controller (i.e., demand management model). Travellers request departure times and are

allocated new departure times via this platform. From the perspective of the demand management system, we assume the

requested departure times are given and the allocated departures time can be communicated back to the travellers. 

2.2. Accumulation-based MFD model 

The accumulation-based MFD model serves as the optimization model that the travel demand management strategy (i.e.

departure time optimization) is built on, while the trip-based MFD model serves as the plant (i.e. reality), which represents

the test bed. These two models rely on equivalent representations of the MFD function, but have inherently different ap-

proaches to model traffic congestion dynamics. The accumulation-based MFD model considers ‘production-MFD’, P ( n ), as a

function of accumulation, n , (i.e. the number of vehicles circulating in the network) and models the traffic dynamics through

tracking the temporal evolution of accumulation as 

˙ n (t) = I(t) − O (n (t)) (1) 

where n ( t ) is the accumulation at time t , ˙ n (t) is the derivative of accumulation with respect to time, I ( t ) is the inflow rate

to the region and O ( n ( t )) is the vehicles outflow rate at time t . Considering a constant average trip length, l̄ , and assuming

slow-varying demands the outflow can be estimated as O (n (t)) = P (n (t)) / ̄l , see Assumption 7. 

Due to its low complexity and analytical tractability, accumulation-based model is a promising tool to develop network-

level traffic management schemes. However, under rapidly changing traffic conditions, it might not provide a good approxi-

mation as it produces inconsistent lag in information propagation. For instance, a sharp increase in the inflow rate results in

an immediate increase in the outflow rate (i.e. information propagation at infinite speed). Nevertheless, in reality, outflow

should increase only when the new vehicles reach their destinations or the region boundary. This is a well-known defect of

outflow models ( Mun, 2007 ). To account for the aforementioned information lag or the reaction time, a possible solution is

to augment the accumulation-based MFD model with the state delay in the MFD output ( Haddad and Zheng, 2018 ). Another

approach, studied in Daganzo and Lehe (2015) , Lamotte and Geroliminis (2018) , Mariotte et al. (2017) is a new formulation

where all vehicles might have variable trip lengths and move toward their destination with respect to the average speed

in the region defined by “speed-MFD’, V ( n ). This function can be expressed as V (n ) = P (n ) /n, and it provides an equivalent

representation to the production-MFD. 

2.3. Trip-based MFD model 

The trip-based MFD model (as presented in Mariotte et al., 2017; Lamotte and Geroliminis, 2018 ) is a discrete event-

based simulation model that is capable of treating individual vehicles based on their departure times (from the origins) and

trip lengths. The events consist of departure and arrival (at destination) of vehicles in the network. The trip-based model

considers the region speed V ( n ( t )) and calculates the remaining trip distance of circulating vehicles until the next event

occurs, i.e. either a new vehicle is generated in the network or a vehicle reaches its destination. In the former situation,

the number of vehicles in the region increases by one and region speed drops accordingly, because d V /d n < 0. In the latter

situation, the number of vehicles in the region decreases by one and the region speed increases accordingly. Once a vehicle
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traverses its entire trip distance, its arrival time at the destination is recorded. This leads to determination of the travel time

and scheduling cost of individual traveller. The fundamental relation between the trip length of traveller i, l i , the departure

time of traveller i , t 
dep 
i 

, and network speed, V (.) is: 

l i = 

∫ t dep 
i 

+ T exp 
i 

(t dep 
i 

) 

t dep 
i 

V (n (t)) d t (2)

where T 
exp 

i 
(t 

dep 
i 

) denotes the experienced travel time of traveller i in the network departing at time t 
dep 
i 

. 

The trip-based MFD model serves two purposes: (i) to establish the day-to-day equilibrium conditions without any de-

mand management action and (ii) to evaluate the effect of the demand management strategy at day d and to model the

change in departure time choice of passengers. The use of the trip-based MFD model as the test bed, item (ii), allows us

to capture the model-plant mismatch that is inevitable in any control application. This is due to the distinct features of the

trip-based and the accumulation-based MFD models. Note that any other traffic model (e.g. microsimulation) that potentially

offers an accurate representation of the congestion dynamics of the system and serves the two above purposes in a tractable

manner can be used in the proposed demand management strategy. It is worth mentioning that that number of travellers

is a key factor in the computation complexity of the trip-based MFD model. In contrast, the computation complexity of the

accumulation-based MFD model is not a function of the number of travellers, which highlights the main advantage of using

the accumulation-based MFD model for the optimization. The pseudo code of the trip-based MFD model reads as: 

Algorithm 1 Trip-based MFD pseudo-code. 

Initialize each traveller (i): { t dep 
i 

, T w 

i 
, l i , scheduling penalties } 

Initialize event_list = [] 

Initialize output = [] 

Initialize n = 0 %vehicle accumulation 

Initialize j = 0 %event counter 

Initialize t j = t init 

current_speed = V (n ) 

for All vehicles ( i ) do 

event_list ← t 
dep 
i 

, that is the initial requested departure time 

Determine the potential arrival time of vehicle i , i.e. t arr 
i 

, using Eq. (2) considering constant current_speed 

event_list ← t arr 
i 

, that is the initial arrival time 

end for 

Sort event_list 

while Items in event_list do 

j ← j + 1 

Determine the next event closest to t j−1 and let its corresponding time as t j 
l i ← l i − V (n ) · (t j − t j−1 ) ∀ i %all vehicles travel a unique distance based on the network average speed and 

the time between events j and j − 1 

if The first closest event is a vehicle departure then 

n ← n + 1 

else 

n ← n − 1 

output ← T 
exp 

i 
, i.e. the experienced travel time of vehicle i 

end if 

Remove the first closest event from the event_list 

current_speed = V (n ) 

Update the potential arrival time of all vehicles in event_list using Eq. (2) considering new constant current_speed 

end while 

Note that the trip-based MFD model is not necessarily a first in first out (FIFO) model since the trip length of individual

vehicles might differ. 

3. Day-to-day dynamics and departure time optimization 

In this section, we first present the overall framework that consists of the day-to-day model and the demand manage-

ment method. Subsequently, we describe the decision mechanism of the travellers in the day-to-day evolution model and
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Fig. 2. Structure of the proposed departure time optimization and day-to-day learning framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

their associated learning process with respect to the departure time choice. Finally, we present the demand management

method that optimizes the network performance given the travellers’ departure time request and the constraints associated

with the possible changes. 

3.1. The overall framework 

Fig. 2 summarizes the proposed framework that includes the two MFD models, the equilibrium analysis of the day-to-day

evolution model and the demand management strategy. In Section 3.2 , we elaborate the day-to-day evolution of the doubly

(day-to-day plus the within day) dynamics of the urban vehicular transport system (see the upper part of Fig. 2 ). Traveller

i has his/her own desired arrival time, trip length, earliness and lateness penalties (respectively T w 

i 
, l i , E i , and L i ). Using the

learning mechanism presented in Section 3.2 , travellers update their departure time choice every day, and the resulting new

scenario is evaluated with the trip-based model. We update the evolution mechanism until the doubly dynamical system

reaches an equilibrium point where traveller decisions, travel costs and traffic conditions do not change significantly across

days. Eventually, the day-to-day evolution mechanism converges to stable patterns and produces the equilibrium departure

times, which are then taken to the demand management method. 

In the second part of the framework, we apply the demand management method and the day-to-day learning mechanism

sequentially and explore the medium-term impacts of the disruptive travel demand management strategy. On the first day

when the departure time management strategy is introduced, we assume travellers request to depart at their equilibrium

departure times that are obtained based on the day-to-day mechanism explained in the upper part of Fig. 2 . The optimiza-

tion problem presented in Section 3.3 allocates new optimal departure time periods while ensuring travellers’ flexibility

constraints are not violated. The trip-based MFD model, then, evaluates the newly allocated departure times and produces

the new generalized travel costs for travellers. On the following day, travellers choose and request a new departure time

interval based on the perceived costs of alternatives, which results in a new requested demand profile. Finally, we allocate

new departure times with respect to the requested demand values and complete the loop for a day. This procedure is re-

peated for a certain number of days. Whether the system reaches equilibrium or not with the travel demand management

strategy will be discussed in Section 4 . 

3.2. Day-to-day dynamics of departure time choice 

Consider a discrete day-to-day departure time evolution model where days are denoted as d and the discretization step,

without loss of generality, is �d = 1 . Travellers make a departure time choice on each day considering the costs they per-

ceive for a set of departure time alternatives. Each traveller i , with a distinct wished (also interchangeably used as desired)

arrival time, T w 

i 
, and trip length l i , makes a departure time choice, i.e. t , based on her/his perceived (generalized) travel cost.

Travellers’ perception of travel costs are updated every day using the historical perceived cost and the cost they experience
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or estimate on the previous day. While the experienced cost at the chosen departure time (or allocated departure time in

case of the demand management scenario) is readily accessible, the cost at the other (potential) departure times can only

be estimated to a certain extent. In this study, we assume that travellers can observe the real-time (instantaneous) traffic

conditions through traveller information systems (Assumption 9 in Section 2.1 ) and estimate the travel time associated with

other potential departure times through a correction factor, which will be elaborated later in this section. 

Let C 
p 

i,d 
(t) denote the perceived generalized travel cost for traveller i on day d with departure time t 1 , and c i,d ( t ) denote

the experienced (or estimated) generalized travel cost for traveller i on day d with departure time t . The update mechanism

for the perceived travel cost is as follows: 

C p 
i,d+1 

(t) = ω i · C p 
i,d 

(t) + (1 − ω i ) · c i,d (t) (3)

where 0 < ω i < 1 is the learning parameter of traveller i that defines the weights that traveller i allocates to the perceived

and experienced (or estimated) travel costs. A larger ω i represents higher reliance on the historical perceived travel cost

and less importance on the most recent experienced (or estimated) travel cost from the previous day. In the numerical

experiments of this study, for the sake of simplicity, we assume ω i is identical among all the travellers, i.e. ω i = ω ∀ i . This

assumption can be readily relaxed. 

The experienced (or estimated) travel cost for traveller i on day d departing at time t is: 

c i,d (t) = 

{
T i,d (t) + E i ·

(
T w 

i 
− t − T i,d (t) 

)
, if 

(
t + T i,d (t) 

)
< T w 

i 

T i,d (t) + L i ·
(
t + T i,d (t) − T w 

i 

)
, otherwise 

(4)

T i,d (t) = 

T exp 

i,d 
(t dep 

i,d 
) 

T ins 
i,d 

(t dep 

i,d 
) 

· T ins 
i,d (t) (5)

In Eq. (4) , T i,d ( t ) is the experienced (or estimated) travel time that traveler i spends (or has estimated to spend) to travel

trip length l i starting from the departure time interval t on day d , and E i / L i are respectively the earliness and lateness

coefficients associated with traveller i . 

In Eq. (5) , t 
dep 

i,d 
represents the departure time chosen by (or allocated to) the traveller i on day d , and T 

exp 

i,d 
and T ins

i,d 

represent respectively the corresponding experienced and instantaneous travel times. As discussed before, in this study, we

assume that travellers have access to instantaneous travel times through traveller information systems and they update their

perceived cost of travel using this information. However, as the discrepancy between instantaneous and experienced travel

times might be misleading, we assume that travellers compare the travel time they experience with the one received from

the information system (for the same departure time t 
dep 

i,d 
) and use the relative ratio between them to estimate the travel

time to be experienced at other potential departure times. The first term on the right hand side of Eq. (5) indicates the

ratio of the experienced travel time to the instantaneous travel time at t 
dep 

i,d 
and serves as a correction factor to convert

instantaneous travel time to experienced travel time at other alternative departure times. For the chosen (or allocated)

departure time (i.e. t 
dep 

i,d 
), the travel time becomes equal to the experienced travel time, i.e. T i,d (t 

dep 

i,d 
) = T 

exp 

i,d 
(t 

dep 

i,d 
) . For the

other alternative departure times, the correction factor enables the traveller to consider an estimated travel time. Assuming

that the ratio of experienced to instantaneous travel time remains approximately the same in a limited range, Eq. (5) is

expected to produce accurate estimations of experienced travel time. Note that Eqs. (3) –( 5 ) apply to departure times t 
dep 

i,d−1 
−

τ ≤ t ≤ t 
dep 

i,d−1 
+ τ, i.e. departure time choice set. The shift from the departure time choice on the previous day is limited by

the time window parameter τ , as defined in Assumption 5 in Section 2.1 , and the choice set, in fact, consists of discrete

values that are defined by the time step �t . Mathematically speaking, the departure time alternatives to be considered

by the traveller i is t = { t dep 

i,d−1 
+ m · �t : m ∈ Z and (−τ/ �t) ≤ m ≤ (τ / �t) } . As each traveller i is randomly assigned a

(continuous) departure time value on the first day, the choice set differs from user to user; however, they all consist of

discrete values as defined above. As the choice set and the associated travel costs should be calculated separately for each

traveller, this does not pose an issue. 

As described in Eqs. (4) –( 5 ), the generalized travel cost includes both the travel time and the schedule cost, which both

hinge on the discrepancy between the instantaneous and experienced travel times. Instantaneous travel time is simply cal-

culated using the trip length and the average speed at the departure time of the trip, i.e. T ins 
i 

(t) = l i /V (t) (we omit the day

index d here), while the experienced travel time is calculated by numerically solving Eq. (2) . 

The travellers choose their departure times with respect to the perceived utilities of departure times. The perceived

utility of traveller i on day d and departure time t is defined as: 

U i,d (t) = C p 
i,d 

(t) + εi (6)

where ε i is a random term that is assumed identically and independently distributed with a Gumbel distribution whose

parameters can be estimated for real applications (for the whole population or several groups of users). The probability of
1 While the actual departure time in the trip-based model can take any continuous value, the departure time t is selected from a range of discrete 

alternatives in order to take advantage of the discrete choice models. This issue will be further elaborated within this section for the definition of the 

choice set (departure time alternatives). 
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choosing the departure time t is then as follows: 

Pr i,d (t) = 

exp 

(
−θ · U i,d (t) 

)
∑ t dep 

i −1 ,d 
+ τ

s = t dep 

i −1 ,d 
−τ

exp 

(
−θ · U i,d (s ) 

) (7) 

where θ is the scale factor. In order to account for the commonality and correlation between the alternatives in the dis-

crete choice analysis, one can use C-logit ( Cascetta et al., 1996 ) or Path Size logit ( Frejinger and Bierlaire, 2007 ). Although

travel times from the neighbouring departure intervals might be correlated too, vehicles leaving at different departure time

intervals will not be using the same road sections at the same time. Hence, we ignore the commonality issue and apply

the conventional logit formula to compute the probability of choosing the departure time. Note that Eq. (7) defines the

probability of choosing departure times for each agent separately and not in an aggregated manner. 

The proposed day-to-day evolution mechanism is expected to eventually reach an equilibrium solution where the depar-

ture time decisions do not change significantly across days. This requires the perceived costs and experienced (or estimated)

costs to remain the same across the days. Therefore, the perceived cost of departure time t for traveller i at the equilibrium

point, i.e. C 
p 
i, ∗(t) , is: 

C p 
i, ∗(t) = ω i · C p 

i, ∗(t) + (1 − ω i ) · c i, ∗(t) . (8)

This is indeed a fixed point solution where the perceived travel costs are equal to the experienced costs, i.e. C 
p 
i, ∗(t) = c i, ∗(t) .

Eq. 8 indicates that travellers estimate or experience the same travel costs repeatedly once the system convergences to the

equilibrium condition. Instantaneous and experienced travel times are by definition different and therefore lead to different

utility values, which might cause inconsistency between the chosen departure time interval and the others in the choice

set. Nevertheless, assuming that the experienced to instantaneous travel time ratio in Eq. (5) is an accurate estimator in

smoothly varying traffic conditions and in a limited range of departure time alternatives, we expect Eq. (8) to hold. This

issue will be further discussed with numerical experiments in Section 4 . 

3.3. Demand management method 

In this subsection, we develop a constrained optimization problem that capitalizes on (limited) flexibility of travellers’

departure time choices. While desired arrival times are defined by work schedules and other routine activities, departure

time choice, for the morning commute, is a decision that travellers have to make every day considering both the traffic

conditions (their own travel time in particular) and the schedule cost; how early or late they arrive at their destination.

Given that the desired arrival times and the total travel demand remain the same, we expect the system to reach an equi-

librium point where the traffic conditions and departure time decisions stay approximately stationary across the days. The

optimization method builds on the assumption that travellers are willing or enforced to change their current departure time

decision within a limited time window (e.g., 5 or 10 min). While the optimization formulation does not explicitly address

non-compliant drivers, we test this issue at the evaluation stage (Section 4.3.) and disengage the travellers for which the

demand management systems incurs significant additional cost. 

The optimization mechanism relies on the ability to allocate the travellers to earlier or later time slots than their re-

quested departure time intervals. Therefore, the problem is formulated as a one-shot open-loop optimization formulation

where the optimum allocation of departure times can be found simultaneously for the whole study period. To this end, we

assume travellers request a departure time before the start of the study period and the demand management method allo-

cates them to the new departure times that are not too apart from their requested ones. This framework allows us to create

a limitedly cooperative system where the social cost of selfish decisions is curbed by minor changes. In other words, the

resulting configuration does not entirely correspond to social optimum that one could reach by manipulating the departure

times without temporal constraints; however, it represents a different aspect of cooperation between the travellers given

the flexibility constraints. Note that, as discussed before, heterogeneous travellers with distinct perception of trip delay and

schedule delay is one of the bottlenecks in the implementation of optimum pricing strategies. Our study, on the other hand,

does not have to address heterogeneity as it assumes that people can accommodate limited changes to their schedule. We

formulate this mechanism as a nonlinear constrained optimization problem that reads as follows: 

minimize q �k ·
t f −1 ∑ 

k =0 

n (k ) (9a) 

subject to for k = 0 , . . . , t f − 1 : 

n (k + 1) = f (n (k ) , I(k )) (Accumulation-based MFD dynamics) (9b) 

I(k ) = 

�∑ 

m = −�

q (k, m ) (Input of Accumulation-based MFD dynamics) (9c) 
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R (k ) = 

�∑ 

m = −�

q (k + m, m ) (Serving total demand constraint) (9d)

q (k, m ) ≥ 0 m ∈ [ −�, �] (Decision variables non-negativity constraint) (9e)

where �k is the time step for the accumulation-based MFD model, t f is the length of the study period, f is the time dis-

cretized model of the conservation law of the accumulation-based MFD model, as in Eq. (1) , q is the set containing all

decision variables, i.e. q ( k, m ) for all k = 0 , . . . , t f − 1 and m ∈ [ −�, �] , � is the half-length of flexible time window, R is

the demand profile that results from requested departure times, and I is the travel demand inflow profile that results from

allocated departure times. Note that q ( k, m ) depends on two variables, k that is the allocated departure time period, and m

that is the time gap between the requested and allocated departure time steps. In other words, q ( k, m ) is m steps early or

late travellers departing at time step k . If m is negative, travellers depart earlier than their requested departure time step,

and vice versa. If m is zero travellers depart at the time step they request. Additionally, vehicles are not asked to depart

more than � steps earlier or later than their requested time. In short, Eq. (9a) is the objective function of the optimization

problem, Eq. (9b) defines the model dynamics in a discretized manner, Eqs. (9c) and (9d) compute the actual inflow and

requested demand rates, respectively, and Eq. (9e) guarantees non-negativity of the decision variables. Note that I is the

actual inflow that enters the network and affects the traffic model through the function f, R is the requested demand that

we assume is given or observed from the online platform (see Assumption 8), and I and R are indirectly connected through

the decision variables q . 

Eq. (9a) is the objective function that minimizes the total time spent in the network which is represented by the nu-

merical integration of discrete accumulation values. Note that the multiplication by the time step �k does not affect the

optimum solution, as it is a constant. Eq. (9b) defines the time-varying dynamics of traffic in the accumulation-based MFD

model where accumulation in the next time step, i.e. n (k + 1) , depends on the current accumulation, i.e. n ( k ), and demand

inflow, i.e. I ( k ), in the current time step. A detailed description of the accumulation-based model is given in Section 2.2 ,

and f represents the temporal discretization for the approximate solutions of the ordinary differential equation presented

therein. The discretization problem is tackled with the Runge Kutta method (RK4) using a step size significantly smaller than

�k . Within each step k of the accumulation-based model, we assume the inflow rate, i.e. I ( k ) remains constant; however,

we update the accumulation value in each step of RK4 and compute the number of vehicles at the end of the time step, i.e.

n (k + 1) . 

Eq. (9c) represents the optimized demand profile or implemented inflow rate (i.e. I ( k )) which is the sum of all vehicles

departing at time step k , regardless of whether they depart early or late with respect to their requested departure time (i.e.

m ∈ [ −�, �] ). Note that q ( k, m ) represents the vehicles that are allocated to departure time k and are shifted by m steps.

Eq. (9d) guarantees that the requested demand at time step k , i.e. R ( k ), will be served within the flexible time window

�. As q ( k, m ) is the vehicles departing at step k with m steps shift, k − m represents the departure step that is requested

by the vehicles. Hence, q (k + m, m ) in Eq. (9d) represents the vehicles that initially request to depart at step k (because

k = k + m − m ) but are placed in step k + m . Eq. (9e) ensures that decision variables are non-negative. Eqs. (9b) –(9e) applies

to all the time steps within the study period, i.e. k = 0 , . . . , t f − 1 . 

The demand management method builds on the accumulation-based model which works under the assumption that

traffic streams as a whole are comparable to fluid streams and aims to generate and track system-level characteristics (e.g.,

region accumulation, transfer flows). On the other hand, the results are evaluated with the trip-based model which requires

single entity level characteristics (e.g., individual trip length, departure time). Therefore, the decision variables need to be

transferred across different levels of abstraction, while not all features are represented in both models. Notably, the allo-

cation of departure times to particular travellers requires random sampling of the users irrespective of their trip lengths,

schedule cost coefficients, etc. For instance, let the optimum allocated demand q (5 , 2) = 100 [veh] (i.e. the number of vehi-

cles allocated to the 5th step and departing 2 steps later than their request which is the 3rd step) and requested demand

R (3) = 10 0 0 [veh], we randomly sample 100 [veh] out of 10 0 0 [veh] independent of their attributes and assign them to

5th departure time period. Additionally, the accumulation-based model (in the optimization formulation) is discretized with

time steps �k , while the trip-based model (integrated with the day-to-day assignment model) can accommodate finer de-

parture time choices (with steps �t ). Note the following requirement �t < �k . Hence, each allocated traveller needs to

make a finer departure time choice within the time step k . The choice set for the traveller i allocated to time step k is

then { t dep 

i,d 
+ m · �t : m ∈ Z and (k − 1) · �k ≤ t 

dep 

i,d 
+ m · �t < k · �k } . The final departure time choice is selected from this

choice set using the logit formula presented in Eq. (7) . 

The objective function defined in Eq. (9a) considers only the total time spent in the network and does not involve the

schedule cost. While the travellers update their departure time decisions considering their generalized cost that contains

both the travel time and schedule cost, from an operation perspective, we ignore the schedule cost experienced by travellers

(because of observability issues) and focus solely on traffic conditions in the network. As the accumulation-based MFD model

does not keep track of individual travellers entering or leaving the network, it is not possible to consider the desired arrival

time of each traveller and compute the schedule cost. Unless strong FIFO assumptions are applied, the accumulation-based
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MFD model does not allow an estimation of the schedule cost. Nevertheless, the analytical tractability of the model makes

it possible to identify the optimum allocation of departure times that guarantees minimum total time spent in the system. 

The optimization problem is a nonconvex nonlinear program (NLP), which can be efficiently solved with for instance

sequential quadratic programming or interior point solvers (see Diehl et al., 2009 for details). Software implementation

of the optimization scheme is done using the CasADi Andersson (2013) toolbox in MATLAB 9.0.0 (R2016a), on a 64-bit

Windows PC with 3.4-GHz Intel Core i7 processor and 16-GB RAM with the NLPs solved by the interior point solver IPOPT

( Wächter and Biegler, 2006 ). 

4. Results 

In this section, we present the results from the numerical case studies. First, we describe the settings of the case study.

Second, we discuss the results from the day-to-day evolution model. Third, we investigate the joint impacts of the demand

management strategy and the day-to-day evolution model. 

4.1. Numerical settings 

The numerical case study is based on a single reservoir network and two demand scenarios; moderate and high conges-

tion. The trip-based MFD model is used as the test bed (i.e., the plant representing reality), whereas the accumulation-based

MFD model is used in the optimization framework to control the departure times. While the travellers are subject to varying

trip lengths and earliness/lateness coefficients in the trip-based MFD model, the departure time optimization model employs

the accumulation-based MFD model where the average trip length is constant and earliness/lateness costs are not taken into

account. 

Trip-based and accumulation-based MFD models are defined with respect to continuous time representation; however, 

the time horizon is discretized into multiple time intervals in the day-to-day evolution and the demand management model.

In the day-to-day assignment model, travellers are assumed to have access to real-time instantaneous travel times for the

departure times in the vicinity of their departure time (i.e. t 
dep 

i,d 
± τ ). As such departure time choice cannot be made in the

continuous context. Without loss of generality, �t = 60 [s] is considered as departure time intervals to create the choice set,

i.e. { t dep 

i,d 
− τ · �t , t 

dep 

i,d 
− (τ − 1) · �t , . . . , t 

dep 

i,d 
+ (τ − 1) · �t , t 

dep 

i,d 
+ τ · �t} for the following day d + 1 . On the other hand,

considering the fact that requesting and allocating departure time within short intervals is not realistic from an operation

perspective, the departure time optimization model considers �k = 300 [s] intervals. 

Additionally, the length of the choice set in the day-to-day evolution model is set by τ= 15; representing 15 ·�t = 900 [s];

the size of the flexible window in the optimization model is set by �= 2, representing 2 ·�k = 600 [s] before and after the

requested departure time. The scale factor θ in Eq. (7) for both demand scenarios is 5 · 10 −2 , and the utility values are in [s].

The other major numerical settings in the trip-based and accumulation-based models are presented in Tables 1 and 2 . The

accumulation-based and the trip-based MFD models rely on different representations of the same MFD function; production

and speed MFDs, respectively. Also note that trip length and schedule cost parameters are randomly distributed according

to the distributions presented in Table 2 , but the values are truncated with respect to the presented ranges not to allow

unreasonable settings. It is worth mentioning that the proposed method does not require any assumption on properties

of schedule cost functions. The schedule cost of travellers is not used in the accumulation-based MFD model, which is

employed in the optimization problem. However, it is needed in the trip-based MFD model to evaluate the day-to-day

changes in the network. The trip-based model considers non-identical travellers such that traveller i is identified by his/her

own departure time, t 
dep 
i 

, wished arrival time, T w 

i 
, trip length, l i , earliness parameter, E i , and lateness parameter, L i . Note

that, the first characteristic change over days while the other four characteristics do not change. 
Table 1 

Accumulation-based MFD model parameters. 

Accumulation-based model Specification 

Production function P(n ) = a · n 3 + b · n 2 + c · n [veh.m/s] 

Parameters a = 9 . 98 · 10 −8 , b = −0 . 002 , c = 9 . 78 

Parameters l̄ = 4600 [m], n jam = 10 4 [veh], n cr = n jam / 3 [veh] 

Table 2 

Trip-based MFD model parameters. 

Trip-based model Specification 

Speed function V (n ) = P(n ) /n [m/s] 

Trip length l i = ̄l + N 

(
0 , (0 . 2 · l̄ ) 2 

)
, l i > 0 

Earliness & Lateness 

[
E i 
L i 

]
= 

[
0 . 5 

4 

]
+ N 

([
0 . 05 2 0 . 1 2 

0 . 1 2 0 . 4 2 

])

E i ∈ [0.3, 0.7], L i ∈ [2.5, 5.5] 
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4.2. Day-to-day evolution model 

In this section, we focus on convergence properties of the day-to-day evolution model without considering the disruptive

demand management strategy, i.e., the upper part in Fig. 2 . Particularly, we test the day-to-day evolution model with two

demand scenarios; moderate and high congestion. 

To verify the convergence of the day-to-day evolution model to an equilibrium solution, we examine the inconsistency

or discrepancy between the perceived costs and the experienced costs. As discussed in Section 3.2 , we expect the departure

time decisions not to change significantly at the equilibrium state. This can be guaranteed by identical values of experienced

and perceived costs. 

Fig. 3 (a) compares individual experienced costs to individual perceived costs across different days in the moderate con-

gestion scenario where the learning parameter is ω= 0.75. Note that each point in Fig. 3 (a) represents a single traveller

with a given desired arrival time, trip length, and schedule penalties. Therefore, at the equilibrium state, the travellers are

expected to experience different generalized costs. In the perfect equilibrium conditions (which are difficult to reach in

numerical experiments), all the points in Fig. 3 (a) must align along the identity line. Hence, the deviation from this line

provides an indication regarding the equilibrium properties. We clearly see that the scattered distribution of points on days

3 and 5 gradually disappears and the system reaches an equilibrium state on day 25, where experienced and perceived costs

are quite close to each other. 

While Fig. 3 (a) depicts the evolution of individual travel costs, Fig. 3 (b) further investigates the overall convergence of the

costs with different values of learning parameters ( ω). To scale up from individual cost comparison to the overall population

convergence measure, we consider the perceived cost vector (i.e. C 

p 

d 
) and the experienced cost vector (i.e. c d ) representing

all travellers and compute the L1 norm of the difference between them, i.e. || C 

p 

d 
− c d || 1 , and divide it by the number of

travellers | c d |. In the moderate congestion scenario, we see that the overall inconsistency measure sharply decreases in the

first 5 days and reaches a stable value after 10 days independent of the chosen learning parameter, albeit rather slowly

with ω= 0.25. Even when ω is small and the dependence on the new experienced costs is high, the system reaches a stable

inconsistency value and an equilibrium state with the developed day-to-day evolution model. Fig. 3 (b) also depicts the

within-day evolution of the speed and accumulation on day 25 (the last day) with different learning parameters, see the

inset figures. We clearly see that the equilibrium state is identical; the changes across the scenarios with different learning

parameters are minor. Note that, as travellers do not have a perceived cost on day d = 1, the inconsistency computation starts

from day d = 2. 

To further investigate the convergence properties, we present both day-to-day and within-day changes in the network in

Fig. 4 (with ω = 0 . 75 ). We produce contour plots of speed and accumulation for both within-day and day-to-day evolution;

x -axis represents the within-day horizon, y -axis indicates the days, and z -axis or the colours represent the corresponding

speed or accumulation values. It is evident that in the first days, the network experiences a higher congestion, represented

by higher accumulation and lower speed. Nevertheless, the network converges to a less congested state after few days and

remains approximately the same until the end of the period. Note the darker yellow in the accumulation ( 4 (a)) and lighter

blue values in the speed ( 4 (b)) as days increase. 

The moderate congestion scenario presented in Figs. 3 and 4 exhibit strong convergence properties, however, we note

that the accumulation in this scenario does not reach the critical accumulation value ( n cr ) and hyper-congestion regimes.

Therefore, we further increase the demand level and test a more congested scenario. Fig. 5 compares individual experi-

enced costs with individual perceived costs across different days with ω = 0 . 75 . Interestingly, we observe that the points

are further away from the identity line on day 5 than they are on day 3. This happens because the new costs that travellers

experience are quite different from the perceived costs and the system is moving towards divergence rather than conver-

gence. Nevertheless, the points get closer to the identity line after day d = 10 , and the system reaches a quasi-equilibrium

state on day 25. Although the points align along the identity line on day d = 25 , the discrepancy between perceived and

experienced costs are higher compared with the moderate congestion scenario, see day d = 25 in Fig. 3 (a). 

Fig. 5 (b) presents the overall inconsistency in the system across days. Unlike the moderate congestion scenario, we are

not able to reach an equilibrium state for values ω < 0.75. Therefore, we present two cases where the dependence on the

perceived costs is relatively high; ω = 0 . 75 and ω = 0 . 90 . For ω < 0.75, travellers place a higher value on the new departure

time experiences which are highly different from their perceptions, and consequently, we observe that the system does not

reach a stable solution. For ω = 0 . 75 and ω = 0 . 90 , although the evolution of inconsistency measures is utterly different, we

see that the scenarios reach approximately stable values with the increase in days. Additionally, the accumulation and speed

profiles of the last day presented in Fig. 5 (b) show that the resulting within-day evolution of the system with two learning

parameters are close to each other, albeit not identical. Heuristic solution methods, e.g., method of successive averages, are

known to suffer from convergence issues particularly in congested scenarios ( Sbayti et al., 2007 ); therefore, it is not surpris-

ing to observe convergence issues in the day-to-day assignment framework with low ω values. While the traditional traffic

equilibrium has been typically achieved through optimization problems or smoothing methods, the day-to-day assignment

approach focuses on the evolution of travel choices over days and the learning model which is based on past experiences

of travelers. Note that the learning model presented in this paper is a standard formulation in the day-to-day assignment

studies, see e.g., Bie and Lo (2010) and Cantarella et al. (2015) . The parameters in the traditional equilibrium models are

purely mathematical and have no physical interpretation, whereas the day-to-day models include learning factors (i.e., ω)
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Fig. 3 . Moderate congestion scenario. (a) Experienced vs. Perceived travel costs on different days with ω = 0 . 75 , (b) sensitivity of convergence to ω values 

and accumulation / speed profiles on the last day. 

Fig. 4. Moderate congestion scenario with ω = 0 . 75 . (a) within day accumulation evolution over days, (b) within day speed evolution over days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

which in practice should be estimated with real data. A larger learning factor clearly indicates that travellers rely less on the

new experience and more on the long-term experience. A large learning factor is also likely to lead to convergence, because

travellers do not overreact based on single day’s experience. This implies that, in congested scenarios, equilibrium can only

be reached if travellers mostly rely on their historical perception. 

Fig. 6 shows the day-to-day and within-day evolution of speed and accumulation values in the network with the high

demand scenario and ω = 0 . 75 . The results are in line with the observations from Fig. 5 . The system reaches a highly con-

gested state between days 5 and 10, while after day 10 it reaches a relatively less congested and stable state. 

4.3. Demand management method integrated with day-to-day model 

In this section, we present the joint impacts of the demand management strategy and the day-to-day evolution model, as

depicted in the lower part in Fig. 2 . We evaluate the proposed framework using the high congestion scenario presented in

the previous section. We observe similar benefits of applying the demand management model with the moderate congestion

scenario, but we omit detailed discussion here to conserve space and avoid repetition. Instead, we test the high congestion

scenario with and without full compliance of travellers (to the allocated departure time) and assess the robustness of the

proposed method. The learning parameter is ω = 0 . 75 throughout this section. 

Fig. 7 depicts the results from the high congestion scenario with full compliance of travellers. Fig. 7 (a) depicts the re-

quested demand (i.e. R ( k ), the aggregated demand that results from requested departure times) and the actual inflow (i.e.

I ( k ), the aggregated inflow that results from optimized departure times). Note that in this framework day d = 0 refers to
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Fig. 5. High congestion scenario. (a) Experienced vs. Perceived travel costs on different days with ω = 0 . 75 , (b) sensitivity of convergence with respect to 

ω values and accumulation / speed profiles on the last day. 

Fig. 6. High congestion scenario with ω = 0 . 75 . (a) Accumulation evolution over days, (b) speed evolution over days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the equilibrium state from the sole implementation of the day-to-day model (see Section 3.2 ), day d = 1 is the first day the

demand management strategy is applied, and so on so forth. As also presented in Fig. 2 , on day d = 1 , we assume travellers

request to depart at their ‘equilibrium’ departure times (i.e. interval k which includes t 
dep 
i, 0 

); the requested demand on d = 1

in Fig. 7 (a)-inset reflects the equilibrium scenario. Starting from day d = 2 , we notice that less travellers request to depart

at earlier time intervals (see the difference between the blue curve and the others between 25 [min] and 50 [min]) and

more travellers request later time periods (see the difference between 50 [min] and 100 [min]). This is due to changes in

traffic conditions that are introduced by the demand management strategy. As the congestion in the network is significantly

reduced (presented in Fig. 7 (c)), the departure time interval that maximizes individual utility values might completely shift,

which is reflected by the changes in R ( k ). We also note that, despite minor differences between days, the overall pattern of

R ( k ) looks very much alike starting from day d = 2 . The inflow profile I ( k ) seems to stretch the requested demand profile

R ( k ) at both ends. The management strategy decreases the requested demand in the intermediate periods (see the differ-

ence in values of I ( k ) and R ( k ) between 50 [min] and 100 [min]), and creates small peaks at both ends. As the optimisation

algorithm responds to the changes in R ( k ) and the difference between days is minimal, the resulting inflow curves only have

few dissimilarities across the days in the earlier time periods. We note that the inflow to the network also quickly converges

to stable values in the first few days. 

Fig. 7 (b) depicts the decision variables of the optimisation problem (i.e. q ( k, m )) on day d = 30 , which represents the

distribution of travellers with respect to the shift of their departure time intervals. In overall, 46% of the travellers are

allocated to earlier intervals than their requested interval (i.e. m < 0), 47% are allocated to depart later (i.e. m > 0) and 7%

are allowed to use their requested interval (i.e. m = 0 ). 
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Fig. 7. High congestion scenario with ω = 0 . 75 . (a) Requested and optimized demand profiles on various days, (b) early/late demand distributions on day 

d = 30 , (c) network accumulation on various days, and (d) evolution of delay and inconsistency across days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 (c) displays the within-day accumulation across multiple days. As clearly seen, the demand management strategy

curbs the congestion and high accumulation levels starting from day d = 1 . While the accumulation evolution is notably

different on days d = 1 and d = 2 , there is barely any difference between days d = 10 and d = 30 . The network successfully

reaches convergence day by day. 

Fig. 7 (d) depicts the travel time spent and the overall inconsistency measure with increasing days. We note that travel

time spent in the system drops from 1.42 · 10 7 [veh.s] on day d = 0 to 0.96 · 10 7 [veh.s] on day d = 1 , which is 32% drop.

As the travellers adapt to the new system and make new departure time requests, the value goes up and converges to

1.00 · 10 7 [veh.s]. This is about 30% improvement in the total travel time spent. By simply shifting the departure times

within 10 [min] earlier and later time intervals, we uncover the power of the limited cooperation in the traffic network.

Note that the travel time spent for a vehicle consists of the delay and the free flow travel time that cannot be avoided

under any circumstances. The reported benefit from the proposed strategy would be much higher if the calculation was

based on the delay in the system. Fig. 7 (d) also depicts the average inconsistency for travellers; i.e. the sum of inconsistency

values ( || C 

p 

d 
− c d || 1 divided by the number of travellers (| c d |)). Surprisingly enough, we see that the inconsistency measure

reaches a stable value at around day d = 9 , while the travel time spent in the system is approximately constant starting

from day d = 2 . This implies that the aggregated patterns in the network, e.g., actual inflow, requested demand, within-day

accumulation, etc., converge faster than the perceived cost of the travellers. 

Even though travellers continue to make changes in their departure time choice to find their own equilibrium until day

d = 9 (we observe this but omit detailed discussion here), the overall traffic measures converge much faster due to aggre-

gated nature of traffic. This implies that while individual travellers switch to earlier or later time periods, the aggregated

demand evolution and so traffic conditions are not affected by it. 
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Fig. 8. Cumulative distribution of change in generalised travel cost for each individual between day d = 0 and others. (a) Full compliance scenario, (b) 

partial compliance scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the observations from the moderate congestion scenario (that we cannot report here due to space limitations)

are complementary to the findings from the high congestion scenario. The comparison between the two scenarios shows the

adaptation capability of the proposed algorithm. Briefly speaking, the changes in the desired arrival times across the scenar-

ios lead to an equilibrium solution where the requested demand profile is distinctly different. The optimisation problem, in

turn, responds to the changes in the requested demand profile and produces decision variables with distinct patterns. This

confirms that the changes in R affect the patterns of the decision variables. Although the decision variables and the traffic

conditions exhibit different patterns, the demand management model improves the system performance (by around 9%) and

proves reliable in changing traffic conditions. 

The joint implementation of the day-to-day evolution model and the demand management strategy leads the system to

a new equilibrium solution, where the characteristics differ from the sole implementation of the day-to-day model. Without

demand management strategy, travellers make a choice with respect to the utility of the alternative departure times and

experience the cost associated with their choice. In the equilibrium solution, travellers repeatedly perceive and experience

the same costs and make the same choices. On the other hand, the demand management method manipulates their choice

and allocates them to a nearby interval. Therefore, in the new equilibrium solution, they repeatedly make the same choice

and repeatedly get allocated to another interval which remains the same over the days. Note that even on day d = 30 , the

requested demand and the actual inflow values are distinctly different, see Fig. 7 (a). 

The optimization problem presented in Eq. (9) aims to minimise the total time spent in the network assuming that

driver compliance is not an issue, however travellers may be reluctant to follow the control decisions when the system

imposes a much larger generalized cost on them. It is therefore crucial to analyse the impact of compliance on the network

performance under realistic settings. Fig. 8 (a) provides the cumulative distribution of change in the generalized travel cost

(normalised and compared with respect to the cost in the equilibrium scenario at d = 0 ), i.e. (c i,d − c i, 0 ) /c i, 0 . We note that

the distribution looks quite similar starting from day d = 2 , while the first day exhibits a distinct pattern. Although around

75% of the travellers enjoy a reduction in their generalized cost, approximately 15% of the travellers suffer more than a 25%

increase in their generalized cost. Assuming full compliance of these travellers might be considered unrealistic. Therefore,

we relax the full compliance assumption and consider a scenario where travellers comply with the given guidance in case

the suggested departure time does not impose more than 25% increase in the generalized cost. This calculation is based on

perceived travel cost values; if the perceived travel cost for the suggested departure time is less than 125% of the experi-

enced travel cost at the equilibrium, travellers comply. Otherwise, they do not comply and choose the departure time they

had requested. Note that, in both full and partial compliance scenarios, the optimisation problem defined in Eq. (9) remains

the same, which implies the compliance rate is not known from the controller perspective. Future work should look into

estimating and incorporating these rates into the optimisation formulation. Fig. 8 (b) presents the cost distributions across

several days with the new compliance rules. The partial compliance scenario on day d = 1 is practically the same as the

full compliance scenario, because we assume, on day d = 1 , everyone wants to try out the new system regardless of the

additional cost the suggested departure time might incur. From day d = 2 onward, the partial compliance measure is im-

plemented. Despite the 25% cost increase threshold, we observe that many travellers experience higher travel costs (e.g.,

approximately 15% of the travellers experience more than 25% increase on day d = 2 ). This is due to the fact that travellers

make a decision based on the cost they perceive associated with the suggested departure time; however, they might experi-

ence a largely different cost on the following day. Particularly, on the first few days where the demand management strategy

is introduced, traffic conditions sharply change, which limit the perception (or the estimation) ability of the travellers. We
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Fig. 9. (a) Accumulation values with full compliance and partial compliance scenario on several days, (b) travellers’ compliance rate vs. departure time on 

several days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

note that the distribution shifts towards the given threshold value day-by-day; starting from day d = 10 , we do not observe

any traveler experiencing a higher cost than the given threshold value. 

While the system shows convergence features even with the above compliance rules, the demand management model

can prove useful only if the resulting conditions improve the network performance. Fig. 9 (a) depicts the accumulation values

on several days with full and partial compliance rules. As all the travellers comply with the guidance on the first day, the

difference between the scenarios is only negligible (any difference is due to the randomness in the allocation of travellers). In

the remaining days, we observe significantly higher accumulation values in the later time periods of the partial compliance

scenario, whereas the earlier time periods do not exhibit a significant difference. We also note that the difference between

day d = 10 and d = 30 is only minor, which indicates convergence in the system. Despite the significant difference in the

accumulation profiles between the two compliance settings, the resulting scenario indicates a major improvement over

the no control scenario. In the partial compliance scenario, travel time spent in the network is 1.06 · 10 7 [veh.s], which

is equivalent to 25% reduction over the no control scenario (only 5% worse than the full compliance scenario). Fig. 9 (b)

depict the within-day evolution of travellers’ compliance rate on the same days. The results are in line with the previous

observations; compliance rate drops in the later time periods and reaches almost zero-compliance levels. Despite the low

compliance issue in certain time periods, the system enjoys great benefits as indicated by the performance metrics. As the

resulting system is far less congested than the no control scenario, some travellers not complying with the given guidance

do not produce detrimental effects on the overall system performance, which demonstrates the robustness of the proposed

strategy. 

5. Conclusion 

In this paper, we propose a novel demand management strategy that builds on limited cooperation of travellers in time.

The proposed strategy enforces limited shifts in travellers’ departure time (e.g., 10 min early or late) in a centralised and

cooperative manner to minimise the total travel time spent in the network. The optimization problem is formulated based

on the accumulation-based MFD model, as it provides adequate balance between accuracy and analytical tractability. The

resulting optimal departure time profile is applied to the trip-based MFD model, which serves as plant in the framework.

Since the trip-based MFD model is disaggregated, albeit it relies on aggregated performance functions, the trip-based model

allows us to keep track of individual travellers and model their behaviour separately. Additionally, the demand management

strategy is incorporated into a day-to-day evolution model in order to investigate its medium term impacts. The results

demonstrate stable patterns and higher performance in the network. 

A future research direction is to extend the network to multiple regions. The multi-reservoir network modeling, which

requires the integration of a route choice model within the trip-based and accumulation-based MFD models, would investi-

gate the inter-dynamics among the regions and offer deeper insights. To improve the accuracy of accumulation-based MFD

model, future research should explore solutions to guarantee smooth and slow-varying optimized travel demand and traffic

states. Additionally, the proposed model can be tested with a microscopic simulation model to further consider the model-

ing mismatch between our aggregated and low complexity model (i.e. accumulation-based MFD model) and the fine-grained

state-of-the-art traffic simulation. This will also enable to scrutinize the impact of the change in travellers’ trip length over

days. As the demand management strategy reduces the congestion in the network, travellers are expected to switch to dif-

ferent routes. This phenomenon can be addressed with a route assignment model that updates the trip lengths with respect

to existing traffic conditions within the day. The future work should also study the optimization problem from a reverse
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perspective and compute the optimum (desired) arrival times. The resulting model could be exploited to design staggered

work schedules as well for large-scale city networks. 
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