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Abstract. Demand management aiming to optimize system cost while ensuring user
compliance in an urban traffic network is a challenging task. This paper introduces a coop-
erative demand redistribution strategy to optimize network performance through the
retiming of departure times within a limited time window. The proposed model minimizes
the total time spent in a two-region urban network by incurring minimal disruption to trav-
elers’ departure schedules. Two traffic models based on the macroscopic fundamental dia-
gram (MFD) are jointly implemented to redistribute demand and analyze travelers’
reaction. First, we establish equilibrium conditions via a day-to-day assignment process,
which allows travelers to find their preferred departure times. The trip-based MFD model
that incorporates individual traveler attributes is implemented in the day-to-day assign-
ment, and it is conjugated with a network-level detour ratio model to incorporate the effect
of congestion in individual traveler route choice. This allows us to consider travelers with
individual preferences on departure times influenced by desired arrival times, trip lengths,
and earliness and lateness costs. Second, we develop a nonlinear optimization problem to
minimize the total time spent considering both observed and unobserved demand—that is,
travelers opting in and out of the demand management platform. The accumulation-based
MFD model that builds on aggregated system representation is implemented as part of the
constraints in the nonlinear optimization problem. The results confirm the resourcefulness
of the model to address complex two-region traffic dynamics and to increase overall perfor-
mance by reaching a constrained system optimum scenario while ensuring the applicability
at both full and partial user compliance conditions.

Funding: This research was partly funded by iMOVE CRC and supported by the Cooperative Research
Centres program, an Australian Government initiative.
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1. Introduction
Traffic congestion is a spatiotemporal process; it is the
result of traffic demand exceeding capacity for a given
roadway segment in a given period of time.
Thus, curbing the imbalance of demand and supply (ca-
pacity) in time and space helps to alleviate traffic conges-
tion. Travel demand management (TDM) strategies pre-
sent an attractive direction in this regard by the
application of techniques and policies aiming to reduce
the demand or to redistribute it spatially and temporally.

Whereas improved public transport, ride-sharing
incentive, and parking restriction strategies, among
others, encourage travelers to shift to more sustain-
able travel modes, strategies such as route guidance,
congestion pricing, and peak-hour pricing aim to
redistribute the (private car) demand over space and

time. These demand redistribution strategies become
appealing when travelers have a strong attachment to
their private cars due to diverse activity schedules
and sparse distribution of attraction points.

We present a short- to medium-term (assuming
inelastic demand) cooperative scheduling strategy
that aims for effective temporal coordination of de-
mand via the retiming of departure times within a
limited time window in a large-scale urban network
with two regions. Our goal is to minimize total time
spent (TTS) in a two-region urban network by intro-
ducing limited schedule changes to travelers’ depar-
ture times, anticipating that travelers have a tendency
to comply if they are asked to make minor schedule
changes. In fact, the resulting conditions represent
“constrained” system optimum conditions (similar to
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Jahn et al. 2005), where the optimal solution is con-
strained by limited schedule changes. Unlike parking
restrictions or congestion pricing, the proposed meth-
od attempts to maximize social welfare by allowing
all travelers to use public infrastructure by compen-
sating their schedule rather than paying a price. An
advanced traveler information systems (ATIS) plat-
form in the form of a mobile app or a website, which
has the capability of communicating with travelers
and recommending a new departure time, is required
for the success of the proposed TDM strategy.

Yildirimoglu and Ramezani (2020) introduce a demand
management model that relies on limited changes in trav-
elers’ schedules and show its potential to increase mobility
in congested homogeneous networks. Yildirimoglu and
Ramezani (2020) focus on a single region network and as-
sume that the demand management strategy could moni-
tor the decision of all travelers in the network via an ATIS.
This study (i) extends to a two-region network, (ii) enables
the trip lengths to be updated with respect to time-varying
traffic conditions using a detour ratio model, (iii) accounts
for observed and unobserved demand within the optimi-
zation problem, and (iv) introduces a secondary control
mechanism to increase the robustness.

The remainder of this paper is structured as follows.
Section 2 evaluates the current methods and related-
ness on demand management, MFD-based traffic con-
trol methods, and reaching equilibrium conditions
with departure time assignments. Section 3 elaborates
on the modeling methods and assumptions on two-
region MFD-based traffic dynamics, day-to-day as-
signments, detour ratio modeling, and optimization
frameworks. In Section 4, we present the results from
numerical experiments and discuss the benefits of the
proposed TDM strategy. Section 5 concludes this
paper with findings and future research directives.

2. Related Works
Our focus in this work is to develop a demand man-
agement strategy for large-scale traffic networks to
achieve a better network performance. We use two
MFD-based traffic models to describe traffic dynam-
ics; one representing the prediction (or optimization)
model and the other representing the plant or the real-
ity. As the proposed model builds on limited changes
in departure times, it is crucial that the initial condi-
tions realistically reflect the preferred departure times.
Further, the stability of the proposed TDM strategy
must be evaluated with respect to travelers’ reactions.
Thus, we implement a day-to-day assignment model
both to capture preferred departure times and to ex-
plore the medium-term impact of the proposed TDM
strategy. The following sections will provide the back-
ground information on three key pieces of the pro-
posed framework: demand management, MFD
modeling, and day-to-day assignment methods.

2.1. Demand Management
The spatial-temporal spread of vehicle volumes and
the reduction of spent vehicle hours are the main
objectives of any demand management strategy.
However, the management of travel demand has been
looked upon as an outcome of transport policy in the
literature. Strategies such as road pricing (Yang 2005),
congestion pricing (Lindsney and Verhoef 2001), park-
ing restriction (Shoup 1997), ride sharing (Agatz et al.
2012), improving nonmotorized transport systems (Yu
2008), capacity increment of public transport (Ward-
man 2004), and implementing flexible work hours
(Huang and Li 2011) could be identified as such meth-
ods to reduce or spread the traffic demand. The
success of a TDM strategy depends on three pillars: (i)
diversifying travel modes, (ii) providing acceptable
incentives, and (iii) maintaining public participation
and acceptance (Orski 1990, O’Flaherty 1997). The
incapability of any TDM strategy to comply with
these three pillars may result in inefficiency and lead
to a stagnant share of private vehicles remaining on
roads at peak hours. Our proposed strategy builds
upon the aforementioned principles, where travelers
are allocated minor schedule changes and are given
the flexibility to comply. Further, it can operate at any
level of public participation and maintain user reten-
tion. However, we assume that all travelers will keep
using private cars due to the inherent restricted flexi-
bility in schedules.

We harness the benefits of a connected environment
or an ATIS with a cross-communication feature in the
proposed TDM strategy. Although many traffic con-
trol strategies using ATIS are available in the literature
(e.g., route guidance), less focus has been given to
TDM strategies in large-scale traffic networks incorpo-
rating ATIS (Papageorgiou 2004). It should be noted
that the envisioned ATIS infrastructure has more
capability to influence traveler decision making
(through cross-communication) than the conventional
ATIS encountered in the literature. The available
smart mobility apps in the market have the potential
to facilitate requirements of the proposed TDM strate-
gy. For instance, the ATIS infrastructure proposed by
the U.S. patent of Chiu (2014) develops an incentive-
based mobile application allowing people to choose
departure times and routes. Travelers who comply
with the recommended departure times and routes
are given an incentive. The author does not develop a
TDM strategy per se, but simply presents the ATIS
concept. The proposed TDM strategy requires a
similar ATIS infrastructure with the capability of col-
lecting “preferred” departure times from travelers
and recommending tailor-made “optimal” departure
times subject to limited schedule change constraints;
that is, recommended departure times cannot be far
from preferred departure times.
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It is obvious that existing ATIS infrastructures face
challenges in maintaining 100% user penetration rates
and user compliance. Hence, the observed demand
obtained from an ATIS often underestimates the actu-
al demand. ATIS infrastructure-based factors such as
quality, reliability, and consistency of information, as
well as individual-based factors such as awareness,
willingness, and ability to use ATIS, cause partial
compliance and lower penetration rates (Fox and
Boehm-Davis 1998; Chen, Srinivasan, and Mahmassa-
ni 1999). Therefore, a robust and efficient TDM strate-
gy should account for three different types of drivers:
(i) travelers without ATIS, (ii) travelers with ATIS but
in noncompliance with ATIS advice, and (iii) travelers
with ATIS and in compliance with ATIS advice (Yin
and Yang 2003). Moreover, the implementation of any
TDM strategy will face an implementation period,
where travelers adapt to the provided guidance and
changing traffic conditions, and stages with different
market penetration levels, which the system must
cope with (Srinivasan and Mahmassani 2000). Hence,
in this paper, we propose a TDM strategy with the
capability of handling uncertain demand conditions
and various market (user) penetration levels.

2.2. Macroscopic Fundamental Diagram and
Network-Level Congestion Control Strategies

The demand redistribution strategy that we develop
in this study requires traffic models that are capable
of representing large-scale regional traffic dynamics.
Traffic modeling in urban networks has been mostly
based on microscopic or mesoscopic models, where
traffic dynamics are defined at the link level. Howev-
er, these models require a large amount of data and
are computationally expensive, which limits their use
for management and control purposes. The early
works on macrolevel traffic control seen in Smeed
(1966) and Wardrop (1968) highlighted control poli-
cies based on network operating capacity and road
carriageway occupancy. The concept of network
speed and network flow are explored in the works of
Thomson (1967), Godfrey (1969), and Zahavi (1972).
They found the existence of a linear decreasing rela-
tionship between space mean speed and average flow
and concluded that maximum network speed is a
property of the network. The concept of a network-
level flow function with an optimal accumulation was
initiated by Godfrey (1969). Similar ideas were later
introduced by Herman and Prigogine (1979), Mah-
massani, Williams, and Herman (1984), and Daganzo
(2007), whereas the empirical existence of such a rela-
tionship was shown by Geroliminis and Daganzo
(2008), who define it as a macroscopic fundamental
diagram (MFD). An MFD is essentially a unimodal,
low-scatter, and demand-insensitive relationship

between average network flow (or production) and
density (or accumulation).

MFD modeling assumes that outflow from a region
depends on accumulation (n) rather than the history
of inflows, and requires steady states or conditions
with smooth demand changes over time. Geroliminis
and Daganzo (2008) show that the outflow-to-
production ratio (O=P) in a network is equal to the
reciprocal of the average trip length (L). This relation-
ship in fact refers to Little’s formula (see Little 1961)
being extended to the network level for steady-state
systems. Thus, revealing a vital relationship between
network accumulation, production, and outflow,
O(t) � P(n(t))=L. The relationship between network
speed and production could be obtained in a similar
way by referring to the speed, density, and flow rela-
tionships. The so-called speed MFD can be calculated
as V(n) � P(n(t))=n. Finally, the traffic dynamics of a
neighborhood with homogeneous traffic conditions
can be explained by d

dt n(t) � f (t) − P(n(t))
L , where f (t) is

the inflow to the neighborhood. Other empirical
observations for real-world cities can be found in
Buisson and Ladier (2009), Cassidy, Jang, and Dagan-
zo (2011), and Geroliminis and Sun (2011). Modeling
of urban network traffic via MFD paves the way for
numerous traffic management applications. Table 1
presents some example applications from the litera-
ture, building on MFD modeling. Whereas there is a
wide range of applications arising from MFD model-
ing, less research has been focused on demand man-
agement at the network level using MFD dynamics.

Despite many advantages, MFD does have several
limitations. Buisson and Ladier (2009) show that the
scatter and the shape of the MFD is highly influenced
by the heterogeneity in traffic densities over the urban
network. According to Leclercq et al. (2015), heteroge-
neity in traffic densities caused by network topology,
trip length distribution, route choice in the network,
and regional route patterns may eventually result in
high scatter and hysteresis loops in MFD. Another
issue is around the estimation of the MFD using em-
pirical data; this is challenging, since collecting, stor-
ing, and processing a sufficient amount and quality of
data in large-scale networks is costly and complex.
Saffari, Yildirimoglu, and Hickman (2020) proposed a
methodology to identify a small number of critical
links in the network to monitor and estimate the MFD
considering the detector measurements from those
links.

Further, Batista, Leclercq, and Geroliminis (2019)
discuss the impact of modeling with constant and
dynamic trip lengths in regional and subregional net-
works. Mariotte, Leclercq, and Laval (2017) and
Lamotte and Geroliminis (2018) discuss the trip length
distribution and propose trip-based MFD models.
This study implements a day-to-day assignment
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procedure, where the trip-based MFD model is essen-
tial to assess the costs that individuals experience
from day to day.

Whereas the trip-based MFD model is a strong tool
to model travelers’ preferences, it does not account for
changes in route choices that may happen as a result
of changing traffic conditions. This study will explore
the aggregate impact of individual route choices on a
day-to-day assignment framework using detour ratio
modeling. Detour ratio modeling accounts for the
changes in the trip length with respect to changing
traffic conditions. Yang, Ke, and Ye (2018) explore the
relation of the detour ratio (actual distance/Euclidean
distance) with respect to average trip length using taxi
trajectory data, and Paipuri et al. (2020) reveal the

behavior of the detour ratio with respect to average
speed using mobile phone data. In this study, we pro-
pose to incorporate an abstract route choice model or
a detour ratio model into the trip-based MFD model
to manipulate trip lengths with respect to changing
traffic conditions.

2.3. Traffic Equilibrium with Departure
Time Choice

The equilibrium state of a transport system is a long-
discussed topic with a myriad of research works. The
majority of traffic equilibrium studies focus on the
route choice aspect and the resulting fixed-point solu-
tion (Peeta and Ziliaskopoulos 2001), the empirical
existence of which has been investigated by various

Table 1. Applications and Control Mechanisms of MFD

Purpose Study Characteristics

Perimeter control Yang, Zheng, and Menendez (2018) Hierarchical model predictive control
strategy (MPC) with data from
connected vehicles

Aalipour, Kebriaei, and Ramezani (2019) Prove optimal perimeter control is in form
of bang-bang control

Mohajerpoor et al. (2019) Perimeter control with partial information
feedback from the network

Ingole, Mariotte, and Leclercq (2020) Perimeter control considering user
equilibrium conditions

Dynamic traffic assignment Yildirimoglu and Geroliminis (2014) Regional traffic assignment in multiregion
traffic networks

Batista and Leclercq (2019) Dynamic traffic assignment in large-scale
traffic networks

Route guidance Leclercq et al. (2015) Regional route assignment with partial
accumulation values

Yildirimoglu, Ramezani, and Geroliminis
(2015)

Route guidance with an iterative
assignment scheme

Sirmatel and Geroliminis (2018) Route guidance with regional paths and
perimeter control with MPC

Yildirimoglu, Sirmatel, and Geroliminis
(2018)

Route guidance with regional paths and
lower-level path assignment

Equilibrium with departure times Liu and Geroliminis (2016) Demand management under system
optimum conditions with schedule
changes

Amirgholy and Gao (2017) Formulate the user equilibrium over the
peak as an ordinary differential equation

Lamotte and Geroliminis (2018) Modeling morning commute with
departure times

Road pricing Zheng and Geroliminis (2016) MFD combined with an agent-based
simulator to study road pricing

Gu et al. (2018) Distance-dependent area-based pricing
models with MFD traffic dynamics

Yang, Menendez, and Zheng (2019) Congestion pricing integrated with
perimeter control

Parking Cao, Menendez, and Waraich (2019) MFD-based model to study time of
cruising for parking under congested
conditions and to derive dynamic
feedback-based parking pricing schemes

Zheng and Geroliminis (2016)

Multimodal transport Geroliminis, Zheng, and Ampountolas
(2014)

Three-dimensional MFD modeling private
and public transport traffic

Loder et al. (2017)
Ramezani and Nourinejad (2018) MFD model with normal traffic flows and

taxi dynamics
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studies (Yildirimoglu and Kahraman 2018, González
Ramı́rez et al. 2019). The initial works of Vickrey
(1969) and Hendrickson and Kocur (1981) on reveal-
ing the deterministic user equilibrium with α− β− γ
scheduling preferences, and subsequent works char-
acterizing earliness and lateness costs (Newell 1987),
equilibrium with first-in-first-out (FIFO) conditions
(Daganzo 1985), stochastic dynamic equilibrium asso-
ciated with disutility in travel time and schedule delay
(De Palma et al. 1983), and deterministic dynamic
equilibrium with experienced and perceived travel
costs being equal and minimal (Ran, Hall, and Boyce
1996), established the theoretical base on which we
frame our work (see Alfa 1986 for a summary). In our
study, we consider an equilibrium-based approach for
the choice/allocation of departure times (for travelers
with a fixed desired arrival time) under constrained
system optimum conditions and compare results with
system optimum and user equilibrium approaches.
Earlier studies on departure time choice focused on
equilibrium concerning a single bottleneck. The ex-
pansion of a single bottleneck to a network level
started with Ran, Hall, and Boyce (1996), who dis-
cussed equilibrium in a simple network with several
origin-destination (OD) pairs, and Small and Chu
(2003), who revealed equilibrium after a transient de-
mand surge (hypercongestion) in a traffic network.
Later, a more systematic approach was taken by Gero-
liminis and Levinson (2009) that incorporates Vick-
rey’s equilibrium into MFD modeling and develops
an area-based congestion pricing strategy. Subse-
quently, Arnott (2013), Fosgerau and Small (2013),
Daganzo and Lehe (2015), Fosgerau (2015), and La-
motte and Geroliminis (2018) presented congestion
pricing strategies based on Vickrey’s equilibrium and
MFD dynamics. In contrast to earlier studies, in this
work we consider a scheduling strategy rather than a
pricing strategy.

Without limiting to within-day equilibrium, we
extend the TDM strategy to evaluate day-to-day equi-
librium with a learning mechanism. According to
Mahmassani, Williams, and Herman (1984), travelers
make a departure time choice and a route choice on a
day-to-day basis and reach an equilibrium point
where no one has an incentive to change choice.
Related work on convergence properties of the equi-
librium in a day-to-day framework (Horowitz 1984),
characteristics of stochastic and deterministic day-to-
day learning models (Cantarella and Cascetta 1995),
impact on leaning processes with asymmetric
information (unavailability of an ATIS) on travel time
(Nakayama, Kitamura, and Fujii 1999), and the day-
to-day learning process for network-level applications
(Chen and Mahmassani 2004, Liu and Geroliminis
2016, Guo et al. 2018, Yildirimoglu and Ramezani

2020) inspired us to formulate the day-to-day update
model presented in this study.

3. Methods
In this study, we develop a demand management
strategy to minimize TTS in the network by manipu-
lating travelers’ departure time within a limited time
window. We adopt a model-plant approach, where
the MFD-based traffic models represent the prediction
model and the plant (reality). The trip-based MFD
model, which builds on individual traveler attributes,
serves as the plant. And the accumulation-based MFD
model, which projects future aggregated traffic states,
serves as the prediction model used in the optimiza-
tion problem. As the proposed demand management
strategy builds on departure time changes, it is imper-
ative to start from an equilibrium scenario, where
travelers’ preferences regarding departure times are
realistically captured. This will be done via the day-
to-day assignment model, which updates travelers’
departure time choices in response to changing traffic,
and the trip-based MFD model, which evaluates the
individual travel costs that travelers experience. Once
the equilibrium scenario is established, the demand
management strategy will be tested in a day-to-day
manner. This allows us to explore travelers’ reactions
to the disruptive management scheme, which signifi-
cantly changes traffic conditions and intervenes with
travel decisions. In this section, we present (1) the two
MFD-based traffic models deployed in developing the
TDM strategy, (2) the proposed detour ratio model,
which updates trip distances with respect to changing
traffic conditions, (3) the day-to-day assignment
model, and (4) the optimization problem.

3.1. Traffic Models
This study deploys two MFD-based traffic models: the
accumulation-based MFD model and the trip-based
MFD model. The accumulation-based MFD model
found in the literature (see, e.g., Leclercq et al. 2015,
Yildirimoglu and Ramezani 2020) is the conventional
MFD model, which builds on the relationship
between network production and the accumulation of
vehicles. This is a parsimonious model; it does not
consider individual vehicle attributes or driver charac-
teristics but rather defines traffic dynamics through
network production, average trip length, and vehicle
accumulation.

The production MFD can be approximated by a
right-skewed third-order polynomial function of accu-
mulation (see Yildirimoglu and Ramezani 2020).
MFD for each region r, (r ∈ {1, 2}), is defined by
Pr(nr(t)) � arnr(t)3 + brnr(t)2 + crnr(t), where ar, br, and
cr are estimated parameters for each region. Note that
the average speed in region r is then Vr(nr(t))
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� Pr(nr(t))=nr(t). Note that the production MFD may
be sensitive to significant changes in the demand pat-
tern and the loading profile (Leclercq and Paipuri
2019); however, the modeling of such changes on the
MFD shape is outside the scope of this paper.

There are four different demand types in a two-
region model, which are defined based on their origin
and destination regions (see Figure 1(a)). These
demand flows are denoted as qrr(t), r ∈ {1, 2} for intra-
regional demand in each region, and qrs(t), r ∈ {1, 2}
and r≠ s for interregional demand from region r to re-
gion s. Similarly, four accumulation states are
described as nrs ; r, s ∈ {1, 2}, in which nrs(t) is the
number of vehicles in region r with destination region
s at time t. Therefore, the current accumulation of any
region at a given time is nr(t) � ∑2

s�1nrs(t).
The accumulation-based MFD model builds on the

relationship between network outflow and accumula-
tion. The outflow of each region is calculated by
Or(nr(t)) � Pr(nr(t))=Lr, r ∈ {1, 2}, considering that the
demands are slow-varying and that the network aver-
age trip lengths Lr are constant. The transfer flow
from region r to region s is given by
Mrs � nrs(t)

nr(t) :
Pr(nr(t))

Lr
, where r, s ∈ {1, 2}, r≠ s, and inter-

nal trip completion in each region is defined by
Mrr � nrr(t)

nr(t) :
Pr(nr(t))

Lr
, where r ∈ {1, 2}. Accordingly, the

model state dynamics are

dn11(t)
dt

� q11(t) + M21(t) − M11(t)
dn12(t)
dt

� q12(t) − M12(t)
dn21(t)
dt

� q21(t) − M21(t)
dn22(t)
dt

� q22(t) + M12(t) − M22(t):

(1)

Recently, a few studies (e.g., Arnott 2013, Lamotte
and Geroliminis 2018, Mariotte and Leclercq 2019)
explored the trip-based MFD model formulation,
which provides a more detailed representation of traf-
fic dynamics, as it represents each user in the network
individually. Whereas the model accounts for each
traveler’s entrance and exit/transfer throughout the
simulation, traffic performance in the network is
based on the aggregate speed MFD relationship. The
model executes a sequence of events, including depar-
ture, transfer, and arrival (completion) of trips in the
network. At each event, the model calculates the re-
gion speed Vr(nr(t)); r ∈ {1, 2} by referring to the cur-
rent accumulation nr(t); r ∈ {1, 2} of the network using
the speed MFD, and updates the distance traveled by
all the vehicles in the network between previous and
current events. These granular calculations repeated
at every event makes the trip-based MFD model more

detailed but computationally demanding. Whereas
the trip-based model proposed by Mariotte and
Leclercq (2019) extends to multiple reservoirs with
multiple trip lengths and entry control restrictions, in
this study we adopt a similar but more concise frame-
work for a two-region network without entry control
restrictions at boundaries between regions. Avoidance
of entry control may lead to unrealistic gridlock con-
ditions, particularly as demand surges. Nevertheless,
the departure time choice mechanism, introduced in
the paper is expected to curb such unstable condi-
tions. However, evaluation of proposed TDM strategy
with a multiregional trip-based model having such
entry control restrictions could be a future research
priority. In our two-region scenario (see Figure 1(b)),
four trip types, namely, R11,R12,R21,and R22, exist
based on the origin-destination regions. The trip-
based MFD model for the two-region network could
be characterized by the following equations (see (2)),
which relate departure time (tdepi ), transfer time (ttrsi ),
arrival time (tarvi ), and network speed of the region
(Vr(:), r ∈ {1, 2}) to trip length (lRrsi r, s ∈ {1, 2}) of indi-
vidual i depending on trip type:

lR11i �
∫ tarvi

tdepi

V1(n1(t))dt

lR12i �
∫ ttrsi

tdepi

V1(n1(t))dt +
∫ tarvi

ttrsi

V2(n2(t))dt

lR21i �
∫ ttrsi

tdepi

V2(n2(t))dt +
∫ tarvi

ttrsi

V1(n1(t))dt

lR22i �
∫ tarvi

tdepi

V2(n2(t))dt

tarvi � tdepi +Texp
i (tdepi ),

(2)

where Texp
i (t) is the experienced travel time for a

traveler departing at time t. The iterative process of
event-based updating is carried out until each vehicle
completes its trip. The trip-based MFD model enables
us to account for individual departure time choices
and route choices, as it treats each traveler separately.
The temporal variation of speed in the network
tracked by the trip-based MFD model will be used in
the detour ratio model to calculate the excess distance
traveled by individuals in congested conditions. The
excess distance is calculated using the detour ratio
model when a traveler enters the network. Note that
the regular trip-based MFD model does not account
for the impact of trip rerouting or route choice in con-
gested traffic conditions. We incorporate the detour
ratio model into the trip-based MFD model and cap-
ture (approximately) the additional trip length due to
congestion.
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3.2. Detour Ratio Modeling
The detour ratio model presented in this section is
implemented in the trip-based MFD model to account
for the excess distance to be traveled by individuals in
the congested traffic conditions. Travelers in the trip-
based MFD model have identical origin-destination
points across days (representing regular commuters),
and the route they take or the distance they travel
may change every day in response to changing traffic
conditions in the network. Thus, we use detour ratio
modeling to estimate the excess distance traveled with
changing traffic conditions.

The actual traveled distance may change due to
many factors, such as traffic conditions, network to-
pology, and route choice. In this study, we are not
interested in a traditional route choice model that esti-
mates the paths chosen by travelers. We instead
develop an abstract route choice model using detour
ratios that represents the effect of average traffic con-
ditions in a region on the traveled distance. Detour
ratio was first introduced by Cole and King (1968),
and the concept has since been used in other fields
(Cardillo et al. 2006; Bebber et al. 2007; Boscoe, Henry,
and Zdeb 2012; Zhang et al. 2015) to explain network
topological characteristics and network accessibility
and efficiency. Of particular interest to our study, it
was found that the detour ratio is inversely propor-
tional to the Euclidean distance with an intercept us-
ing taxi trajectory data (Yang, Ke, and Ye 2018) and
that higher detour ratios at lower speeds and negligi-
ble detouring at highly congested conditions were

observed using mobile phone data (Paipuri et al.
2020). However, none of these studies provide a mul-
tivariable analysis on detour ratios that incorporates
both average network speed and average trip lengths.

Following these works, this section explores the
combined relation between detour ratio, average net-
work speed, and Euclidean distance. Detour ratio, in
the context of this study, is the ratio of traveled
distance to Euclidean distance between the origin-
destination points.

We use an empirical data set to develop the detour
ratio model; we use taxi trip data from Manhattan
(Lower and Midtown Manhattan) on 28 days, ex-
tracted from New York City’s open data portal (NYC
OpenData 2018). The data set includes the origin-
destination coordinates, the actual distance traveled
by taxi, the time of the trip, and so on. We characterize
the relation of detour ratio with two variables: net-
work average speed and Euclidean distance. We cal-
culate the average network speed at each time step by
averaging the mean travel speed of taxis that start a
journey at that time step. The time steps are discre-
tized to five-minute intervals for network speed
calculation. Finally, trips are grouped with respect
to the average network speed (at the time of the de-
parture) into intervals of 1.8 (km/h) (0.5 [m/s]) and
with respect to Euclidean trip distances into inter-
vals of 0.5 km.

In each group associated to a given network speed
and a Euclidean trip distance, we observe a significant
variation of detour ratios, which means that it is not

Figure 1. Two-Region Traffic Models: (a) Accumulation-BasedMFDModel and (b) Trip-BasedMFDModel
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justifiable to consider a single average detour ratio for
a given network speed and Euclidean trip length.
Hence, detour ratios (D) in each group are fitted into a
log-normal distribution with scale parameter μ and
shape parameter σ. Panels (a) and (b) of Figure 2
show the fitted values of scale parameter μ and shape
parameter σ. Note that each cell in the figure repre-
sents a set of trips grouped together with respect to
the average network speed that they experience and
their Euclidean distance. The Shapiro-Francia test (SF
test), which measures the closeness to linearity in a
quantile plot, was conducted for log(D) to identify the
significance of goodness of fit and the agreement
between observed data and log-normal distribution.
The results show that there exists a significant fit with
an SF test value W′ greater than 0.9 in every single
group, verifying the validity of the log-normal distri-
bution to characterize the detour ratio distribution.

Panels (a) and (b) of Figure 2 indicate that μ and σ

depend on both Euclidean distance and average net-
work speed. Thus, we fit a two-variable two-degree
polynomial function for μ and σ, where the indepen-
dent variables are average network speed (x), Euclide-
an distance (y), and their two-degree combinations.
The final formula for μ and σ after removing the insig-
nificant variables is given by (3), and the parameters
of the polynomial functions are in Table 2. Panels (c)
and (d) of Figure 2 illustrate the estimated polyno-
mials for μ̂ and σ̂:

μ̂ � α0 + α1:y+ α2:y2 +α3:xy

σ̂ � β0 + β1:x+ β2:y+ β3:y
2 + β4:xy

: (3)

Whereas the distribution parameters, μ and σ, are
accurately modeled with a polynomial function, as
shown in panels (c) and (d) of Figure 2, this does not
allow the estimation of detour ratios for individual
trips. Note that our final purpose is to integrate the
detour ratios with the trip-based model and account
for additional distance that individual travelers
experience. In other words, there is still significant
variation within each cell (or group of trips) that cor-
responds to a particular μ and σ, and it is not trivial to
estimate the additional distance to be traveled by indi-
viduals. One way to estimate individual detour ratios
is to draw random samples from the log-normal dis-
tributions presented in panels (c) and (d) of Figure 2.
Nevertheless, since this procedure will be applied in a
day-to-day assignment framework, it may result in in-
consistent values across days. Our hypothesis is that
there is a particular probability value for each trip,
and its detour ratio can be defined as the inverse of
the log-normal cumulative distribution function
(CDF) (with μ and σ in the corresponding cell), evalu-
ated at its probability value.

To verify our hypothesis, we choose an origin and a
destination zone (O-D pair) and investigate the trips
between them. It should be noted that each zone com-
prises 1 km2 and that the zones are a 4.5-km Euclidean
distance apart. Ideally, we would like to observe the
same people repeating the same trips; however, this is
not possible with the available taxi data set. Therefore,
we assume that the trips between these two zones
have the same characteristics and react similarly to
changing traffic conditions. Figure 2(e) illustrates the
histogram of detour ratios for taxi trips between the
selected O-D pair. Whereas this represents a narrow
distribution with more data closer to the mean, this
analysis does not account for the varying traffic speed
through time and changing distribution parameters.
Note that we use 28 days of data and that the trips be-
tween these two zones are subject to changing average
speeds in different time periods, which means that
they are associated with different cells in panels (c)
and (d) of Figure 2 and are subject to different distribu-
tion parameters. For each trip that we analyze, we com-
pute the cumulative distribution function (CDF) value
with respect to the distribution parameters, μ and σ,
defined in the corresponding cell. Figure 2(f) shows the
histogram of the resulting CDF values, which are dis-
tributed over a narrow range (80% of the trips that we
analyze are distributed between CDF values of 0.75
and 0.9). The lesser variation in CDF values indicates
that, despite changing distribution parameters, the de-
tour ratios of the trips between two zones remain ap-
proximately within the same range in the associated
distributions. Building on this analysis, we assume that
there exists a particular probability or a CDF value for
each trip. Traffic conditions, and therefore the average
network speed, may significantly change in a day or
across days. To determine the individual detour ratios,
we will consider the associated log-normal distributions
(corresponding to the Euclidean distance and the aver-
age network speed at the departure time of the trip)
and calculate the inverse of the log-normal CDF at its
probability value, which is defined prior to the day-to-
day assignment procedure. This allows us to produce
consistent detour ratios for the same trips across differ-
ent days and eliminates the risk of fluctuating trip
lengths in the day-to-day assignment framework.

The polynomials of μ and σ can be estimated for
any other city, given that there are available data from
probe vehicles. Data used to develop the detour ratio
model had network speed ranging from 12.6 to
23.4 km/h (3.5 to 6.5 m/s) and Euclidean distance
within the range 3.5–8.5 km. Hence, we normalized
the polynomials developed for the New York taxi trip
data set to match the network speeds (7.2–25.2 km/h) and
Euclidean distances (2–7 km) observed in the numerical
examples described in Section 4.Mathematically speaking,
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Figure 2. (Color online) Estimation of Detour Ratio Distribution Parameters: (a) Fitted Scale Parameter μ, (b) Fitted Shape
Parameter σ, (c) Polynomial Estimation of μ (See (3)), (d) Polynomial Estimation of σ (See (3)), (e) Histogram of Detour Ratios for
a Selected OD Pair, and (f) Histogram of CDF Values for a Selected OD Pair
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the detoured trip length (lri ) is given by lri � lri,0 ×
Di; r ∈ {1, 2}, whereDi is the detour ratio for the individu-
al at given network conditions and lri,0 indicates the Eu-
clidean distance for traveler I (see Table 2 for details).

3.3. Day-to-Day Assignment
This section presents a short description of the day-to-
day assignment model. In this study, a learning
process is established via a day-to-day framework by
allowing travelers to make a departure time choice on
each day based on their perceived travel costs for sev-
eral departure time alternatives. In the modeling
framework, each traveler i has a desired arrival time
(Tw

i ) and a trip length (li � l1i + l2i ) with trip length
components in region 1 (l1i ) and region 2 (l2i ). Every
day, travelers make a departure time choice based on
the perceived travel cost. The perceived cost for the

next day is updated based on the historically
perceived cost and the experienced or estimated
travel cost on the current day. A traveler could
experience the travel cost at the chosen departure
time, but the cost for other departure times on a
selected day has to be estimated using other sources
of information.

The perceived generalized travel cost (Cp
i,d+1(t)) of

traveler i on the next day (d+ 1) is defined as a func-
tion of the perceived travel cost (Cp

i,d(t)) on the current
day (d), the experienced (or estimated) generalized
travel cost (Ci,d(t)) on the current day (d), and a learn-
ing factor (ωi), which characterizes the weight that in-
dividual i allocates to past and current travel costs.
Mathematically, Cp

i,d+1(t) � ωi:C
p
i,d(t) + (1−ωi) ·Ci,d(t),

where 0 < ωi < 1, ∀ i. The higher learning factor
indicates that the travelers rely more on historically

Table 2. Parameters Used in Numerical Simulations

Panel A: Accumulation-based model

Production MFD function Pr nr t( )( ) � ar:nr t( )3 + br:nr t( )2 + cr:nr t( ) , where r ∈ 1, 2{ }
ar � 9:98:10−8, br � −0:002, cr � 9:78, r ∈ 1, 2{ }

Jam accumulation njamr � 104 , r ∈ 1, 2{ }
Critical accumulation ncrr � 1

3n
jam
r , r ∈ 1, 2{ }

Trip-based model

Initial average trip length L̄r � 4600 , r ∈ 1, 2{ }
Speed function Vr nr t( )( ) � Pr nr t( )( )=nr(t) for r ∈ {1, 2}
Trip length at each region l1i,0

l2i,0

[ ]
� L̄1 +N(0, (0:2L̄1)2)

L̄2 +N(0, (0:2L̄2)2)

[ ]
Trip length for each trip type lR11i

lR12i

lR21i

lR22i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

l1i,0
l1i,0
l2i,0
l2i,0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

0
l2i,0
l1i,0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Updated distance from detour ratio model lri � lri,0 :Di ~ log−normal μ̂ , σ̂
( )

subject to (s:t:) Di ∈ 1, 2[ ] for r ∈ {1, 2}
Earliness and lateness Ψi

Λi

[ ]
� 0:5

4

[ ]
+N 0:052 0:12

0:12 0:42

[ ]( )
s:t: Ψi ∈ 0:3, 0:7[ ] Λi ∈ 2:5, 5:5[ ]

Panel B: Day-to-day update

Scenario Before TDM strategy During TDM strategy
Flexible time window τ � 10 minutes τ � 15 minutes, Ω � 10 minutes
Scale factor θ( ) θ � 0:01 θ � 0:1
Learning parameter ω( ) ω ∈ 0, 1[ ] ω ∈ 0, 1[ ]
Detour ratio model

Parameter estimate for μ,
where
x �Avg:networkspeed [m=s]
y � Euclideandistance [m]

μ̂ � α0 + α1y+ α2y2 + α3xy
R2 � 0:583SSE � 0:1742
α0 � 0:06240, α1 � 0:09442,
α2 � −0:00869, α3 � −0:00131

Parameter estimate for σ,
where
x �Averagenetworkspeed
y � Euclideandistance

σ̂ � β0 + β1x+ β2y+ β3y
2 + β4xy

R2 � 0:593 SSE � 0:1752
β0 � 0:15730, β1 � −0:01376, β2 � 0:02558,
β3 � 0:00241, β4 � 0:00241

Kumarage et al.: Schedule-Constrained Demand Management in Urban Networks
10 Transportation Science, Articles in Advance, pp. 1–26, © 2021 INFORMS



perceived travel cost than the experienced travel cost
on the current day. For simplicity, the learning factor
(ωi) is assumed to be identical for all the travelers
(ωi � ω, ∀ i) in the numerical experiments.

The experienced (or estimated) generalized travel
cost (Ci,d(t)) for traveler i, who departs at time t, is
identified as the sum of the schedule cost and the trav-
el time (Ti,d(t)). The schedule cost occurs to a traveler
if the actual (estimated) arrival time (t+Ti,d(t)) is dif-
ferent from the desired arrival time (Tw

i ). Hence, a
traveler will experience an earliness cost (Ψi) or a late-
ness cost (Λi), depending on the arrival time. The ex-
perienced (or estimated) generalized travel cost for
traveler i on day d departing at time twill be

Ci,d(t) �
Ti,d(t) + Ψi:(Tw

i − t−Ti,d(t)),
if (t+Ti,d(t)) < Tw

i

Ti,d(t) + Λi:(Ti,d(t) + t−Tw
i ), otherwise

:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(4)

In this framework, we assume that travelers have
access to instantaneous travel times for the alternative
departure times through an ATIS (T ins

i,d (t) | tdepi,d

−τ < t < tdepi,d + τ), while they are fully aware of the
experienced travel time for the chosen departure
time(T exp

i,d (tdepi,d )). As the discrepancy between instanta-
neous and experienced travel time may be significant
in congested conditions, we assume that travelers cor-
rect the instantaneous travel time information and es-
timate the experienced travel times. This is achieved
using the relative ratio between the experienced travel
time(T exp

i,d ) at departure time (tdepi,d ) and the instanta-
neous travel time(T ins

i,d ) at the departure time. See
Yildirimoglu and Ramezani (2020) for further details.

We assume that travelers tend to make a departure
time choice within a limited time window, which is
centered around their previous day’s departure time
(tdepi,d−1), which means that a traveler has the flexibility
to choose a departure time (t) within a window of
( tdepi,d−1 − τ < t < tdepi,d−1 + τ), in which τ is half the size of
the time window. The time window is discretized
with (Δt) time steps: tdepi,d ∈ {tdepi,d−1 +m ·Δt s:t: m ∈ Z
and (−τ=Δt) ≤m ≤ (τ=Δt)}.

The next-day departure times of individual travel-
ers are selected by maximizing perceived utility. We
use a concise logit model in this work and assume
that the choice of departure time is independent of
irrelevant alternatives. The incorporation of an
extended random utility logit model can relax this
assumption, but that is beyond the scope of this work.

Therefore, the perceived utility of traveler i on day d
and departure time t is defined as Ui,d(t) � Cp

i,d(t) + εi,
where the random error term (εi) is identically and in-
dependently distributed with a Gumbel distribution.
Hence, the probability of choosing a departure time t
by traveler i is given by

Pri(t) � exp(−θ:Ui,d(t))∑tdepi,d−1+τ
m�tdepi,d−1−τ

exp( −θ:Ui,d(m))
, (5)

where θ is the scale factor.
The day-to-day model is considered to reach an

equilibrium solution when the departure time choices
of travelers remain relatively constant and they expe-
rience similar travel costs over subsequent days.
Hence, at an equilibrium state, perceived costs and
experienced costs should satisfy the following:

Cp
i,∗(t) � Cp

i,∗(t) + (1−ωi):Ci,∗(t) ∀i: (6)

This equation calls for a fixed-point solution, where
perceived costs are equal to the experienced cost,
Cp
i,∗(t) � Ci,∗(t). The convergence of the two-region net-

work to the equilibrium state is discussed in Section 4
with numerical experiments.

3.4. Network Optimization Problem
We develop an optimization problem that minimizes
total time spent (TTS) in the network by introducing
limited changes in travelers’ schedule. The departure
time choice that travelers make for a morning com-
mute (or similar) depends upon the traffic conditions
and schedule costs due to earliness or lateness. The
travelers have less flexibility on desired arrival times
due to externalities induced at work. Therefore, the
study assumes that an individual traveler retains the
same desired arrival time across days.

The success and robustness of the proposed scheme
depends on its ability to maintain an active communi-
cation with travelers and to persuade them to comply
with the given guidance. We refer to those who active-
ly communicate with the demand management sys-
tem (or those who actively use ATIS) as system users.
However, the total demand consists of both system
users (i.e., observed or requested demand) and non-
system users (i.e., unobserved or estimated demand).
To distinguish between these two types of users and
to estimate the unobserved demand from the ob-
served demand, we assume that the technology (user)
penetration of the ATIS is known, since we can esti-
mate the total demand (total number of users) in the
network. Although we have no information about
temporal variation of the unobserved demand, we as-
sume that the system users are a representative
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sample of all network users, so that the temporal vari-
ation of total demand could be inferred from the rep-
resentative sample. The system users request depar-
ture times from the ATIS and generate the requested
demand profile Qreq(t). The unobserved demand pro-
file is estimated by scaling the requested demand
profile using a time-independent scale factor or the
penetration rate λ; that is,

Qest(t) � (1=λ− 1) ×Qreq(t), ∀t:

Figure 3 demonstrates the modeling framework
depicting the model-plant interaction. The plant in-
cludes both system users and nonsystem users. Given
their departure time choice on the current day, we
apply the two-region trip-based MFD model incorpo-
rating the detour ratio model and evaluate the experi-
enced travel costs for both system and nonsystem
users. With the newly experienced costs, we apply the
day-to-day assignment model, which allows travelers
to update their departure time choice while taking into
account their perceived costs. The controller or the de-
mand management system collects the departure time
choices from the system users through the ATIS and
builds the requested demand profile (i.e., time-depen-
dent OD demand for system users). As this represents
only a portion of the demand, we estimate the total

demand in the system by up-scaling the requested de-
mand with a known penetration rate. We then im-
plement the optimization problem and minimize
TTS in the system incorporating the accumulation-
based MFD model and distinguishing between sys-
tem and nonsystem users. Finally, the resulting
“optimal” departure times are allocated to system
users and are tested in the plant subject to compli-
ance rules, which will be introduced in the following
section.

The optimization algorithm assumes that the sys-
tem users are willing (or incentivized) to make a shift
in departure times within a limited time window
(−Ω,Ω), which means that travelers are willing to de-
part a few minutes earlier or later (e.g., 5 to 10 mi-
nutes) than their preferred or requested departure
time. Further, we assume that the travelers request
the departure time before the start of optimization,
and thus the problem is formulated as a one-shot
open-loop optimization problem iterated each day. It
should be noted that this algorithm does not aim for
socially optimal conditions by manipulating depar-
ture times but instead focuses on reaching a subopti-
mal (constrained optimal) equilibrium by constraining
the problem to limited time windows. The optimiza-
tion problem is formulated as a nonlinear nonconvex

Figure 3. (Color online) Modeling Framework of Network Optimization withModel and Plant Interactions
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optimization problem considering all the aforemen-
tioned factors, as follows:

minimizeQreq Δk
∑kf−1
k�0

∑2
r�1

∑2
s�1

nrs(k) (7a)

subject to for k � 0, : : : ,kf − 1 :,
N(k+ 1) � g(N(k), I(k)), (7b)

I(k) � ∑Ω
m�−Ω

Qreq(k,m)
{ }

+Qest(k), (7c)

R(k) � ∑Ω
m�−Ω

Qreq(k+m,m), (7d)

Qreq(k,m),Qest(k) ≥O, (7e)

0 ≤ n11(k) + n12(k) < n1,jam, (7f)

0 ≤ n21(k) + n22(k) < n1,jam, (7g)

N(k � 0) �N0, (7h)

where

N(k) � n11(k) n12(k)
n21(k) n22(k)

( )
,

Qreq(k,m) � qreq11(k,m) qreq12(k,m)
qreq21(k,m) qreq22(k,m)

( )
,

Qest(k) � qest11(k) qest12(k)
qest21(k) qest22(k)

( )
, I(k) � i11(k) i12(k)

i21(k) i22(k)
( )

,

R(k) � r11(k) r12(k)
r21(k) r22(k)

( )
, N0 � n11(0) n12(0)

n21(0) n22(0)
( )

:

The objective function in (7a) minimizes total time
spent in the two-region network by the numerical
integration of discrete accumulation values. The cons-
tant time step throughout the simulation, Δk, can be
discarded from the objective function; tf is the final
time step. Equation (7b) defines the dynamics of the
accumulation-based MFDmodel, where accumulation
in the next time step N(k+ 1) is estimated by accumu-
lation N(k) and inflow I(k) in the current time step.
The function g(:) predicts the accumulation in the next
time step by solving the set of ordinary differential
equations given in (1). The function is solved using
the Runge-Kutta method (RK4) by temporal discreti-
zation of the prediction interval into a step size signifi-
cantly smaller than Δk.

Equation (7c) describes the optimized demand pro-
file or the resulting inflow I(k) to the accumulation
based model, which has both requested demand
(Qreq) and estimated demand (Qest) components.
Note that Qreq(k,m) depends on two time indices, and
it represents the number of travelers requesting to de-
part at time k – m and being allocated to time k with a
lag of m ∈ −Ω,Ω[ ] time steps from their requested
departure time. The requested demand component∑Ω

m�−ΩQreq(k,m) is the sum of all system users allocated

to time step k, regardless of whether their requested de-
parture time is early or late. Note that −Ω,Ω[ ] is the
flexible time window in which the departure times can
be reallocated and that I(k) represents all the travelers
who are allocated to depart at time k, irrespective of
whether they are being shifted by m steps or whether
they are system or nonsystem users.

Equation (7d) ensures that the requested demand is
bounded within the flexible time window −Ω,Ω[ ].
Moreover, R(k) has only a Qreq component, because
we manipulate the demand of system users only. We
know that Qreq(k,m) indicates the travelers who ini-
tially request to depart at time k – m and are allocated
to the departure time of kwith a time gap of m. Hence,
Q(k+m,m) represents the system users that initially
request to depart at time step k (k � k+m−m) and are
allocated to time k + m. Inequality (7e) holds the non-
negative demand conditions. Inequalities (7f) and (7g)
must hold to ensure that the region accumulation
does not exceed the jam accumulation and remains
positive. The N(k � 0) in Equation (7h) are the initial
accumulation states.

The optimization is based on the accumulation-
based MFD model (model), which operates with sys-
tem-level parameters (e.g., region accumulation,
transfer flows). The trip-based MFD model (plant),
however, operates with individual-level characteris-
tics (e.g., individual trip length, departure time).
Hence, certain assumptions are made when the out-
puts from the model are transferred to the plant due
to the difference in granularity in the two MFD
models. We follow a random sampling process of allo-
cating departure time for particular travelers, irrespec-
tive of their trip length and schedule cost coefficients.
For example, let the optimal allocated demand
Qreq(5, 2) � 100 [veh] (i.e., the number of vehicles allo-
cated to the fifth step and departing two steps later
than their request, which is the third step) and
requested demand R(3) � 400 [veh]. We randomly
sample 100 [veh] out of 400 [veh], independent of
their attributes, and assign them to the fifth departure
time period. Further, the accumulation-based MFD
model (in the optimization formulation) is discretized
with time steps Δk, whereas the trip-based MFD mod-
el (plant) can accommodate finer departure time
choices (with steps Δt, where Δt < Δk). Hence, each
allocated traveler needs to make a finer departure
time choice within the time step k. The choice set for
the traveler i allocated to time step k will be
tdepi +m:Δt, where {tdepi +m:Δt ∈ (k− 1):Δk,k:Δk[ ]}. The
final departure time choice within this range is select-
ed from this choice set using the logit formula pre-
sented in Equation (5).

Some travelers may experience relatively high costs
as a result of the proposed optimization framework,
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which does not account for individual attributes.
Hence, we introduce a secondary control mechanism
to bound the optimization to what individual users
are ready to accept. We propose to use perceived trav-
el cost as the control criteria, and we assume that
system users would not comply with the allocated
departure time if the perceived cost of travel at the
allocated departure time is more than (1+ r)% of the
travel cost experienced at equilibrium conditions (self-
ish Wardrop equilibrium). The rate of compliance r is
subjective for decision, and we conduct a sensitivity
analysis to understand the impacts of changing r for
both individual benefits and network performance. In
this approach, we ensure that system users are not
maltreated by using the ATIS and for being willing to
shift departure times.

Developing a demand management strategy that
assumes that all users are system users is not realistic
under operational conditions. It is not possible to
assume that every traveler has access to and is willing
to use the same level of technology, due to many de-
mographic and behavioral reasons. Further, it is not
practical to assume the consistent autonomous com-
pliance of system users to allocated departure times in
day-to-day operating conditions. Therefore, the pro-
posed TDM strategy is tested with respect to varying
penetration rates and compliance rules. User penetra-
tion rates are incorporated in the aforementioned
optimization framework, and compliance rules are
introduced as a secondary control mechanism. The ro-
bustness of the TDM strategy is tested while system
users contribute to constrained system optimization
by shifting their departure times and others (nonsys-
tem users) travel according to user-optimal departure
times. Evaluating the performance of overall network
performance for different penetration rates helps us
explore the feasibility of implementing a TDM strate-
gy in realistic settings and the expected behavior at
different phases where there may be different user
penetration rates. Further, we can identify a minimum
required user penetration rate for traffic congestion to
be mitigated in the network. Section 4 will elaborate
on this further and illustrate the benefits and the per-
formance of the proposed TDM strategy.

4. Numerical Experiments
This section presents a numerical case study evaluat-
ing the impact of the proposed TDM strategy in the
medium-term using a day-to-day assignment model.
The demand profiles in the two-region network are
heterogeneously loaded, as the inner region attracts
80% of the total demand while the rest are attracted to
the outer region, demonstrating a monocentric city
scenario with the central business district and the
peripheral residential area. The numerical results are

structured to elaborate on the simulation parameters,
the performance of the TDM strategy with full compli-
ance conditions, and the TDM strategy with partial
compliance (secondary control) conditions, as well as
to compare the TDM strategy with a pricing strategy.

4.1. Simulation Parameters
Before we test the TDM strategy, we create an equilib-
rium scenario (or no-TDM scenario). This is important
not only for comparison purposes but also for produc-
ing an initial state in which the preference of travelers
with respect to departure times is realistically
captured. To build the equilibrium scenario, we let
travelers choose a departure time based on the utility
maximization principle and update their decisions
every day. The trip-based model and day-to-day as-
signment model (components of the plant as pre-
sented in Figure 3) are run for several days (iterations)
without incorporating the TDM model. This allows
travelers to shift from their initial allocated departure
time and converge to an equilibrium departure time
choice. In this paper, we do not elaborate on the con-
vergence properties and equilibrium conditions, as
they have been thoroughly studied (Yildirimoglu and
Ramezani 2020). Once the equilibrium scenario is cre-
ated, we implement the TDM strategy via the model-
ing framework illustrated in Figure 3, using the model
for demand optimization and the plant to evaluate the
results. The iterative process is implemented for sever-
al days to explore the stability of the TDM strategy
and its medium-term impacts. The optimization prob-
lem presented is a nonconvex nonlinear program
(NLP) and was solved using the interior-point solver
(IPOPT) (see Wächter and Biegler 2006) included in
the optimization library of CasADi (see Andersson
2013) of MATLAB 9.4.0 (R2018a).

The presented simulation portrays a high conges-
tion scenario, as the performance of a TDM strategy is
more critical under such circumstances. The parame-
ters used in the numerical simulation are presented in
Table 2. The functional form of MFD, its coefficient
values, jam accumulation, and critical accumulation
for each region are the parameters used in the accu-
mulation-based model. Note that, although we keep
the average trip length used in the accumulation-
based model (i.e., Lr) constant within the day, it is
revised daily in the day-to day dynamics. We assume
that we can obtain a representative sample of trip
lengths via ATIS from 10% of the vehicles, and we up-
date the average trip length in each region rwith these
observations for the upcoming day. The details of the
trip-based MFD model are given with the functional
form of speed MFD, trip length distributions, and ear-
liness and lateness of cost distributions. In Table 2, the
parameters used for the day-to-day update mecha-
nism, such as a flexible time window, scale factor, and
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learning parameter, are given for both before and dur-
ing the implementation of the TDM strategy. Two
flexible time windows are in use during the imple-
mentation of TDM: one for the optimization problem
(Ω) and one for the day-to-day assignment (τ), in
which we set Ω < τ to offer more flexibility to system
users by increasing their choice set of departure times.
The increase in scale parameter from θ � 0:01 (before
the TDM strategy) to θ � 0:1 (during the TDM
strategy) allows travelers to be more sensitive on de-
parture time choice, as people are expected to be more
alert when a new disruptive TDM strategy is intro-
duced. Table 2 presents the parameters associated
with the detour ratio model: fitted functions and coef-
ficient estimates for μ and σ, threshold speed where
the detour ratio model is activated, and the resulting
trip length distribution after detour adjustment.

4.2. TDM with Full Compliance Conditions
The resulting impact of the TDM strategy could be
observed by comparing regional accumulation levels be-
fore and after implementation. Figure 4 shows the varia-
tion of accumulation across days in the inner and outer
regions when the TDM strategy is implemented with
different user penetration rates, assuming full
compliance of system users. The equilibrium accu-
mulation pattern (black dashed lines) shows the exist-
ing traffic conditions in the no-TDM scenario (i.e., day
0—equilibrium conditions before the TDM strategy is
introduced). The inner region accumulation on day 0
goes above the critical accumulation level, indicating
highly congested traffic conditions. The day-to-day evo-
lution of accumulation patterns after implementing the
TDM strategy is shown in colored solid lines (i.e., accu-
mulation profiles for days 1, 5, 10, and 25). These accu-
mulation profiles show varying patterns across the pen-
etration rates; nevertheless, in all scenarios, we observe
that days 15 and 25 are almost identical. Although trav-
elers are given an opportunity to change their schedules
on a daily basis, a steady pattern is observed in day-to-
day evolution toward the end of the 25-day period.
This indicates the convergence of the system into a
steady state, where the departure time choices and allo-
cations become consistent throughout the days. Note
that the choices and allocations are different from each
other on day-25, which means that the TDM strategy is
actively making schedule changes; nevertheless, the
choices and allocations become individually consistent
across days. Although travelers have the possibility to
shift day-to-day, the traffic conditions are assembling to
an equilibrium state, irrespective of the schedule
changes caused by the TDM strategy. Overall, despite a
disruptive demand management strategy that reshapes
the demand profiles, the system reaches a stable state at
the end of the medium-term period.

User penetration rate plays a vital role in reducing
traffic congestion observed in the network. Panels (a)
and (b) of Figure 4 present the traffic conditions when
5% of the total network users (10,000 network users)
are controlled by the TDM strategy—ignoring the
compliance issues that will be discussed later. The
traffic conditions here do not exhibit a significant
change from the equilibrium scenario, as 95% of the
travelers make departure time choices based on their
individual preference. On the other hand, the 25%
penetration rate scenario presented in panels (c) and
(d) of Figure 4 reveals a higher improvement, where
the inner region accumulation could be lowered closer
to the critical accumulation level. The accumulation
profiles of inner and outer regions for 50%, 75%, and
100% penetration rates are depicted in panels (e)–(f),
(g)–(h), and (i)–(j) of Figure 4, respectively. A dimin-
ishing marginal benefit is observed in accumulation
levels with the increase in user levels beyond 25%.
This implies that the proposed TDM strategy can curb
traffic congestion in the network by controlling only a
small percentage of travelers. Although the full con-
trol scenario (100% penetration rate) has a lower accu-
mulation profile than that observed in the 25% user
rate, both scenarios lower the peak accumulation be-
low the critical accumulation level and demonstrate
uncongested traffic conditions. Having an accumula-
tion level closer to critical accumulation is in fact a
sign of optimal network use without causing under-
utilization of the available infrastructure. An accumu-
lation profile with a 25%–30% user rate enables an
uncongested scenario with proper utilization of re-
sources while demonstrating practical applicability, as
it requires only 25%–30% of the travelers to use the
TDM strategy.

Figure 5 presents the network performance with
respect to different (system) user penetration rates at
the end of the 25-day period. The TTS before imple-
menting the TDM strategy is indicated as the black
dashed lines in the graphs. According to Figure 5(a), a
significant reduction in TTS in the inner region is
observed for all penetration rates, which confirms
highly congested traffic conditions before the imple-
mentation of the TDM strategy. On the other hand,
Figure 5(b) indicates a minor improvement for the
outer region compared with the inner region. Because
traffic conditions are not congested in the outer region
in the no-TDM scenario, the TDM strategy brings only
limited benefits. Further, it confirms that the outer
region is not necessarily penalized for overall im-
provement, as it is in the perimeter control applica-
tions. The overall reduction in TTS for the whole net-
work is shown in Figure 5(c). The results show that
the TDM strategy is beneficial, even at low user pene-
tration rates; for example, controlling 25% of travelers
brings about a 20% reduction in TTS (5.4 minutes
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Figure 4. (Color online) Accumulation in the Inner Region: (a) 5% Penetration Rate, (c) 25% Penetration Rate, (e) 50% Penetra-
tion Rate, (g) 75% Penetration Rate, (i) 100% Penetration Rate; Accumulation in the Outer Region: (b) 5% Penetration Rate, (d)
25% Penetration Rate, (f) 50% Penetration Rate, (h) 75% Penetration Rate, (j) 100% Penetration Rate
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saved in trip time per traveler on average). We
observe that the marginal benefit in TTS significantly
decreases with increasing penetration rates; there is al-
most no difference between the 50%, 75%, and 100%
scenarios. Figure 5(d) illustrates the day-to-day varia-
tion of TTS for different penetration rates. On the first
day, where the TDM is introduced, 75% and 100% sce-
narios produce almost the same TTS, and over subse-
quent days, the 100% scenario converges to a slightly
better TTS, which implies that the optimization prob-
lem produces equal or better results with more system
users, as expected. We also see an increasing trend in
TTS for the 25%, 50%, and 75% penetration levels in
the first few days of the TDM strategy. In the initial

days of implementing the TDM strategy, nonsystem
users may experience a higher variation between the
perceived costs and experienced costs (nonsystem
users are not aware of the traffic conditions caused by
the departure time allocations of the TDM strategy).
But, over time, nonsystem users adapt to the new
conditions and propagate stable conditions with the
day-to-day update model, resulting in TTS profiles
with sudden upsurges on initial days that smoothly
converge to stable levels. However, this trend is not
observed at the 100% penetration level (as all travelers
are system users) and the 5% penetration level (as the
penetration level is not significant enough), but it is
evident that the learning process over subsequent

Figure 5. (Color online) TTS for Different Penetration Rates: (a) in the Inner Region; (b) in the Outer Region; (c) in theWhole
Network; and (d) Across Days
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days leads the traffic conditions to stabilize at the end
of the 25-day period for all penetration levels, which
implies the convergence of the system to an equilibri-
um at all scenarios. Note that system users follow the
departure time guidance resulting from the TDM
strategy (i.e., the optimization problem based on the
accumulation-based model), whereas the nonsystem
users simply rely on their experience in the trip-based
MFD model. Although the TDM strategy pushes the
system toward system optimum conditions by mak-
ing changes in the schedule of system users, nonsys-
tem users act in the principle of selfish equilibrium.
Note that these two equilibrium states are not differ-
ent in the uncongested traffic scenarios (Sheffi 1984).
Moreover, 50%, 75%, and 100% scenarios are all un-
congested; the peak accumulation is nowhere near the
critical accumulation, which means that decisions
based on user equilibrium and system optimality are
practically the same in this range for system user
levels.

The demand redistribution method adopted in the
TDM strategy aims to achieve the desired outcome by
assigning departure time shifts within a limited time
window. Although the TDM significantly improves
network traffic conditions, it is essential to examine
the circumstances faced by individuals while the
TDM strategy is being implemented. Figure 6(a)
presents the day-to-day variation in the cumulative
distribution of departure time shifts experienced by
travelers in the 100% penetration rate scenario, that is,
the difference between requested and allocated
departure times on a given day. The shift becomes
consistent over subsequent days and converges to an

identical distribution; cumulative distributions of day
10 and day 25 are approximately identical. A similar
pattern is observed with other user penetration rates.
The flexible time window (Ω) in the optimization
algorithm is set to two time steps (corresponding to 10
minutes), but we can see some system users are being
shifted by more than 10 minutes on day 1 (see the
green line). This occurs due to different time steps im-
plemented in the optimization algorithm (model) and
the day-to-day assignment (plant). Note that, whereas
the time step in the optimization problem (or the
accumulation-based MFD model) is Δk � 5min, the
day-to-day assignment considers discrete intervals of
Δt �1min. As the flexible time window in the optimi-
zation problem is Ω�2, it corresponds to a flexible
period with five Δk time steps (i.e., −2, −1, 0, 1, 2),
which, in turn, is equivalent to smaller Δt time steps
(i.e., [−10, −5), [−5, 0), [0, 5), [5, 10), [10, 15)). Let us
take, for example, a traveler requesting to depart at
time step k � 0 and being allocated to time step k � 2.
We also assume that travelers make a finer departure
time choice t within the time step k. Therefore, this
traveler can experience at most a shift of 14 minutes
(from t � 0 to t � 14). Figure 6(b) depicts the cumula-
tive distribution curves of the shift in allocated depar-
ture time from requested departure time for different
penetration rates on day 25. In the full control scenario
(100% penetration rate), all travelers may experience a
shift in departure time, but, in the partial control sce-
nario, only system users experience a shift in depar-
ture time. Nevertheless, the percentage of such travel-
ers increases with a decreasing penetration rate, as
expected. Irrespective of whether being a system user

Figure 6. (Color online) Cumulative Distribution of Departure Time Shift: (a) Across Days in the 100% Penetration Rate Scenario
and (b) Across Penetration Rate Scenarios on the Final Day
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or not, all travelers experience uncongested traffic
conditions at partial control scenarios, as seen in
Figure 4. Hence, the nonsystem users tend to experi-
ence uncongested traffic conditions at the expense of
departure time shifts absorbed by the system users.

The two-region urban network has four distinct de-
mand cases based on the origin-destination region as
R11, R12, R21, and R22, where the total demand is dis-
tributed at the 40%, 10%, 40%, and 10% ratios, respec-
tively, allowing the inner region to attract 80% of the
total demand. For each demand case, there is a
requested demand (Qreq) profile and an optimized de-
mand profile (Qopt) to compare. Figure 7 shows the
variation of Qreq (dashed lines) and Qopt (solid lines)
for different demand types (in the 100% penetration
rate scenario). The Qreq and Qopt demand profiles of
R11 and R12 are shown in Figure 7(a), as they
originate in the inner region (region 1). Similarly,
Figure 7(b) shows that the demand profiles of R21 and
R22 originated in the outer region (region 2). The opti-
mized demand profiles, in general, stretch the re-
quested demand profiles along the two directions (to
earlier and later periods). The stretch in the demand
profiles should happen in harmony or in coordination
so that the overall system performance is maximized.
In Figure 7(b), we see a stretching effect occurring in
both demand types and note that the optimized de-
mand alternately prioritizes each demand type, such
that when QR21

opt has a higher demand, QR22
opt exhibits a

lower demand and vice versa. Further, we note that
travelers in different demand categories naturally

have different trip length distributions. The intrare-
gional travelers (R11 and R22) have shorter trip
lengths compared with interregional (R12 and R21)
travelers. Whereas the two-region urban network al-
lows us to represent two regions with distinct traffic
conditions, it also captures travelers with short and
long trip lengths and treats them separately.

4.3. TDM with Partial Compliance Conditions
Although the system users actively use the ATIS plat-
form and exchange requested/allocated departure
times, they may not comply with the allocated time if
they sense a significant increment in their travel cost
(experienced cost). Hence, we use the secondary con-
trol method where system users would not comply
with the allocated departure time if the perceived cost
of travel at the allocated departure time is more than
(1+ r)% of the travel cost experienced at equilibrium
conditions (no-TDM). Figure 8(a) presents the cumu-
lative change in experienced cost for travelers under
different compliance conditions varying r% from
−15% to +50% ((1+ r)% � 85%–150%). The cumulative
plots indicate the cumulative percentage of travelers
with increased experienced cost compared with the
no-TDM scenario. We see that more than 80% of travel-
ers experience lower costs than in the no-TDM scenario,
in all compliance conditions. Figure 8(b) plots the day-
to-day variation on total time spent (TTS) for different
compliance levels, and we observe higher TTS when
the compliance levels are lower. However, the variation
in TTS is insignificant and indicates that allowing a few

Figure 7. (Color online) Requested and Optimized Demand Profiles for (a) the Inner Region and (b) the Outer Region
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travelers to not comply does not bring adverse effects
to the overall performance of the network.

Whereas panels (a) and (b) of Figure 8 illustrate the
sensitivity of secondary control for the compliance
level, panels (c) and (d) of Figure 8 show the impact of
the secondary control mechanism with different pene-
tration levels, assuming r% � +25%. Here we assume
that system users will not comply with the allocated
departure time from the ATIS if their perceived travel
cost (for the allocated departure time) imposes more
than a 25% increase compared with their travel cost
on day 0. The system user will adhere to the requested
departure time if the allocated departure time is
refused.

We see three different types of travelers in the par-
tial compliance scenario: (1) complying system users,

(2) noncomplying system users, and (3) nonsystem
users. The TTSs for each group of users are shown in
Figure 8(a). Although we expect a significant differ-
ence in performance levels, it was observed that the
performance reduces only by 2%–3.5% for all penetra-
tion rates under partial compliance conditions (see
Figure 8(a) and Figure 5(c)). The diminishing marginal
benefit observed with an increase in penetration rate
also exists in the partial compliance scenario. Further,
we observe a slight reduction in percentage improve-
ment when user penetration increases from 75% to
100%. The mismatch between the two traffic models
and the change in compliance rate might have caused
this discrepancy. A model mismatch occurs in our
framework, as the accumulation-based model is used
in the optimization framework, and the trip-based

Figure 8. (Color online) (a) Cumulative Change in Experienced Cost with Compliance Rate; (b) Day-to-Day Variation of TTS
with Compliance Rate; (c) TTS for Different Penetration Rates with Partial Compliance Conditions; (d) Comparison of Day-to-
Day TTS for Different Penetration Rates with Partial and Full Compliance Conditions
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model is used in the test bed for performance evalua-
tion. A noncomplying system user in the partial com-
pliance scenario is analogous to a nonsystem user in
the full compliance scenario. Nonetheless, noncom-
plying system users cause a higher mismatch between
the model (i.e., accumulation-based MFD) and the
plant (i.e., trip-based MFD), because the model
assumes that all systems users would comply, where-
as the compliance decision is taken at the individual
level in the plant. As will be shown later (in Figure
9(d)), in this scenario, the compliance rate significantly
decreases with an increasing user penetration rate.
Due to the increase in the number of noncomplying
users (from 75% to 100%), there is a higher mismatch
in the proposed framework, which might cause the
discrepancy in the network performance. Neverthe-
less, the drop in performance is only minimal. Com-
pliance rules, in fact, serve as a secondary control
mechanism and expose the robustness of the pro-
posed scheme.

Figure 8(d) exhibits the day-to-day evolution of TTS
values for different penetration rates in both full com-
pliance (dashed lines) and partial compliance (solid
lines) scenarios. We see an increase in the difference
between TTS observed under full compliance and
partial compliance conditions, which is a result of the
increase in the number of noncomplying travelers
with the penetration rate. Although the difference is
rather negligible for low penetration rate scenarios,
the 100% scenario exhibits a significant gap, as the
number of noncomplying users is higher. The day-to-
day variation of TTS sees consistency after day 10 for
all penetration rates, which reveals the convergence of
network traffic conditions to equilibrium.

The traffic conditions observed with full and partial
compliance conditions behave close enough and dem-
onstrate similar performance (with respect to TTS)
levels; however, the user benefits present a significant
difference. Figure 9 provides a detailed analysis of
individual user experience in the partial and full

Figure 9. (Color online) Increase in Experienced Cost for (a) System Users Under Full Compliance Conditions; (b) SystemUsers
Under Partial Compliance Conditions; (c) Nonsystem Users; (d) Compliance Rate of System Users with Different Penetration
Rates

Kumarage et al.: Schedule-Constrained Demand Management in Urban Networks
Transportation Science, Articles in Advance, pp. 1–26, © 2021 INFORMS 21



compliance scenarios. Figure 9(a) illustrates the cumu-
lative distribution of the increase in the experienced
cost on day 25 compared with the experienced cost in
the no-TDM scenario (day 0) for only system users
under full compliance conditions. For all penetration
rates, we can see that 70%–80% of the system users do
not experience more than a 25% increase. However,
approximately 20%–30% of the system users undergo
a higher increase. Hence, it will be a challenging task
to ensure user retention (i.e., maintain daily active
users), whereas complying travelers experience unde-
sirable costs, unless they are compensated using other
(monetary) incentives to comply. Here, we relax the
full compliance assumptions and explore the system
performance under a more flexible compliance setting.

Figure 9(b) shows the cumulative distribution of the
increase in experienced cost on day 25 compared with
the experienced cost in the no-TDM scenario (day 0)
for system users under partial compliance conditions.
Now, all system users experience an increase of less
than 25%. Approximately 80%–90% of the system
users experience a reduction in their cost, whereas
10%–20% confront a slight increase. Considering also
the results in Figure 5(c), this shows that user benefits
significantly improve in the partial compliance scenario,
while the system performance is not compromised. Fig-
ure 9(c) indicates how nonsystem users are affected due
to the operation of the TDM strategy in the partial com-
pliance scenario. Nonsystem users enjoy the reduction
in travel times that is brought by the TDM strategy. Al-
most all nonsystem users experience lower costs than
on day 0 in all penetration rate scenarios. Figure 9(d)
shows the bar chart of system users (black dashed lines)
and the complying travelers at each penetration rate
(color-filled). We observe that compliance rate de-
creases with an increase in penetration rate. A similar
behavior is observed in the cumulative percentage of
system users who experience an increase in costs of less
than 25% under full compliance conditions (see Figure
9(a)). For example, about 68% of travelers experience a
cost increase of less than 25% under the full compliance
conditions, and we see a similar compliance rate under
the partial compliance conditions. The overall benefit
gained by both system users and nonsystem users at all
penetration rates shows that the proposed TDM strate-
gy can significantly improve traffic conditions and that
it is robust with respect to varying penetration rates
and compliance issues.

4.4. Performance of TDM Compared with
Pricing Strategy

The performance of the TDM strategy is compared
with user equilibrium conditions (no-TDM) in Figure
4, and it is important to understand the behavior of
TDM compared with optimum system conditions. A
vast literature has developed on congestion pricing

following Wardrop (1952), who provided a theoretical
approach in which a user equilibrium being converted
to an optimum system equilibrium by introducing a
toll structure (externality). Marchand (1968) further in-
vestigated and proposed the second-best tolling meth-
od, which many subsequent works followed (see De
Palma and Lindsey 2011 for a summary). In this
study, we resort to cordon-based pricing strategies,
where we aim to introduce a time-dependent toll for
travelers based on departure time. The theoretical
background for cordon-based pricing for single-
region MFD networks is presented elegantly in the
works of Geroliminis and Levinson (2009), Arnott
(2013), Fosgerau (2015), Liu and Geroliminis (2016),
Lamotte and Geroliminis (2018), Amirgholy and Gao
(2017), and Zheng and Geroliminis (2020). After all,
applying a toll in multiregion networks is a less-
explored path due to the complexities observed in
multiregion traffic dynamics. Briefly, cordon-based
pricing strategies focus on an optimal pricing strategy
that charges users a dynamic toll equal to the differ-
ence between the generalized cost of the trips in the
system optimum and user equilibrium (see Amirgh-
oly and Gao 2017 for more details). The excess delay
and schedule deviation cost of the system are essential
components to be estimated in formulating the pricing
strategy. However, considering the challenges of ob-
servation with respect to desired arrival times and
schedule deviation, in this comparison, we consider
only the excess delay to determine the time-depen-
dent toll and aim to provide a comparative assess-
ment of schedule change (retiming) versus congestion
toll. We present the time-dependent toll (excess travel
delay) as Toll(t) � τr(t) − τfr, where τr(t) is the travel

time of region r at departure time t(� tdepi,d ), given by
τ(t) � Lr=vr(nr(t)), and τfr is the travel time at the criti-
cal accumulation condition given by τfr � Lr=vr(ncrr ),
which will also be the observed travel time when the
region operates under system optimum conditions.
We assume that we can apply the time-dependent toll
to all travelers, since they are connected via the ATIS.
Figure 10 presents the summary and comparison of
applying the time-dependent toll in a two-region traf-
fic network. Figure 10(a) indicates the time-dependent
toll for travelers who depart within the (ts − te) time
interval, where the accumulation in the inner region
goes beyond critical accumulation in the No-TDM
(user equilibrium) scenario. Time step tμ reports the
highest toll applied based on the peak accumulation
observed. Geroliminis and Levinson (2009) and
Amirgholy and Gao (2017) idealize the delay (toll) as
a piecewise linear function for a single region system,
but our scenario exhibits a parabolic pattern in the de-
lay curve (Toll(t) in Figure 10(a)). Figure 10(b) shows
the resulting accumulation curves with three different
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strategies: No-TDM (user equilibrium), TDM, and sys-
tem optimum (SO). Convergence to uncongested traf-
fic conditions in both SO and TDM reveal the applica-
bility in both strategies, but the traffic patterns
indicate that two approaches converge to substantially
different traffic scenarios. Figure 10(c) indicates that
TDM slightly outperforms SO in terms of the total
time spent (TTS). However, Figure 10(d) reveals that
the schedule cost of TDM is much lower than that of
SO. We observe lower schedule costs in TDM than SO
or No-TDM. Considering travelers’ flexibility/willing-
ness to comply via the secondary control mechanism
(traveler compliance conditions) in TDM has brought
this advantage. However, it should be noted that, cor-
don-based pricing strategies are lacking in mecha-
nisms to incorporate willingness to pay and generate
additional inertia, discouraging travelers’ compliance.

Further, special infrastructure or an ATIS similar to
the TDM framework would require the implementa-
tion of a pricing strategy. Hence, we see equal
competitiveness in the TDM strategy and practicable
application when compared with cordon-based pric-
ing strategies.

5. Conclusion
This paper has presented a travel demand manage-
ment method for efficient temporal coordination of
demand through the retiming of departure times
within a limited time window in a large-scale urban
network. The proposed TDM method requires an
ATIS platform with cross-communication capacity to
encourage/enforce departure time changes to users.
The strategy assigns departure time shifts within a
limited time window (e.g., 10 minutes early or late)

Figure 10. (Color online) (a) Time-Dependent Toll; (b) Comparison of Accumulation Curves; (c) Comparison of Total Time
Spent; (d) Comparison of Total Schedule Cost
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and formulates an optimization problem that mini-
mizes the TTS in the network with limited schedule
change constraints. The proposed framework makes
use of a model-plant approach to model a large-scale
network with two regions; two MFD-based traffic
models are jointly implemented to represent the
model and the plant. The accumulation-based MFD
model, which operates with aggregate traffic states, is
used for demand optimization (model). The devel-
oped framework accounts for both observed and
unobserved demand components, representing ATIS
users and others, respectively. Actual traffic condi-
tions in the network are evaluated by the trip-based
MFD model (plant). The plant operates with individu-
al traveler characteristics and is conjugated with a de-
tour ratio model to incorporate the impact of route
choice into the aggregated network level. The results
demonstrate a substantial improvement in the net-
work performance as a result of minor schedule
changes. Further, the proposed TDM strategy gener-
ates significant benefits, even at low penetration rates,
which adds to its applicability in real settings where a
full penetration rate is not possible. Development of
incentive schemes to maintain daily active users, vali-
dating the detour ratio model with more granular
data types such as trajectory data, developing macro-
scopic demand estimation methods to estimate the
unknown demand, and incorporating long-term
demand variations (induced demand) in the modeling
framework are alluring future research directions.
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