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A B S T R A C T

With unbalanced travel demand distribution over time and space, a stationary cordon lo-
cation hinders the full potential of perimeter flow control based on network Macroscopic
Fundamental Diagram (MFD). This paper introduces a perimeter control method wherein the
region boundaries alter in real-time to tackle propagation of local pockets of congestion. The
nonlinear dynamics of the heterogeneous traffic network are modelled as a switching system.
The linearization of the derived switching nonlinear dynamics is conducted considering the
accumulation heterogeneity. A Linear Quadratic Regulator (LQR) is employed for gating the
flow exchange between regions to minimize network congestion. Several scenarios are examined
comparing perimeter control schemes with static and dynamic cordons. Results pinpoint the
proposed LQR control with location-varying cordon strategy and a moderate switching interval
significantly reduces the vehicles total time spent in the network.

. Introduction

To improve traffic efficiency in urban networks, numerous traffic signal control policies have been developed in the past few
ecades. Majority of these signal control policies are nominally designed for isolated intersections (e.g. Lee et al., 2017; Mohajerpoor
t al., 2019; Mohajerpoor and Cai, 2020), or small-scale coordinated traffic signals (e.g. He et al., 2014; Wada et al., 2018; Li et al.,
018; Ma et al., 2018). These control strategies often require detailed local traffic information and encompass hefty computational
osts. Introduction of network macroscopic fundamental diagram (MFD) enabled a promising direction towards the network-level
ystematic congestion management at a very low computational cost through perimeter flow control (Geroliminis et al., 2012;
amezani et al., 2015; Yang et al., 2018; Lei et al., 2019; Ingole et al., 2020; Li et al., 2021), congestion pricing (Daganzo and Lehe,
015; Simoni et al., 2015; Amirgholy and Gao, 2017; Gu et al., 2018; Zheng and Geroliminis, 2020), route guidance Yildirimoglu
t al. (2015), departure time management (Yildirimoglu and Ramezani, 2020), and ride-sourcing operation control (Ramezani and
ourinejad, 2018) among others.

MFD describes a well-defined, low-scatter, and nonlinear relationship between mean weighted flow and vehicle accumulation
f a network. It was first introduced by Godfrey (1969), and was empirically demonstrated in Geroliminis and Daganzo (2008)
tilizing field data of Yokohama, Japan. The literature shows a heterogeneous network does not exhibit a well-defined MFD due to
he occurrence of the hysteresis (e.g. Gayah and Daganzo, 2011). Partitioning a heterogeneous network into several homogeneous
ubregions is a solution to cope with the MFD hysteresis (e.g. Saeedmanesh and Geroliminis, 2017; Saedi et al., 2020). The
artitioning further enables introduction of perimeter flow control as an effective traffic control method.

Perimeter flow control monitors and regulates vehicle densities in multiple regions aiming at maximizing the trip completion rate
n the entire traffic network (e.g. Haddad and Zheng, 2018; Zhong et al., 2018; Keyvan-Ekbatani et al., 2019; Haddad and Mirkin,
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2020). It has been introduced for two-region (e.g. Geroliminis et al., 2012; Haddad, 2017; Ding et al., 2017) and multi-region
networks (e.g. Csikós et al., 2017; Yang et al., 2018; Mohajerpoor et al., 2020; Sirmatel et al., 2021). Theoretical and empirical
advancements on MFD modelling and estimation (e.g. Saffari et al., 2020; Aghamohammadi and Laval, 2020; Mariotte et al., 2020a;
Paipuri et al., 2020), have enabled the application of numerous perimeter control techniques, such as feedback control (Keyvan-
Ekbatani et al., 2015; Ampountolas et al., 2017; Keyvan-Ekbatani et al., 2021), model predictive control (MPC) (Geroliminis et al.,
2012; Yildirimoglu et al., 2018; Han et al., 2020; Sirmatel and Geroliminis, 2021), adaptive control (Haddad and Zheng, 2018;
Haddad and Mirkin, 2020), and robust control (Haddad, 2015; Mohajerpoor et al., 2020).

To date, all of the existing perimeter flow control schemes consider static (or fixed) region boundaries (e.g. Kouvelas et al., 2017;
Haddad and Zheng, 2018; Zhong et al., 2018; Haddad and Mirkin, 2020; Guo and Ban, 2020; Ren et al., 2020; Ding et al., 2020; Su
et al., 2020). This strict limitation prevents the MFD-based network control paradigms to agilely respond to the time-varying nature
of congestion propagation, especially in networks with time- and spatially-varying travel demands. Due to the intrinsic complexities
of network traffic dynamics and the spatial and temporal demand fluctuations, splitting the congested and uncongested regions
needs to be revisited recurrently in real-time. In light of that, we propose a novel traffic responsive cordon switching algorithm
integrated within a location-varying perimeter control method.

A large number of perimeter control schemes have only considered networks with well-defined MFDs (e.g. Ingole et al., 2020;
Yang et al., 2019; Fu et al., 2020), ignoring the hysteresis phenomenon. Another shortcoming of the majority of the existing perimeter
control methods is disregarding the possible heavy concentration of vehicles at region boundaries in result of cordon metering, which
may lead to uneven distribution of vehicle accumulation and local pockets of congestion. Recently, Haddad (2017), Ni and Cassidy
(2019) addresses the impacts of queued vehicles by segregating vehicles into travelling and queuing. The proposed location-varying
perimeter control method can (indirectly) address both limitations.

A perimeter control with location-varying cordon enables tackling temporal and spatial local pockets of congestion. For instance,
Fig. 1 shows a schematic of a network that is split into 19 smaller homogeneous subregions (shown as hexagons), and two regions
that separate the congested (Region 2) and less-congested (Region 1) areas. The borderline separating the two regions is highlighted
using solid green and dashed red lines, representing the perimeter controllers that manipulate transfer flows between the regions.
The figure delineates a possible scenario that the cordon switches at two different time steps. First, uncongested Subregion 17 is
deallocated from Region 2 (Fig. 1(b)); and next Subregion 8 is allocated to Region 2 due to getting more congested (Fig. 1(c)). The
cordon initially has border with all subregions except Subregion 19 (see Fig. 1(a)), and cordon switching enables direct control of
Subregion 19 as shown in Fig. 1(b, c). Our proposed cordon selection algorithm recurrently identifies and ranks the most congested
subregions based on a proposed measure called ‘protection index’, and clusters them into the protected region in a smooth process.
Note that allocating subregions to different regions alters the regional MFD and thus a switching system emerges. Design and
modelling the switched system are among the methodological contributions of this paper.

The traffic flow dynamics are modelled at two (consistent) levels of aggregation, subregion- and region-level. The subregions are
assumed to be homogeneously congested each with a well-defined MFD. That is, an average speed describes the trip progression
of vehicles inside the subregions. A number of subregions embodies a region. Thus regions are heterogeneously congested and
accordingly scattered regional MFDs are observed. The region-level model takes the spatial density heterogeneity into consideration,
hence hysteresis emerges in the modelled MFDs at the region level. Further, because of the change in the cordon and the shape
of regions over time, vehicles can cross the region boundaries multiple times. A simple en-route route choice model is integrated
in the subregion-level model, which considers the current fastest paths (i.e. a succession of subregions) from the origin subregion
to the destination one. This necessitates to devise a regional route choice procedure. The route choice model in region-level MFD
model comprises two variables which estimate the regional route ratios (see pink arrows in Fig. 1(a) showing regional routes 1–1
and 1–2–1) and the ratio of transfer flows between regions based on the destinations of the vehicles (see yellow arrows in Fig. 1(a)
showing the ratio of transfer flow between Region 1 and Region 2 with the final destination in Region 2 and Region 1).

The main contributions of this paper are threefold: (i) developing a perimeter control method with location-varying cordon
to capture the congestion evolution in the network by separating congested and uncongested subregions into two regions; (ii)
introducing a more realistic model by permitting vehicles to cross the region boundaries multiple times; and (iii) designing a Linear
Quadratic Regulator (LQR) controller to obtain the optimal transfer flow rates between regions for a switching system. To synthesize
the controller, the region-level nonlinear dynamics are linearized at optimal set-points derived from the desired characteristics of
the network considering the density heterogeneity impacts. A Linear Quadratic Regulator (LQR) controller is designed every time
the cordon switches to optimally regulate the gated flow between the regions. The proposed dynamic perimeter control algorithm
is examined on a congested and heterogeneous traffic network comprising 19 homogeneous subregions. That is, the regional model
is used to design the controller while the subregion-level model is the only model as the traffic simulator. The results pinpoint the
indispensable advantages that the proposed location-varying cordon paradigm brings to empower the perimeter controller, in a way
that over 23% reduction in the total time spent (TTS) is achieved due to applying the dynamic cordon strategy when implementing
the LQR controller.

The rest of the paper is organized as follows. Section 2 presents the dynamic models in both subregion and region levels; Section 3
introduces the network control strategies; the numerical experiments are presented in Section 4, and the paper is summarized
together with sketching future research directions in Section 5.
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Fig. 1. A large-scale two-region heterogeneous network comprising 19 homogeneous subregions. The borderline separating the two regions is highlighted using
solid green and a dashed red line, representing gating flow exchange from Region 2 to 1 and from Region 1 to 2, respectively. (a) The initial boundary of

he two regions, Region 1 encompasses Subregions 1 to 12, and Region 2 is formed by Subregions 13 to 19, where Subregion 19 is not directly influenced
y the perimeter control traffic signals. (b) First cordon switching when Subregion 17 becomes uncongested and is allocated to Region 1. (c) Second cordon
witching where Subregion 8 becomes congested and is allocated to Region 2. Note that the proposed controller can possibly shrink Region 2 to only include
ne subregion, e.g., Subregion 19. Details of modelling are given in Section 2.

. Network traffic flow modelling

In this section, we develop two traffic flow models based on MFD to explain the subregional (see Section 2.1) and regional
evel (see Section 2.2) dynamics of traffic propagation in the network. We assume the urban network is partitioned into a set of
omogeneous subregions, ℛ, that form a heterogeneous traffic network comprising two regions. The subregion level MFD model

describes detailed traffic dynamics of each subregion, integrates a current-best route choice model, and considers the effect of
the boundary and receiving capacities. The region level MFD model incorporates variant trip lengths in each region, considers
heterogeneity of spatial congestion distribution, and embeds a simple route choice model because vehicles can pass region boundaries
multiple times. In addition, the regional MFD model is used for controller synthesize, while the subregion level model is applied as
traffic simulator. Note that the region and subregion level models are consistent and interconnected (see Section 2.3). In the sequel,
the corresponding variables and parameters for the region and subregion level models are denoted by upper-case and lower-case
letters, respectively. The nomenclature is listed in Appendix A.

2.1. Subregion-level traffic flow model

The subregion-level model tracks the evolution of accumulation of vehicles in each subregion over time based on MFD dynamics.
Each subregion demonstrates a well-defined MFD that relates the average speed of the vehicles to the total number of vehicles
inside the subregion. Let 𝑛𝑖𝑗 (𝑡) [veh], 𝑖, 𝑗 ∈ ℛ, denote the number of vehicles in Subregion 𝑖 with destination in Subregion
𝑗; and 𝑛𝑖(𝑡) =

∑

|ℛ|

𝑗=1 𝑛𝑖𝑗 (𝑡) [veh] denote the accumulation of Subregion 𝑖 at time 𝑡. Therefore, the accumulation in Region 𝐼 is
𝑁𝐼 (𝑡) =

∑

𝑖∈ℛ𝐼 (𝑡) 𝑛𝑖(𝑡), where ℛ𝐼 (𝑡) is the set of subregions in Region 𝐼 at time 𝑡. Note that ℛ𝐼 (𝑡) alters every time instance that
he cordon changes as presented in Section 3.1.

The internal outflow of Subregion 𝑖 at time 𝑡 is denoted by 𝑚𝑖
𝑖𝑖(𝑡) [veh/s]. The external outflow of Subregion 𝑖 with final destination

n Subregion 𝑗 through the immediate Subregion ℎ is denoted by 𝑚ℎ
𝑖𝑗 (𝑡) [veh/s],1 ℎ ∈ 𝜙𝑖, where 𝜙𝑖 is the set of subregions directly

eachable from Subregion 𝑖. The average trip length of vehicles in Subregion 𝑖 that travel within the subregion and vehicles that
ravel to Subregion ℎ ∈ 𝜙𝑖 are denoted by 𝑙𝑖𝑖(𝑡) and 𝑙𝑖ℎ(𝑡) [m], respectively. Therefore, assuming slow-varying traffic conditions,

Subregion 𝑖 internal and external outflows read

𝑚𝑖
𝑖𝑖(𝑡) =

𝑛𝑖𝑖(𝑡)
𝑛𝑖(𝑡)

⋅
𝑝𝑖(𝑛𝑖(𝑡))
𝑙𝑖𝑖(𝑡)

, (1a)

𝑚ℎ
𝑖𝑗 (𝑡) = 𝜃ℎ𝑖𝑗 (𝑡) ⋅

𝑛𝑖𝑗 (𝑡)
𝑛𝑖(𝑡)

⋅
𝑝𝑖(𝑛𝑖(𝑡))
𝑙𝑖ℎ(𝑡)

𝑖 ≠ 𝑗, ℎ ∈ 𝜙𝑖, (1b)

where 𝑝𝑖(𝑛𝑖(𝑡)) = 𝑑3𝑖𝑛𝑖(𝑡)3 + 𝑑2𝑖𝑛𝑖(𝑡)2 + 𝑑1𝑖𝑛𝑖(𝑡) with {𝑑3𝑖, 𝑑2𝑖, 𝑑1𝑖} ∈ R is the production MFD of homogeneous Subregion 𝑖; and
𝜃ℎ𝑖𝑗 (𝑡) ∈ [0, 1] shows the time-varying proportion of vehicles in Subregion 𝑖 with destination in Subregion 𝑗 that the next immediate
subregion in their path is Subregion ℎ. Accordingly, we have ∑

ℎ∈𝜙𝑖 𝜃
ℎ
𝑖𝑗 (𝑡) = 1. The subregion-level model integrates a route choice

model that assumes vehicles make en-route decisions based on the instantaneous speed of each subregion. That is, k-shortest macro

1 We assume the vehicles making internal trips in a subregion do not leave the subregion, i.e. 𝑚ℎ
𝑖𝑖(𝑡) = 0 (𝑖 ≠ ℎ and 𝑖, ℎ ∈ ℛ). The assumption is reasonable
103
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paths (i.e. a series of subregions) are considered (through Dijkstra’s algorithm) at every time instant between each subregion pair
based on the instantaneous travel time of subregions and macro paths. A simple logit model is then employed to assign path flows
to the k-shortest macro paths according to their travel times. This results in obtaining 𝜃ℎ𝑖𝑗 (𝑡). Note that this routing model is different
han the equilibrium concept and may be categorized as an en-route current-best routing strategy.

The perimeter flow control output is denoted as, 𝑢𝑖ℎ(𝑡), that regulates the proportion of external outflow that is allowed to transfer
from Subregion 𝑖 to Subregion ℎ ∈ 𝜙𝑖 at time 𝑡. This pertains to the cordon on which the perimeter flow control is activated (i.e. the
boundary between the regions). In other words, 𝑢𝑖ℎ(𝑡) is equal to its maximum practical value between any two subregions that
does not constitute the regions boundary. Note that the outgoing transfer flow, 𝑚ℎ

𝑖𝑗 (𝑡) ⋅ 𝑢𝑖ℎ(𝑡), may not be realized if the neighbour
Subregion ℎ is congested and there are not enough space available for incoming flows. Therefore, the receiving capacity of subregions
is incorporated into the model. The realized external outflow from Subregion 𝑖 with destination in Subregion 𝑗 through Subregion
ℎ, 𝑚̂ℎ

𝑖𝑗 (𝑡) [veh/s], is estimated from the minimum of the outgoing transfer flow, boundary capacity between Subregions 𝑖 and ℎ
(𝑏𝑖ℎ [veh/s]), as well as a part of receiving capacity of Subregion ℎ (𝑟ℎ(𝑛ℎ(𝑡)) proportional to the incoming transfer flows from all
ubregions around Subregion ℎ:

𝑚̂ℎ
𝑖𝑗 (𝑡) = min

(

𝑚ℎ
𝑖𝑗 (𝑡)𝑢𝑖ℎ(𝑡), 𝑏𝑖ℎ,

𝑚ℎ
𝑖𝑗 (𝑡)𝑢𝑖ℎ(𝑡)

∑

𝑠1∈𝜙ℎ
∑

𝑠2∈ℛ,𝑠2≠𝑠1 𝑚
ℎ
𝑠1𝑠2

(𝑡)𝑢𝑠1ℎ(𝑡)
⋅ 𝑟ℎ(𝑛ℎ(𝑡))

)

. (2)

The receiving capacity of Subregion ℎ, 𝑟ℎ(𝑛ℎ(𝑡)) [veh/s], is defined as,

𝑟ℎ(𝑛ℎ(𝑡)) = 𝑟max
ℎ ⋅ (1 −

𝑛ℎ(𝑡)

𝑛jamℎ
), (3)

where 𝑟max
ℎ is the maximum receiving capacity of Subregion ℎ, and 𝑛ℎ(𝑡) and 𝑛jamℎ [veh] are the number of vehicles in Subregion

ℎ at time 𝑡 and the jam accumulation of Subregion ℎ, respectively. Note that the receiving capacity proposed in Ramezani et al.
(2015) considered each incoming flow to Subregion ℎ independently. On the other hand, Eq. (2) takes into account all the incoming
flows collectively and distribute the available receiving capacity of Subregion ℎ proportionally (demand pro-rata as investigated
in Mariotte et al. (2020b)). The estimation of the maximum receiving capacity, 𝑟max

ℎ , and the exact form of receiving capacity of
subregions require further investigations and validation with field data. This is a challenge for future research as obtaining data at a
congestion level close to jam accumulation is rare to occur. See Mariotte et al. (2020b) for further study of variants of the receiving
capacity models.

Let 𝑞𝑖𝑗 (𝑡) [veh/s] represent the exogenous travel demand generated in Subregion 𝑖 with destination in Subregion 𝑗. The mass
conservation equations of the subregion-level model tracking the accumulations of vehicles with respect to their destinations are
(𝑖, 𝑗 ∈ ℛ):

d𝑛𝑖𝑖(𝑡)
d𝑡

= 𝑞𝑖𝑖(𝑡) − 𝑚𝑖
𝑖𝑖(𝑡) +

∑

ℎ∈𝜙𝑖

𝑚̂𝑖
ℎ𝑖(𝑡), (4a)

d𝑛𝑖𝑗 (𝑡)
d𝑡

= 𝑞𝑖𝑗 (𝑡) −
∑

ℎ∈𝜙𝑖

𝑚̂ℎ
𝑖𝑗 (𝑡) +

∑

ℎ∈𝜙𝑖

𝑚̂𝑖
ℎ𝑗 (𝑡), 𝑖 ≠ 𝑗. (4b)

ote that we take into account the effects of perimeter control in modelling the receiving capacity, i.e. Eq. (2), therefore the
ubregional conservation equations do not include the related perimeter control variables.

.2. Region-level traffic flow model

The region-level model tracks the accumulation of vehicles in each region dynamically over time based on MFD dynamics. The
FD of each region reflects the aggregation of the production MFDs of all subregions inside the region. Through this aggregation,

egion MFD might exhibit hysteresis. To model the hysteresis, the heterogeneity of links densities inside the region should be
onsidered.

Let 𝑁𝐼 (𝑡) [veh] and |ℛ𝐼 (𝑡)| denote the number of vehicles in Region 𝐼 and the number of subregions in Region 𝐼 at time 𝑡. In the
ost homogeneous condition, the accumulation of each subregion would be 𝑁𝐼 (𝑡)∕|ℛ𝐼 (𝑡)|. To incorporate the impacts of density
eterogeneity on MFD, the standard deviation (STD) of density of all links in Region 𝐼 , 𝜎(𝑁𝐼 (𝑡)), is considered. The production MFD
f Region 𝐼 , 𝑃𝐼 (𝑁𝐼 (𝑡), 𝜎(𝑁𝐼 (𝑡))), can be expressed by the product of a cubic polynomial and an exponential function (Ramezani et al.,
015):

𝑃𝐼 (𝑁𝐼 (𝑡), 𝜎(𝑁𝐼 (𝑡))) =
(

𝐷̃3𝐼𝑁𝐼 (𝑡)3 + 𝐷̃2𝐼𝑁𝐼 (𝑡)2 + 𝐷̃1𝐼𝑁𝐼 (𝑡)
)

(

𝐷𝜎𝐼 ⋅ 𝑒𝛽𝐼
(

𝜎(𝑁𝐼 (𝑡))−𝜎het𝐼

)

+ (1 −𝐷𝜎𝐼 )
)

, (5)

here 𝐷̃3𝐼 , 𝐷̃2𝐼 , 𝐷̃1𝐼 , 𝐷𝜎𝐼 , and 𝛽𝐼 are constant scalar parameters that are estimated using empirical data. Moreover, 𝜎het𝐼 is the
tandard deviation of density of all links in Region 𝐼 with minimum heterogeneity where the link density distribution in each
ubregion inside Region 𝐼 follows the negative binomial distribution. That is, 𝜎het𝐼 [veh] is the standard deviation of the aggregation
f |ℛ𝐼 (𝑡)| negative binomial distributions each with mean density of 𝑁𝐼 (𝑡)∕|ℛ𝐼 (𝑡)|. The cubic polynomial on the right-hand-side
f Eq. (5) is the upper-envelope production MFD of Region 𝐼 , while the second term reflects the effect of density heterogeneity of
egion 𝐼 . With minimal heterogeneity, 𝜎(𝑁𝐼 (𝑡)) tends to 𝜎het𝐼 and thus there is no decrease in the production of the region. However,
104

n increase in 𝜎(𝑁𝐼 (𝑡)) results in drop in the production. The details of deriving Eq. (5) can be found in (Ramezani et al., 2015).
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The second modelling consideration is the route choice at the regional scale. The border separating the two regions can form
on-compact and non-convex regions shapes, which triggers the necessity of taking into account the vehicles that cross the region
oundary multiple times to follow their en-route shortest path (see Fig. 1). The proposed region-level model incorporates this by
ntroducing two time-varying variables, see Eq. (6) below. Further, Eq. (9) and (10) capture the route choice behaviour using the
eal-time information feedback from the subregion-level dynamic model.

Let 𝑁𝐼𝐽 (𝑡) [veh] (𝐼, 𝐽 ∈ {1, 2}) denote the vehicle accumulation in Region 𝐼 with destination in Region 𝐽 at time 𝑡. Moreover,
𝐼 (𝑡) = 𝑁𝐼𝐼 (𝑡) +𝑁𝐼𝐽 (𝑡) [veh] indicates the total number of vehicles in Region 𝐼 at time 𝑡. The total trip completion of Region 𝐼 at

ime 𝑡 comprises three components; (i) 𝑀𝐼
𝐼𝐼 (𝑡) [veh/s] is the internal trip completion rate in Region 𝐼 at time 𝑡, (ii) 𝑀𝐽

𝐼𝐼 (𝑡) [veh/s]
s the external outflow from Region 𝐼 with origin and destination in Region 𝐼 that traverse through Region 𝐽 at time 𝑡, and (iii)

𝐽
𝐼𝐽 (𝑡) [veh/s] is the external outflow from Region 𝐼 to Region 𝐽 as their destination at time 𝑡. These outflow components can be
odelled as:

𝑀𝐼
𝐼𝐼 (𝑡) = 𝛩𝐼

𝐼𝐼 (𝑡) ⋅
𝑁𝐼𝐼 (𝑡)
𝑁𝐼 (𝑡)

⋅
𝑃𝐼 (𝑁𝐼 (𝑡), 𝜎(𝑁𝐼 (𝑡)))

𝐿𝐼𝐼 (𝑡)
, (6a)

𝑀𝐽
𝐼𝐼 (𝑡) = 𝜂𝐽𝐼𝐼 (𝑡) ⋅ 𝛩

𝐽
𝐼𝐼 (𝑡) ⋅

𝑁𝐼𝐼 (𝑡)
𝑁𝐼 (𝑡)

⋅
𝑃𝐼 (𝑁𝐼 (𝑡), 𝜎(𝑁𝐼 (𝑡)))

𝐿𝐼𝐽 (𝑡)
, (6b)

𝑀𝐽
𝐼𝐽 (𝑡) = 𝜂𝐽𝐼𝐽 (𝑡) ⋅ 𝛩

𝐽
𝐼𝐽 (𝑡) ⋅

𝑁𝐼𝐽 (𝑡)
𝑁𝐼 (𝑡)

⋅
𝑃𝐼 (𝑁𝐼 (𝑡), 𝜎(𝑁𝐼 (𝑡)))

𝐿𝐼𝐽 (𝑡)
, (6c)

where 𝐿𝐼𝐼 (𝑡) and 𝐿𝐼𝐽 (𝑡) are respectively the average trip lengths of vehicles with origins in Region 𝐼 and have destinations in Region
𝐼 and Region 𝐽 ; and 𝛩𝐼

𝐼𝐼 (𝑡) and 𝛩𝐽
𝐼𝐼 (𝑡) ∈ [0, 1] (𝐼 ≠ 𝐽 and 𝛩𝐼

𝐼𝐼 (𝑡)+𝛩
𝐽
𝐼𝐼 (𝑡) = 1) demonstrate the time-varying proportions of the number

of vehicles with origin and destination in Region 𝐼 that remain in the region and cross the region’s boundary, respectively. It is
intuitive that 𝛩𝐽

𝐼𝐽 (𝑡) = 1 since all vehicles with origin in Region 𝐼 and destination in Region 𝐽 have to cross the region’s perimeter.
Furthermore, the region-level model takes into account the ratio of outflows at the region boundary over the subregions transfer

lows inside the region. Accordingly, variables 0 ≤ 𝜂𝐽𝐼𝐼 (𝑡), 𝜂
𝐽
𝐼𝐽 (𝑡) ≤ 1 are defined such that 𝜂𝐽𝐼𝐼 (𝑡) represents the ratio of the transfer

lows with the final destination in Region 𝐼 that pass region boundaries a time 𝑡. Similarly, 𝜂𝐽𝐼𝐽 (𝑡) shows the ratio of the transfer flows
ith the final destination in Region 𝐽 that cross the boundary between Region 𝐼 and 𝐽 at time 𝑡. The introduction of these ratios

s a byproduct of the way regional average trip lengths are estimated in Eq. (8) such that immediate outflows from the subregions
haring the boundary is considered.

To manipulate the transfer flows between regions, the regions periphery are gated by a set of coordinated traffic signals that
nforce the perimeter control actions 0 ≤ 𝑈min ≤ 𝑈𝐼𝐽 (𝑡) , 𝑈𝐽𝐼 (𝑡) ≤ 𝑈max ≤ 1, (𝐼 ≠ 𝐽 ). The perimeter control is acting on the region
oundaries, such that there are no additional restrictions on vehicles travelling through subregion boundaries inside a region. In
ther words, the inter-transfer flows between any two subregions are not controlled, i.e. 𝑢𝑖𝑗 (𝑡) = 𝑈max. The perimeter controller is
ctive on the subregion boundaries that are part of the region boundaries, i.e. 𝑢𝑖𝑗 (𝑡) = 𝑈𝐼𝐽 (𝑡) (𝑖 ∈ ℛ𝐼 , 𝑗 ∈ ℛ𝐽 ). Accordingly, once
he border of subregions 𝑖 and 𝑗 on the cordon moves inside a region due to the cordon change, it becomes uncontrolled. Note that
ehicles that transfer from Region 𝐼 to Region 𝐽 are either added to the vehicles with destinations in Region 𝐽 (with the rate of
𝐼𝐽 ⋅𝑀𝐽

𝐼𝐽 ), or added to the vehicles with destinations in Region 𝐼 (with the rate of 𝑈𝐼𝐽 ⋅𝑀𝐽
𝐼𝐼 ). In addition, the receiving capacity

s not considered for the region-level model, since the perimeter controller is expected to prevent hypercongestion in the regions.
Let 𝑄𝐼𝐽 (𝑡) [veh/s] (𝐼, 𝐽 ∈ {1, 2}) denote the exogenous travel demand from Region 𝐼 to Region 𝐽 at time 𝑡. Consequently, the

ass conservation equations for the region-level MFD dynamics read as (𝐼, 𝐽 = {1, 2}):
d𝑁𝐼𝐼 (𝑡)

d𝑡
= 𝑄𝐼𝐼 (𝑡) −𝑀𝐼

𝐼𝐼 (𝑡) − 𝑈𝐼𝐽 (𝑡) ⋅𝑀𝐽
𝐼𝐼 (𝑡) + 𝑈𝐽𝐼 (𝑡) ⋅𝑀𝐼

𝐽𝐼 (𝑡), (7a)

d𝑁𝐼𝐽 (𝑡)
d𝑡

= 𝑄𝐼𝐽 (𝑡) − 𝑈𝐼𝐽 (𝑡) ⋅𝑀𝐽
𝐼𝐽 (𝑡) + 𝑈𝐽𝐼 (𝑡) ⋅𝑀𝐼

𝐽𝐽 (𝑡). (7b)

The variables 𝐿(𝑡) = {𝐿𝐼𝐼 (𝑡), 𝐿𝐼𝐽 (𝑡)}, Θ(𝑡) = {𝛩𝐼
𝐼𝐼 (𝑡), 𝛩

𝐽
𝐼𝐼 (𝑡)}, and Ξ(𝑡) = {𝜂𝐽𝐼𝐼 (𝑡), 𝜂

𝐽
𝐼𝐽 (𝑡)} are formally defined in the forthcoming

section using real-time information feedback from the subregion-level measurements.

2.3. Relationship between subregion-level measurements and region-level variables

The region-level and subregion-level dynamics are correlated and consistent. Majority of variables in Eq. (6) and Eq. (7) are
estimated from the subregion-level model measurements. The number of vehicles in Region 𝐼 at time 𝑡, 𝑁𝐼 (𝑡) = 𝑁𝐼𝐼 (𝑡) + 𝑁𝐼𝐽 (𝑡),
can be estimated based on the measurements of subregions as, 𝑁𝐼𝐼 (𝑡) = 𝛴𝑖,𝑗∈ℛ𝐼 (𝑡)𝑛𝑖𝑗 (𝑡) and 𝑁𝐼𝐽 (𝑡) = 𝛴𝑖∈ℛ𝐼 (𝑡)𝛴𝑗∈ℛ𝐽 (𝑡)𝑛𝑖𝑗 (𝑡). Similarly
he exogenous travel demands can be estimated as, 𝑄𝐼𝐼 (𝑡) = 𝛴𝑖,𝑗∈ℛ𝐼 (𝑡)𝑞𝑖𝑗 (𝑡) and 𝑄𝐼𝐽 (𝑡) = 𝛴𝑖∈ℛ𝐼 (𝑡)𝛴𝑗∈ℛ𝐽 (𝑡)𝑞𝑖𝑗 (𝑡). In addition, the
ubregion-level perimeter control, 𝑢𝑖𝑗 (𝑡), are equal to the region-level perimeter control, 𝑈𝐼𝐽 (𝑡) (𝑖 ∈ ℛ𝐼 (𝑡), 𝑗 ∈ ℛ𝐽 (𝑡)). The perimeter
ontrol synthesis based on LQR theory is explained in Section 3. Note that a second level controller to break down regional 𝑈 (𝑡)
o subregional 𝑢(𝑡) (see for example Ramezani et al. (2015)), can be investigated as a future research to complement the dynamic
ordon feature.

The average trip length in Region 𝐼 for vehicles with destinations respectively in Region 𝐼 and in Region 𝐽 , i.e. 𝐿𝐼𝐼 (𝑡) and 𝐿𝐼𝐽 (𝑡),
re estimated based on the subregion-level measurements as

𝐿𝐼𝐼 (𝑡) =

∑

𝑖,𝑗∈ℛ𝐼 (𝑡) 𝑛𝑖𝑗 (𝑡)
∑ ⋅

∑

𝑖∈ℛ𝐼 (𝑡) 𝑝𝑖(𝑛𝑖(𝑡))
∑ 𝑖 , (8a)
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𝐿𝐼𝐽 (𝑡) =

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ
∑

ℎ∈(ℛ𝐽 (𝑡)∩𝜙𝑖) 𝜃
ℎ
𝑖𝑗 (𝑡) ⋅ 𝑛𝑖𝑗 (𝑡)

∑

𝑖∈ℛ𝐼 (𝑡) 𝑛𝑖(𝑡)
⋅

∑

𝑖∈ℛ𝐼 (𝑡) 𝑝𝑖(𝑛𝑖(𝑡))
∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ
∑

ℎ∈(ℛ𝐽 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡)

𝑖 ≠ 𝑗. (8b)

he above equations hold alike logic in terms of regional model, i.e. 𝐿𝐼𝐼 (𝑡) ∼ 𝑁𝐼𝐼 (𝑡) ∕ 𝑁𝐼 (𝑡) ⋅ 𝑃𝐼 (𝑁𝐼 (𝑡)) ∕ 𝑀𝐼𝐼 (𝑡) and 𝐿𝐼𝐽 (𝑡) ∼ 𝑁𝐼𝐽 (𝑡)
𝑁𝐼 (𝑡) ⋅ 𝑃𝐼 (𝑁𝐼 (𝑡)) ∕ 𝑀𝐼𝐽 (𝑡). Note that in Eq. (8b) all the outflows from Region 𝐼 towards Region 𝐽 is considered irrespective of the

inal destinations of the transfer flows.
The regional route choice ratios of vehicles from Region 𝐼 with destinations in Region 𝐼 that respectively travel through Regions

and 𝐽 , 𝛩𝐼
𝐼𝐼 (𝑡) and 𝛩𝐽

𝐼𝐼 (𝑡), are estimated using the subregion-level measurements as

𝛩𝐼
𝐼𝐼 (𝑡) =

∑

𝑖∈ℛ𝐼 (𝑡) 𝑚
𝑖
𝑖𝑖(𝑡) +

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐼 (𝑡)
∑

ℎ∈(ℛ𝐼 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡)

∑

𝑖∈ℛ𝐼 (𝑡) 𝑚
𝑖
𝑖𝑖(𝑡) +

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐼 (𝑡)
∑

ℎ∈(ℛ𝐼 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡) +

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐼 (𝑡)
∑

ℎ∈(ℛ𝐽 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡)

, (9a)

𝛩𝐽
𝐼𝐼 (𝑡) =

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐼 (𝑡)
∑

ℎ∈(ℛ𝐽 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡)

∑

𝑖∈ℛ𝐼 (𝑡) 𝑚
𝑖
𝑖𝑖(𝑡) +

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐼 (𝑡)
∑

ℎ∈(ℛ𝐼 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡) +

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐼 (𝑡)
∑

ℎ∈(ℛ𝐽 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡)

. (9b)

Fig. 1(a) provides a visual aid for the transfer flows in calculating 𝛩(𝑡) and Ξ(𝑡) variables, as indicated by different colour arrows.
he numerators of Eq. (9a) and (9b) indicate the amount of outflows corresponding to the internal flows that remain in Region 𝐼
nd the transfer flows that cross the region boundary, respectively. The denominators (which are the same) are the sum of the
nternal and transfer flows with origins in Region 𝐼 and destinations in Region 𝐼 .

Furthermore, the time-dependent variables 𝜂𝐽𝐼𝐼 (𝑡) and 𝜂𝐽𝐼𝐽 (𝑡) are estimated using subregion measurements as:

𝜂𝐽𝐼𝐼 (𝑡) =

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐼 (𝑡)
∑

ℎ∈(ℛ𝐽 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡)

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐼 (𝑡)
∑

ℎ∈(ℛ𝐼 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡) +

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐼 (𝑡)
∑

ℎ∈(ℛ𝐽 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡)

, (10a)

𝜂𝐽𝐼𝐽 (𝑡) =

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐽 (𝑡)
∑

ℎ∈(ℛ𝐽 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡)

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐽 (𝑡)
∑

ℎ∈(ℛ𝐼 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡) +

∑

𝑖∈ℛ𝐼 (𝑡)
∑

𝑗∈ℛ𝐽 (𝑡)
∑

ℎ∈(ℛ𝐽 (𝑡)∩𝜙𝑖) 𝑚̂
ℎ
𝑖𝑗 (𝑡)

. (10b)

The numerator of Eq. (10a) represents the sum of the transfer flows of vehicles with origins and destinations in Region 𝐼 while their
next immediate subregions along their paths belong to Region 𝐽 . The denominator of Eq. (10a) is the sum of flows of vehicles with
origins and destinations in Region 𝐼 irrespective of their immediate subregion. Thus, 𝜂𝐽𝐼𝐼 (𝑡) denotes the ratio of vehicles from 𝐼 to 𝐼
that cross the region boundary at time 𝑡 while other vehicles from 𝐼 to 𝐼 might cross the boundary at a later time. This distinction is
crucial since a large number of vehicles would first travel in subregions of Region 𝐼 prior to crossing the boundary. Those vehicles
should not be counted in estimation of 𝑀𝐽

𝐼𝐼 (𝑡).
Similarly, the numerator of Eq. (10b) expresses the sum of the transfer flows of vehicles with origins in Region 𝐼 and destinations

in Region 𝐽 while their next immediate subregions along their paths belong to Region 𝐽 . The denominator of Eq. (10b) represents
the sum of flows of vehicles with origins in Region 𝐼 and destinations in Region 𝐽 irrespective of their immediate subregion. Thus,
𝜂𝐽𝐼𝐽 (𝑡) denotes the ratio of vehicles from 𝐼 to 𝐽 that cross the region boundary at time 𝑡 while other vehicles from 𝐼 to 𝐽 might
cross the boundary at a later time. For instance, vehicles in Subregion 3 with destination in Subregion 19 in Fig. 1(c) should not be
counted in 𝑀2

12(𝑡1) estimation at time 𝑡1 > 0 in Eq. (6c).

3. Controller design

The proposed perimeter controller with location-varying cordon consists of two components: (i) a cordon location changing
algorithm introduced in Section 3.1 and (ii) a model-based perimeter transfer flow regulator presented in Section 3.2. The cordon
switching algorithm determines the cordon on which the traffic signals that belong to the perimeter controller are located. This
is devised such that subregions are dynamically grouped together over time partitioning the network into two regions ensuring
Region 2 consists of congested subregions that require protection against the inflows from Region 1 (see Fig. 1). The accumulation of
subregions are used to define the subregion protection index that triggers the switching of the cordon following a criterion elaborated
in Section 3.1.

An LQR scheme is considered to balance the accumulation of each region through gating the transfer flows between the regions.
The aim of the controller is to maintain the accumulation of each region at a desirable level. LQR control design is based on
the linearization of the nonlinear model in Eq. (7), which is discussed in Section 3.2.2. Recurrently clustering the most congested
subregions into the protected region, results into a switching model. Thus, model linearization and controller design problems should
be reiterated every time the cordon switches. Fortunately, both problems can be solved instantly in less than a few seconds that
promotes the control algorithm as a practical candidate for this application. The closed-loop control system architecture is depicted
in Fig. 2.

3.1. Cordon switching algorithm

We design the algorithm such that the boundary of the protected region can alter after a predefined time steps, called switching
interval 𝜅 > 0. This is to prevent abrupt changes in regions’ boundaries and to make the proposed switching scheme smooth and
practical. Moreover to this end, at most one subregion (among the borderline subregions) can be reassigned to the other region each
time switching occurs.
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Fig. 2. The closed-loop architecture of the proposed dynamic cordon perimeter control method based on LQR. The thick black arrows indicate the triggered
operations at the switching time-steps, 𝜅. The blue arrows indicate the continuous flow of information. Note that the subregion-level model is employed as the
traffic simulator to examine the controller performance. The region-level model is adopted to design the controller. (For interpretation of the colours in this
figure, the reader is referred to the web version of the manuscript).

The proposed cordon switching algorithm works based on the density weight of each Subregion 𝑖 and the outflow pressure of its
surrounding subregions, ℎ ∈ 𝜙𝑖. We define the Subregion 𝑖 density weight as

𝑤𝑖(𝑡) =
(

𝑛𝑖(𝑡)
𝑛cr𝑖

)2
, (11)

where 𝑛cr𝑖 [veh] is the time-invariant critical accumulation of Subregion 𝑖. The density weight provides a normalized criterion for
evaluating the congestion level of every subregion, such that further enables the simplicity in computing subregion protection
indexes, in which case 𝑤𝑖(𝑡) ≤ 1 indicates Subregion 𝑖 is uncongested, and otherwise it is congested. Note that the density weight is
in the quadratic form to put more emphasis on hypercongested subregions when calculating the protection index of the subregions.
Also note that using mean speed of Subregion 𝑖 (i.e. 𝑣𝑖(𝑡)) to calculate 𝑤𝑖(𝑡) is a valid alternative, while there is no significant
difference between the two options as both indicate the congestion level of the subregion.

The outflow pressure of Subregion ℎ at time 𝑡, 𝑠ℎ(𝑡), is defined as,

𝑠ℎ(𝑡) =
𝑝ℎ(𝑛ℎ(𝑡))

𝑝max
ℎ ⋅ (|𝜙ℎ| + 1)

∀ℎ ∈ 𝜙𝑖, (12)

where |𝜙ℎ| denotes the size of set 𝜙ℎ (subregions that are neighbour of Subregion ℎ) and 𝑝max
ℎ is the maximum value of the production

MFD of Subregion ℎ. The outflow pressure of Subregion ℎ reflects the normalized and expected outflow from the subregion towards
its neighbours. That is, higher outflow pressure means more inflow towards the neighbouring subregions and hence the chance of
them becoming more congested is higher. Note that the outflow pressure of Subregion ℎ at time 𝑡, 𝑠ℎ(𝑡), is a function of production
MFD of Subregion ℎ, i.e. it has an increasing relationship with the accumulation of Subregion ℎ, 𝑛ℎ(𝑡), up to the critical accumulation
of Subregion ℎ and a decreasing trend once the accumulation exceeds the critical value. Furthermore, the (|𝜙ℎ| + 1) term in the
denominator of Eq. (12) accounts for the number of neighbouring subregions plus the Subregion ℎ itself to consider the effect of
internal outflow.

Thereafter, the protection index of Subregion 𝑖 at time 𝑡, 𝜆𝑖(𝑡), is defined as

𝜆𝑖(𝑡) = 𝑤𝑖(𝑡) ⋅
∑

ℎ∈𝜙𝑖

𝑠ℎ(𝑡) ∀𝑖 ∈ ℛ, (13)

which reflects the level of protection required for Subregion 𝑖 to be sustained from the overcongestion by the perimeter controller.
The higher the protection index, it is more desirable to allocate the subregion in the protected Region 2.

The regional protection index interprets the average protection index of the subregions in that region which is defined as,

𝛬̄𝐼 (𝑡) =
𝛴𝑖∈ℛ𝐼 (𝑡)𝜆𝑖(𝑡)

|ℛ𝐼 (𝑡)|
. (14)

Considering the above definition, the cordon switching algorithm at each switching time seeks the borderline among all admissible
cordons that results in the highest difference between the regional protection indexes of the two regions considering the constraint
that at most only one subregion can be relocated to the other region. In other words, the new borderline corresponds with the
maximum regional protection index difference when reallocating a single subregion from current Region 𝐼 , i.e. ℛ𝐼 (𝑡), to Region 𝐽
that builds the new Region 𝐼 , ℛ∗

𝐼 (𝑡) and the new Region 𝐽 , ℛ∗
𝐽 (𝑡). If the current borderline still maximizes the protection index

difference between the two regions at the switching time-step, the algorithm is repeated in the next time-steps until a switching
occurs, and then there will be no switching for the next 𝜅 steps. The pseudo-code of the cordon switching algorithm is provided in
Algorithm 1.
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Algorithm 1: Pseudo-code of the cordon switching algorithm.
allocations = [subregions IDs, regions IDs]
%first column is from 1 to the total number of subregions |ℛ|, second column is corresponding regional IDs 𝐼 or 𝐽
if 𝜅 time steps have passed since the last cordon change then

𝐷init(𝑡) = |𝛬𝐼 (𝑡) − 𝛬𝐽 (𝑡)|, using Eq. (11) - Eq. (14)
%Calculate the absolute value of the average protection index difference between the two regions
for 𝑖 = 1 ∶ |ℛ| do

Change allocation of Subregion 𝑖 to the other region to form two new regions, ℛ∗
𝐼 (𝑡) and ℛ∗

𝐽 (𝑡)
Check connectivity
%to ensure there are at most two new regions in total
if Check connectivity is true then

𝐷𝑖
new(𝑡) = |𝛬𝐼∗ (𝑡) − 𝛬𝐽∗ (𝑡)|, using Eq. (11) - Eq. (14)

%Calculate the absolute value of average protection index difference between the two temporally new formed regions,
i.e. ℛ∗

𝐼 (𝑡) and ℛ∗
𝐽 (𝑡)

end if
end for

end if
Find max

𝑖
𝐷𝑖

new(𝑡)

if max
𝑖

𝐷𝑖
new(𝑡) > 𝐷init(𝑡) then

ℛ𝐼 (𝑡) = ℛ∗
𝐼 (𝑡) and ℛ𝐽 (𝑡) = ℛ∗

𝐽 (𝑡)
update allocations

end if

The switching rate 𝜅 is a crucial hyper-parameter that needs to be carefully adjusted to maximize the performance of the
ontroller. It is shown in the case studies (see Section 4) that fast switching similar to slow switching (i.e. small/large switching
ntervals) may deteriorate the performance of the control system. According to the theories on the stability of switched linear
ystems (see e.g. Zhang and Shi, 2009; Lin and Antsaklis, 2009) there is a minimum switching interval that guarantees the stability
f the system. This minimum interval is the desired dwelling period for the switching paradigm when applying a linear control
trategy, including the LQR scheme as explained in the next section.

.2. LQR control framework

LQR controller is one of the semantic and most powerful linear control methods. To apply the LQR theory to obtain the perimeter
ontrol outputs, the nonlinear region-level model should be linearized. To linearize the region-level dynamic model in Eq. (7), the
teady-State (SS) traffic condition should be specified by obtaining the nominal (or SS) states, control inputs, and demands. Given
he location-varying nature of the cordon, the SS traffic conditions switch from time to time whenever the location of the cordon
ets updated. Let the cordon change at instants 𝑡𝜌𝑠 ∈ {𝑡1, 𝑡2,…}, 0 < 𝑡1 < 𝑡2 < ⋯. The predefined desired accumulation of Region

𝐼 = {1, 2} at time 𝑡 ≥ 𝑡𝜌𝑠 can be expressed as 𝑁d
𝑠,𝜌𝑠

, 𝑠 ∈ 𝛺𝑛 = {11, 12, 21, 22}. The nominal regional accumulations, demand, and
control outputs are denoted by 𝑁∗

𝑠,𝜌𝑠
, 𝑄∗

𝑠,𝜌𝑠
, and 𝑈∗

𝑟,𝜌𝑠
, 𝑟 ∈ 𝛺𝑢 = {12, 21}, respectively.

3.2.1. The steady-state traffic condition
The first step to linearize the nonlinear region-level model is to obtain the SS of the model. Defining 𝑃 ∗

𝐼,𝜌𝑠
= 𝑃𝐼 (𝑁∗

𝐼,𝜌𝑠
, 𝜎(𝑁∗

𝐼,𝜌𝑠
)),

from Eqs. (6) and (7) the equilibrium dynamics of the model can be derived as:

𝑄∗
𝐼𝐼,𝜌𝑠

− 𝛩𝐼∗
𝐼𝐼,𝜌𝑠

𝑁∗
𝐼𝐼,𝜌𝑠

𝑃 ∗
𝐼,𝜌𝑠

𝑁∗
𝐼,𝜌𝑠

𝐿∗
𝐼𝐼,𝜌𝑠

− 𝑈∗
𝐼𝐽 ,𝜌𝑠

𝛩𝐽∗
𝐼𝐼,𝜌𝑠

𝜂𝐽∗𝐼𝐼,𝜌𝑠

𝑁∗
𝐼𝐼,𝜌𝑠

𝑃 ∗
𝐼,𝜌𝑠

𝑁∗
𝐼,𝜌𝑠

𝐿∗
𝐼𝐽 ,𝜌𝑠

+ 𝑈∗
𝐽𝐼,𝜌𝑠

𝛩𝐼∗
𝐽𝐼,𝜌𝑠

𝜂𝐼∗𝐽𝐼,𝜌𝑠

𝑁∗
𝐽𝐼,𝜌𝑠

𝑃 ∗
𝐽 ,𝜌𝑠

𝑁∗
𝐽 ,𝜌𝑠

𝐿∗
𝐽𝐼,𝜌𝑠

= 0, (15a)

𝑄∗
𝐼𝐽 ,𝜌𝑠

− 𝑈∗
𝐼𝐽 ,𝜌𝑠

𝛩𝐽∗
𝐼𝐽 ,𝜌𝑠

𝜂𝐽∗𝐼𝐽 ,𝜌𝑠

𝑁∗
𝐼𝐽 ,𝜌𝑠

𝑃 ∗
𝐼,𝜌𝑠

𝑁∗
𝐼,𝜌𝑠

𝐿∗
𝐼𝐽 ,𝜌𝑠

+ 𝑈∗
𝐽𝐼,𝜌𝑠

𝛩𝐼∗
𝐽𝐽 ,𝜌𝑠

𝜂𝐼∗𝐽𝐽 ,𝜌𝑠

𝑁∗
𝐽𝐽 ,𝜌𝑠

𝑃 ∗
𝐽 ,𝜌𝑠

𝑁∗
𝐽 ,𝜌𝑠

𝐿∗
𝐽𝐼,𝜌𝑠

= 0, (15b)

here 𝑄∗
𝐼𝐼,𝜌𝑠

, 𝑄∗
𝐼𝐽 ,𝜌𝑠

, 𝛩𝐼∗
𝐼𝐼,𝜌𝑠

, 𝛩𝐽∗
𝐼𝐼,𝜌𝑠

, 𝛩𝐽∗
𝐼𝐽 ,𝜌𝑠

, 𝜂𝐽∗𝐼𝐼,𝜌𝑠 , 𝜂
𝐽∗
𝐼𝐽 ,𝜌𝑠

, 𝐿∗
𝐼𝐼,𝜌𝑠

, and 𝐿∗
𝐽𝐼,𝜌𝑠

are the SS parameters estimated from empirical data.2

The steady-state control outputs should lie within the range [𝑈∗min, 𝑈∗max], where 𝑈min ≤ 𝑈∗min < 𝑈∗max ≤ 𝑈max are predetermined

2 A practical way is to employ the estimated trip length 𝐿(𝑡𝜌𝑠 ), as well as 𝛩(𝑡𝜌𝑠 ) and Ξ(𝑡𝜌𝑠 ) parameters at the cordon switching instances 𝑡𝜌𝑠 as their SS values.
This approach is effective due to the slow variations of dynamic parameters in a large-scale traffic network. Moreover, the maximum expected demand of the
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new regions can be assigned as the SS demand to ensure the controller is designed for the highest expected inflow to each region.
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scalars. Accordingly, as demonstrated in Mohajerpoor et al. (2020) the SS traffic conditions can be obtained from the following
optimization program:

min
𝑁∗

𝐼,𝜌𝑠
,𝑁∗

𝐼𝐼,𝜌𝑠
,𝑈∗

𝐼𝐽 ,𝜌𝑠

2
∑

𝐼=1
𝛽𝐼 (𝑁∗

𝐼,𝜌𝑠
−𝑁d

𝐼,𝜌𝑠
)2

Subject to ∶

Eq. (15),

0 ≤ {𝑁∗
𝐼,𝜌𝑠

, 𝑁∗
𝐼𝐼,𝜌𝑠

} ≤ 𝛼𝐼𝑁
jam
𝐼,𝜌𝑠

,

𝑈∗min ≤ 𝑈∗
𝐼𝐽 ,𝜌𝑠

≤ 𝑈∗max,

(O1)

where 𝑁 jam
𝐼,𝜌𝑠

is the jam accumulation of Region 𝐼 ; 0 < 𝛼𝐼 < 1 is a constant coefficient to specify the maximum allowable SS
accumulation of Region 𝐼 ∈ {1, 2}; and 𝛽𝐼 is a positive weighting coefficient that characterizes the relative importance of Region 𝐼
with respect to the other region. The desired accumulations 𝑁d

𝐼,𝜌𝑠
can be chosen to be smaller and close to the critical accumulations

𝑁cr
𝐼,𝜌𝑠

to maximize the outflow of each region. Note that the number of subregions in Region 𝐼 might change every time the regions
boundary is updated. Thus, the jam, desired, and SS accumulation of each region change accordingly.

Note that problem (O1) is a nonlinear program that should be solved for a local optima every time the regions boundaries are
updated, whence the dynamic parameters of each region including the desired and jam accumulations alter. Due to the nonlinear
nature of equality constraints (15), simultaneous fulfilment of the equality and inequality constrains of (O1) can be intractable. In
such occasion, one might increase the tolerance on the equality constrains to a sufficiently higher level and maintain the inequality
constraints. This amendment helps in finding local optimal accumulations and control signals in the majority of traffic conditions,
while equations (15) can be slightly violated that is acceptable due to uncertainties in the estimated steady-state parameters.

3.2.2. Linearized dynamic equations
Now, the model Eq. (7) can be linearized at every instance that the cordon changes which results in a new SS traffic condition.

Note that as the signal timings of the intersections at the perimeter control cordon change every cycle time, and to facilitate the
practicality of the proposed perimeter control method, the control output, 𝑈𝐼𝐽 , should be discrete. Accordingly, we discretize the
continuous-time linearized (region-level) dynamics of the network using the sample-and-hold technique with sample size of 𝜏 > 0,
where 𝜏 is the common fixed cycle time of the cordon’s signalized intersections. This step-size empowers the controller to alter the
signal timings only at the end of each cycle, and results in the following difference equation:

𝛥𝑁𝜌𝑠 [𝑘 + 1] = 𝐴𝜌𝑠𝛥𝑁𝜌𝑠 [𝑘] + 𝐵𝜌𝑠𝛥𝑈𝜌𝑠 [𝑘] +𝐷𝜌𝑠𝛥𝑄𝜌𝑠 [𝑘] +𝐎
(

𝛥𝐿𝜌𝑠 [𝑘], 𝛥𝛩𝜌𝑠 [𝑘], 𝛥𝜂𝜌𝑠 [𝑘]
)

, (16)

where 𝛥𝑁𝜌𝑠 [𝑘] =
[

𝛥𝑁𝑠,𝜌𝑠 [𝑘]
]

∈ R𝒔𝒏 is the state vector; 𝛥𝑈𝜌𝑠 [𝑘] =
[

𝛥𝑈𝑟,𝜌𝑠 [𝑘]
]

∈ R𝒔𝒖 is the control output; 𝛥𝑄𝜌𝑠 [𝑘] =
[

𝛥𝑄𝑠,𝜌𝑠 [𝑘]
]

∈ R𝒔𝒏

is the demand disturbance. These variables are the infinitesimal variations from the SS accumulations, control signals and demand,
i.e., 𝛥𝑁𝑠,𝜌𝑠 [𝑘] = 𝑁𝑠,𝜌𝑠 [𝑘] − 𝑁∗

𝑠,𝜌𝑠
, 𝛥𝑈𝑟,𝜌𝑠 [𝑘] = 𝑈𝑟,𝜌𝑠 [𝑘] − 𝑈∗

𝑟,𝜌𝑠
, and 𝛥𝑄𝑠,𝜌𝑠 [𝑘] = 𝑄𝑠,𝜌𝑠 [𝑘] − 𝑄∗

𝑠,𝜌𝑠
(𝑠 ∈ 𝛺𝑛, 𝑟 ∈ 𝛺𝑢, 𝒔𝒏 = 4, and 𝒔𝒖 = 2).

Furthermore, 𝐎
(

𝛥𝐿𝜌𝑠 [𝑘], 𝛥𝛩𝜌𝑠 [𝑘], 𝛥𝜂𝜌𝑠 [𝑘]
)

∈ R𝒔𝒏 is a negligible perturbation term due to the infinitesimal dynamics of parameters
𝐿𝜌𝑠 = [𝐿𝐼𝐽 ,𝜌𝑠 ] ∈ R4, 𝛩𝜌𝑠 = [𝛩𝐽

𝐼𝐼,𝜌𝑠
] ∈ R4, and 𝜂𝜌𝑠 = [𝜂𝐾𝐼𝐽,𝜌𝑠 ] ∈ R4 (𝐼, 𝐽 ,𝐾 ∈ {1, 2}) about their SS values. Matrices 𝐴𝜌𝑠 ∈ R𝒔𝒏×𝒔𝒏 ,

𝐵𝜌𝑠 ∈ R𝒔𝒏×𝒔𝒖 , and 𝐷𝜌𝑠 ∈ R𝒔𝒏×𝒔𝒏 are obtained from the linearization procedure, and are demonstrated in Appendix B. Note that
these matrices are constant when the cordon is fixed, and they change once the region’s perimeter is changed (reflected by the 𝜌𝑠
subscript). It is assumed that all states are measured in real-time.

A challenge in deriving the linearized matrices 𝐴𝜌𝑠 and 𝐵𝜌𝑠 is dealing with the time-varying STD of the network’s density
𝜎(𝑁𝐼,𝜌𝑠 (𝑡)), 𝐼 = {1, 2}. Indeed, there is no closed-form one-to-one mapping between the accumulation STD of a region and its average
density. The accumulation STD of each region is in addition influenced by the current density heterogeneity and the distribution of
travel demand across the region, and it can be measured or estimated in real-time via the measured density of the subregions within
the region. However, to calculate the elements of 𝐴𝜌𝑠 and 𝐵𝜌𝑠 , the derivative of 𝜎(𝑁𝐼,𝜌𝑠 (𝑡)) with respect to 𝑁𝐼,𝜌𝑠 (𝑡) is required at the
equilibrium SS traffic condition (see Appendix B). A solution to overcome this issue is proposed in Appendix C.

3.2.3. Controller synthesis
Based on the linearized dynamic model, the perimeter control output is defined as 𝑈 [𝑘] = sat

(

𝑈∗
𝜌𝑠
+ 𝛥𝑈𝜌𝑠 [𝑘]

)

, where sat(𝑈 [𝑘]) =
[

sat(𝑈12[𝑘]), sat(𝑈21[𝑘])
]𝑇 ,

sat(𝑈𝐼𝐽 [𝑘]) ≜
⎧

⎪

⎨

⎪

𝑈max 𝑈𝐼𝐽 [𝑘] > 𝑈max

𝑈𝐼𝐽 [𝑘] 𝑈min ≤ 𝑈𝐼𝐽 [𝑘] ≤ 𝑈max

min min
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⎩

𝑈 𝑈𝐼𝐽 [𝑘] < 𝑈 ,
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𝛥𝑈𝜌𝑠 [𝑘] = 𝐾𝜌𝑠𝛥𝑁𝜌𝑠 [𝑘], and 𝐾𝜌𝑠 ∈ R𝒔𝒏×𝒔𝒏 is obtained via solving the following optimization problem:

min
𝐾𝜌𝑠

∞
∑

𝑖=0
𝛥𝑁𝑇

𝜌𝑠
[𝑖]𝑃𝜌𝑠𝛥𝑁𝜌𝑠 [𝑖] + 𝛥𝑈𝑇

𝜌𝑠
[𝑖]𝛤𝜌𝑠𝛥𝑈𝜌𝑠 [𝑖],

Subject to ∶

Eq. (16),
𝛥𝑄𝜌𝑠 ≡ 0,

𝐎(⋅, ⋅, ⋅) ≡ 0,

(O2)

wherein 𝑃𝜌𝑠 ∈ R𝒔𝒏×𝒔𝒏 and 𝛤𝜌𝑠 ∈ R𝒔𝒖×𝒔𝒖 are positive definite diagonal matrices predefined appropriately. The first term in the
objective function drives the accumulation of each region towards its set point, and the second term is to ensure the boundedness
of the control outputs. It is advised to set the elements of matrix 𝑃𝜌𝑠 proportional to the reciprocal of the jam accumulation of the
corresponding region to normalize the effects of accumulations, and set the elements of 𝛤𝜌𝑠 small enough to result in reasonably
bounded control outputs. Solution of (O2) can be sought from the solution (𝛱𝜌𝑠 ∈ S𝒔𝒏×𝒔𝒏 ) of the following discrete-time Riccati
equation (Anderson and Moore, 2007):

𝐴𝑇
𝜌𝑠
𝛱𝜌𝑠𝐴𝜌𝑠 −𝛱𝜌𝑠 − (𝐴𝑇

𝜌𝑠
𝛱𝜌𝑠𝐵𝜌𝑠 )(𝐵

𝑇
𝜌𝑠
𝛱𝜌𝑠𝐵𝜌𝑠 + 𝛤𝜌𝑠 )

−1(𝐵𝑇
𝜌𝑠
𝛱𝜌𝑠𝐴𝜌𝑠 ) + 𝑃𝜌𝑠 = 0, (17)

and 𝐾𝜌𝑠 =
(

𝐵𝑇
𝜌𝑠
𝛱𝜌𝑠𝐵𝜌𝑠 + 𝛤𝜌𝑠

)−1
𝐵𝑇
𝜌𝑠
𝛱𝜌𝑠𝐴𝜌𝑠 .

In summary, the perimeter boundary changes following Algorithm 1 and the network maintains the updated boundary for at
least 𝜅 time-steps. After every cordon switching, the control gain 𝐾𝜌𝑠 is updated taking the sequel steps: (i) the steady state traffic
condition is obtained from solving optimization problem (O1), (ii) the nonlinear region-based model of the network (7) is linearized
at the steady-state traffic conditions and then discretized according to the difference equation (16), and eventually (iii) the control
gain is obtained from solving Riccati equation (17). Note that other methods to derive the control gain can be developed as a future
research work.

4. Numerical experiments

4.1. Settings

We study a simulation model of a complex heterogeneous traffic network that is divided into two regions that initially consist of
12 (in Region 1) and 7 (in Region 2) homogeneous subregions, as shown in Fig. 1(a). Without loss of generality, subregions pertain
identical MFDs consistent with the one observed in Yokohama, Japan (see Geroliminis and Daganzo, 2008), i.e. 𝑑3𝑖 = 3.4216 × 10−4,
𝑑2𝑖 = −6.8575, and 𝑑1𝑖 = 3.4710 × 104, ∀𝑖 ∈ ℛ. Accordingly, the critical accumulation that maximizes the subregion production is
𝑛cr𝑖 = 3334 [veh], and the jam accumulation is 𝑛jam𝑖 = 10000 [veh]. The initial regional accumulations in Region 1 and Region 2 are
assumed to be uncongested with 𝑁1(0) = 29008 [veh] and 𝑁2(0) = 19297 [veh].

It is assumed that all the gated intersections share a common cycle time of 60 s, thus the dynamic model, Eq. (7), is discretized
with sample time of 𝜏 = 1 [min]. Note that the traffic simulator, which is the subregion-level model (Eq. (4)), is implemented with
a 0.01 [sec] discretization time-step, and the 1 [min] time-step is used for the controller synthesis as illustrated in Section 3.2.2.
Moreover, to comply with operational constraints, the control outputs are lower and upper bounded by 𝑈min = 0.1 and 𝑈max = 0.9,
respectively. A general peak-hour exogenous demand is applied, as shown in Fig. 3(a), with most of the demand generated from the
subregions in Region 1 towards the subregions in Region 2 (subregions belong to Region 2 are assumed to be the downtown areas),
and then the demands are gradually dropped to zero to ensure the network gets cleared at the end of simulation. Note that the
regional demand values would alter with the shift of regions with dynamic cordon, whereas the OD demands in the subregion-level
are identical across all control scenarios. Furthermore, the model embeds a stochastic en-route current-based route choice model to
replicate a more realistic traffic simulation environment.

To investigate the effectiveness of the proposed controller, the Bang–Bang (BB) control strategy is chosen for comparison
purposes. BB policy is a variable structure control method, wherein the control outputs take either minimum or maximum values
at each time step. An effective policy proposed in Geroliminis et al. (2012) is chosen. In summary, if both regions are uncongested,
i.e. 𝑁𝐼,𝜌𝑠 [𝑘] ≤ 𝑁∗

𝐼,𝜌𝑠
, we set 𝑈𝐼𝐽 = 𝑈max; if only Region 𝐼 is congested and Region 𝐽 is uncongested, then 𝑈𝐼𝐽 = 𝑈max and 𝑈𝐽𝐼 = 𝑈min;

and if both regions are congested and 𝑁𝐼,𝜌𝑠 [𝑘]∕𝑁
jam
𝐼,𝜌𝑠

> 𝑁𝐽 ,𝜌𝑠 [𝑘]∕𝑁
jam
𝐽 ,𝜌𝑠

, then 𝑈𝐼𝐽 = 𝑈max and 𝑈𝐽𝐼 = 𝑈min (𝐼, 𝐽 ∈ {1, 2} and 𝐼 ≠ 𝐽 ).
The proposed LQR algorithm contrary to the BB strategy can result in the full range of control outputs, rather than just the boundary
values 𝑈min and 𝑈max. However, the BB strategy is a robust nonlinear controller that can accommodate the abrupt changes in the
regions’ accumulations when the model does not comply with the linearized dynamic approximation. Moreover, the criterion for
switching between the minimum and maximum boundary values can follow a more complex framework, such as the algorithm
presented in Aalipour et al. (2018).

Four control scenarios are implemented on the simulation model to study the effectiveness of location-varying cordon integrated
in the perimeter control: (a) Bang–Bang controller with static cordon, (b) LQR controller with static cordon, (c) Bang–Bang controller
with dynamic cordon, and (d) LQR controller with dynamic cordon. Note that the OD demands in the subregion-level and other
110

aspects of experiments are identical in all the studied control scenarios.
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Fig. 3. (a) Regional demands in the network during the simulation period for the static cordon scenarios. The values of the (regional) demands would alter
once the region boundaries change. However, the OD demands in the subregion-level are identical across all control scenarios. (b) Θ(𝑡) and (c) Ξ(𝑡) parameters
variations with time when applying the LQR + static cordon control algorithm.

Fig. 4. Results of the no-control scenario (𝑈12(𝑡) = 𝑈21(𝑡) = 0.9): (a) subregional and (b) regional accumulations for the whole simulation period. The accumulations
of several subregions (i.e. Subregions 13–19) reach to (or very close to) the jam accumulation 𝑛jam = 10000 and face gridlock during a long period, and accordingly
Region 2 reaches to the hypercongested regime.

4.2. Results and discussion

Under the heterogeneous demand (Fig. 3(a)), the inner Subregions 13–19 become heavily congested if they are not protected
using an effective perimeter control. This is highlighted by the simulation results from the ‘no-control’ scenario in Fig. 4, wherein
maximum transfer flows between regions are enabled (i.e. 𝑈12(𝑡) = 𝑈21(𝑡) = 𝑈max = 0.9) with the static cordon sketched in Fig. 1(a).
t can be observed that those subregions face gridlock in less than 1 hr, and the accumulations in Region 2 never cleared for the
est of the simulation.

Figs. 3(b) and 3(c) depict the time-varying nature of Θ(𝑡) and Ξ(𝑡) = {𝜂𝐽𝐼𝐼 (𝑡), 𝜂
𝐽
𝐼𝐽 (𝑡)} (𝐼, 𝐽 ∈ {1, 2} and 𝐼 ≠ 𝐽 ), that shows the

rivers, who choose the shortest path to their destinations, cross the regions’ boundary multiple times. Given 𝛩𝐼
𝐼𝐼 (𝑡) + 𝛩𝐽

𝐼𝐼 (𝑡) = 1,
ig. 3(b) demonstrates 𝛩𝐼

𝐼𝐼 (𝑡) > 𝛩𝐽
𝐼𝐼 (𝑡) that indicates the shortest paths chosen by travellers are tend to remain inside the region

ather than cross the boundary multiple times. Moreover, 𝛩2
22(𝑡) is observed to be always greater than or equal to 𝛩1

11(𝑡), because the
ynamic cordon stacks all the congested subregions in Region 2, which is the inner region with a compact shape. Therefore, there
re less opportunities for vehicles to cross Region 1 if both origins and destinations are in Region 2. To add, Fig. 3(c) highlights that
(𝑡) variables in the proposed model capture the time-varying ratio of vehicles that cross the region’s boundary with respect to their

inal destination. Moving towards the end of simulation, as expected 𝜂𝐽𝐼𝐽 (𝑡) approaches to 1 indicating that all vehicles accumulating
n the region’s boundary have destinations in the other region.

The results of implementing the four control scenarios (a)–(d) are exhibited in Fig. 5 where the time-varying subregion
ccumulations 𝑛𝑖(𝑡) over the studied period are depicted. The LQR controller with dynamic cordon leads to border switching 18 times
t time-steps 𝑘𝜌𝑠 = {22,… , 261} [min]. The BB controller with dynamic cordon also leads to 18 times switching at 𝑘𝜌𝑠 = {30,… , 115}.
t is apparent that the LQR control strategy (Fig. 5 (b,d)) outperformed the BB controller (Fig. 5 (a,c)) in both static and dynamic
ordon scenarios, in a way that the BB controller resulted in the gridlock of Subregions 13 and 19 under conventional static cordon
ontrol scheme, resulting in a protracted hypercongestion. The proposed cordon selection algorithm applied every 𝜅 = 5 steps has
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Fig. 5. Subregions’ accumulations with: (a) BB + static cordon; (b) LQR + static cordon; (c) BB + dynamic cordon (𝜅 = 5); and (d) LQR + dynamic cordon
(𝜅 = 5). The proposed LQR + dynamic cordon method results in a more homogeneous accumulation distribution in the whole network as well as shorter network
clearance time compared to the other control strategies.

significantly improved the BB strategy to recover the network from the heavy congestion experienced in Subregion 13 where the
network has fully cleared after 12600 [s] (see Fig. 5(c)). Note that the accumulation in each subregion does not exceed the jam
accumulation, i.e. 10000 [veh], due to the receiving capacity function integrated into the subregion-level model (see Eq. (2)). The
cordon changing algorithm has also significantly improved the performance of the LQR controller as delineated in Figs. 5(b) and
5(d). It can be seen that the network’s accumulation is more evenly distributed across subregions (as the accumulation differences
among subregions are smaller), and the network is cleared after 10500 [s] compared to 18500 [s] with static cordon.

A crucial hyper-parameter that should be appropriately adjusted to maximize the performance of the perimeter control methods
with dynamic cordon is the switching interval 𝜅. There is an optimum switching interval that results in the best performance of the
LQR controller. This corresponds to the minimum switching interval that provides a sufficiently large interval for the linear optimal
controller to regulate the network density. Table 1 summarizes the total time spent (TTS) [veh s] in the network as a result of
implementing various control strategies with fixed and location-varying cordons and multiple switching intervals (𝜅 ∈ {4, 5, 7, 10})
for the entire simulation period. It can be seen that the LQR controller with dynamic cordon and 𝜅 = 5 achieves the best performance
among all the control algorithms, in a way that it lowers the TTS by over 57% with respect to the no-control scenario. Furthermore,
implementing the cordon switching scheme with 𝜅 = 5 has reduced the TTS in the network by approximately 39% and 18% with
respect to the static cordon counterparts of the BB and LQR gating schemes, respectively.

Fig. 6 visualizes congestion propagation through the network over time and over subregions, as well as the perimeter control
cordon locations, when implementing the LQR controller empowered by the location-varying cordon (𝜅 = 5). Note that the cordon
selection algorithm ensures the connectivity of regions, in which case at most one subregion can be reallocated to a different region
at every 𝜅 time-steps. Fig. 6 shows that Region 2 is compact while Region 1 is not which causes vehicles from Region 1 to Region 1
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Table 1
Total time spent (expressed in [108 veh s]) in the network when implementing various control strategies. Note that the no-control
strategy has resulted in the network gridlock. The numbers in parenthesis indicate the relative reduction in TTS against the
no-control scenario.

Switching interval (𝜅) Static cordon Dynamic cordon

– 4 5 7 10

No control 12.25 – – – –
Bang–bang 8.71 (−28.9%) 5.50 (−55.1%) 5.33 (−56.5%) 6.18 (−49.6%) 6.34 (−48.2%)
LQR 6.81 (−44.4%) 5.38 (−56.1%) 5.26 (−57.1%) 5.60 (−54.3%) 6.21 (−49.3%)

Fig. 6. Snapshots of subregions’ accumulations over time when implementing the LQR controller with dynamic cordon algorithm (𝜅 = 5). Each snapshot
corresponds to a cordon switching instant during the simulation. The border of the regions and the magnitude of perimeter control outputs in each snapshot is
demonstrated by a dashed line (𝑈12(𝑡)) and a solid line (𝑈21(𝑡)). The colour of the dashed and solid lines respectively indicate the relative magnitude, with red
and green corresponding to 𝑈min and 𝑈max, respectively. The colorbar indicates the level of accumulation in each subregion. (For interpretation of the colours
in this figure, the reader is referred to the web version of the manuscript).

to possibly cross the region boundary more than one time, and hence this should be carefully considered in the region-level model
(see definition of 𝛩 in Eq. (6)). Each subfigure delineates the spatial distribution of the accumulation at a certain switching instance,
till the network is cleared. The figure shows that congestion initially sparks in three central subregions (13, 14, and 19), and then
it spreads to other subregions. Due to the effective spatial and temporal border switching, vehicles are more uniformly distributed
across the subregions throughout the simulation. The congestion starts to diminish after 87 [min], whereas the cordon selection
algorithm transfers the most congested subregions to Region 2. Note that the dynamic cordon feature of the perimeter controller
ensures Subregion 19 becomes directly controllable early on to protect it from hypercongestion, whereas the LQR with static cordon
controller fails to achieve this.

Applied perimeter control outputs obtained from the four scenarios are depicted in Fig. 7. The control outputs with static cordon
(Fig. 7(a,b)) frequently fluctuate compared against the controllers with dynamic cordon (Fig. 7(c,d)). In particular, between 𝑡 = 2000
[s] and 𝑡 = 6000 [s], which is the most congested period, the control outputs with dynamic cordon strategies are often operated at
𝑈12(𝑡) = 𝑈min = 0.1 and 𝑈21(𝑡) = 𝑈max = 0.9, i.e. minimizing the traffic inflow into Region 2 and maximizing it to Region 1. This
observation emphasizes that the cordon switching algorithm systematically and effectively identifies and protects the most congested
subregions in real-time. On the contrary, the static cordon strategy lacks this feature, and thus both control scenarios are obliged to
completely (for BB) or partially (for LQR) open up the gated transfer flow to Region 2, whenever the overall accumulation of the
Region 1 exceeds a certain level of congestion. On these occasions, the optimal LQR controller still has the advantage of using the
full range of the control output spectrum, while the BB controller has to minimize 𝑈21(𝑡) and maximize 𝑈12(𝑡) since both regions are
congested (see Section 4.1).

The regional accumulations and production MFDs are shown in Fig. 8 and Fig. 9, respectively. These figures provide a region-level
view of the network performance when applying the four control scenarios. Fig. 8(a) shows both regions are cleared at the very
end of simulation (i.e. 25000 [s]) by implementing the BB control algorithm with a static cordon, whereas the dynamic cordon
strategy clears the network after 11000 [s] (see Fig. 8(c)). The key difference between the two strategies can be sought from the
subregion accumulation dynamics in Fig. 5 and control outputs in Fig. 7 showing that Subregions 13 and 19 are better protected
with the dynamic cordon. Moreover, comparing the two alternative cordon control plans further highlights the dynamic cordon
control leads to a higher accumulation of Region 1 because more subregions are allocated to Region 1. Further, the dynamic cordon
results in jumps in the regional accumulation due to switching subregions, as shown in Figs. 8(c) and 8(d). At around 5000 [s],
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Fig. 7. Perimeter control outputs during the simulation period when applying the following control strategies: (a) BB + static cordon; (b) LQR + static cordon;
(c) BB + dynamic cordon (𝜅 = 5); and (d) LQR + dynamic cordon (𝜅 = 5).

the accumulation in Region 2 declines as a result of cordon changes such that Region 2 includes only Subregion 19, (see Fig. 6).
Thereafter, Region 2 accumulation increases because more subregions are allocated to Region 2. The effect of location-varying
cordon is more clearly demonstrated in Fig. 9, where each switching shows itself as a discontinuity (jump) in the MFD of each
region. The hysteresis loops are observed in the static cordon scenarios, as shown in Fig. 9(a, b), whereas the dynamic cordon is
capable to reduce the hysteresis in Region 1 (see Fig. 9(c, d)). Since the number of subregions change significantly in Region 2
(from 7 subregions to only 1), the jumps in its MFD are more apparent compared to Region 1. Fig. 9 further demonstrates that the
modelled MFDs (i.e. dashed lines) can track the plant MFDs (i.e. solid lines) accurately. Overall the proposed perimeter controller is
efficient and capable of handling errors due to the aggregation (loss of detailed information) of dynamics from subregion to region
level, as well as the linearization approximations.

5. Summary and future research

A perimeter control method with location-varying cordon has been proposed and its effectiveness in reducing congestion in
a heterogeneous large-scale urban network has been demonstrated. The location-varying cordon selection algorithm has enabled
effective management of spatial and temporal heterogeneity of demand and propagation of congestion by recurrently allocating
uncongested subregions to the peripheral region and concentrating congested subregions into the protected region. Consistent
region-level and subregion-level traffic models of the network have been derived based on MFD dynamics. The models assume
that vehicles can cross the region boundaries multiple times. An optimal LQR scheme has been developed based on the linearized
switching model of the network. The model incorporates the impacts of MFD hysteresis phenomena governed by the underlying
heterogeneous density distribution across the network.

The LQR theory has been applied to obtain the optimal control inputs of the perimeter control for a two-region network
comprising 19 homogeneous subregions subject to an imbalanced morning peak-hour demand profile. Results pinpoint the cordon
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Fig. 8. Regional accumulations during the simulation period when applying the following control strategies: (a) BB + static cordon; (b) LQR + static cordon;
(c) BB + dynamic cordon (𝜅 = 5); and (d) LQR + dynamic cordon (𝜅 = 5). In the dynamic cordon scenarios, the accumulation in Region 2 reduces around time
5000 [s] because of the location-varying cordon that only Subregion 19 is in Region 2. Then the accumulation increases since more subregions are added to
Region 2, see Fig. 6.

switching strategy is a powerful add-on to the region-level gating schemes in balancing the regions accumulations and protecting
the subregions that are prone to hypercongestion.

Several future research directions are envisaged. In the early stages of traffic automation, when there is a mixture of autonomous
and human-driven vehicles, the perimeter control and cordon selection algorithm both can adapt to the potential influence of
autonomous vehicles on each subregion’s capacity and the boundary capacity between subregions (see e.g. Mohajerpoor and
Ramezani (2019)). Moreover, the proposed dynamic cordon approach provides greater potential in congestion management such
as congestion pricing with a time-varying cordon. In addition, the network can be extended to include multiple modes of transport
including public transport, which underpins the application of multi-modal MFDs. Furthermore, another future research direction
is to apply the proposed cordon selection algorithm to a traffic microsimulation model, and tackling the local spillbacks at the
controlled intersections.
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Fig. 9. Production MFDs obtained from simulations when applying the following control strategies: (a) BB + static cordon; (b) LQR + static cordon; (c) BB
+ dynamic cordon (𝜅 = 5); and (d) LQR + dynamic cordon (𝜅 = 5). Note that 𝑃1 and 𝑃2 represent actual production MFDs obtained from the subregion-level
model, and they are compared against those estimated from Eq. (5). Note that a subregion might transfer to a different region over time due to the cordon
switching, resulting in jumps in MFDs with dynamic cordon.

Appendix A. Nomenclature

Notation Description
|𝒳 | Cardinality (or size) of Set 𝒳
R𝑛 The 𝑛-dimensional Euclidean space
R𝑛×𝑚 The space of 𝑛 × 𝑚 dimensional real matrices
S𝑛×𝑛 The space of 𝑛 × 𝑛 dimensional real symmetric matrices
ℛ Set of subregions in the network
|ℛ| Total number of subregions in the network
ℛ𝐼 (𝑡) Set of subregions in Region 𝐼 at time 𝑡
ℛ∗

𝐼 (𝑡) New set of subregions in Region 𝐼 at time 𝑡
|ℛ𝐼 (𝑡)| Number of subregions in Region 𝐼 at time 𝑡
𝜙𝑖 Set of subregions adjacent to Subregion 𝑖
𝑝𝑖(𝑛𝑖(𝑡)) [veh m/s] Production MFD of Subregion 𝑖 with accumulation 𝑛𝑖 at time 𝑡
𝑝max(𝑛cr𝑖 ) [veh m/s] Maximum of production MFD of Subregion 𝑖
𝑑3𝑖, 𝑑2𝑖, 𝑑1𝑖 Parameters of Subregion 𝑖 MFD
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Notation Description
𝐷̃3𝐼 , 𝐷̃2𝐼 , 𝐷̃1𝐼 , 𝐷𝜎𝐼 , 𝛽𝐼 Constant scalar parameters of Region 𝐼 MFD
𝑛𝑖(𝑡) [veh] Accumulation of Subregion 𝑖 at time 𝑡
𝑛𝑖𝑗 (𝑡) [veh] Accumulation in Subregion 𝑖 with destinations in Subregion 𝑗 at time 𝑡
𝑛cr𝑖 [veh] Critical accumulation of Subregion 𝑖
𝑛jam𝑖 [veh] Jam accumulation of Subregion 𝑖
𝑞𝑖𝑗 (𝑡) [veh/s] Exogenous travel demand generated in Subregion 𝑖 with destination in Subregion 𝑗 at

time 𝑡
𝑏𝑖ℎ [veh/s] Fixed boundary capacity between Subregion 𝑖 and Subregion ℎ
𝑟ℎ(𝑛ℎ(𝑡)) [veh/s] Receiving capacity of Subregion ℎ with accumulation 𝑛ℎ at time 𝑡
𝑟max
ℎ [veh/s] Maximum receiving capacity of Subregion ℎ
𝑚ℎ
𝑖𝑗 (𝑡) [veh/s] Demand for transfer outflow from Subregion 𝑖 with destination in Subregion 𝑗 through

immediate Subregion ℎ at time 𝑡
𝑚̂ℎ
𝑖𝑗 (𝑡) [veh/s] Realized transfer outflow from Subregion 𝑖 with destination in Subregion 𝑗 through

immediate Subregion ℎ at time 𝑡
𝑢𝑖𝑗 (𝑡) Perimeter control output between Subregion 𝑖 and Subregion 𝑗 at time 𝑡
𝜃ℎ𝑖𝑗 (𝑡) Proportion of vehicles in Subregion 𝑖 with destination Subregion 𝑗 that pass through

Subregion ℎ at time 𝑡
𝑤𝑖(𝑡) Density weight of Subregion 𝑖 at time 𝑡
𝑠𝑖(𝑡) Sending outflow pressure of Subregion 𝑖 at time 𝑡
𝜆𝑖(𝑡) Protection index of Subregion 𝑖
𝜏 [s] Common cycle time of controlled cordon intersections, which is the sample time of the

discretized dynamic model of the network
𝜅 Switching interval, or the minimum number of time-steps that the cordon does not

switch after a switching occurred
𝑁𝐼 (𝑡) [veh] Number of vehicles in Region 𝐼 at time 𝑡
𝑁𝐼𝐼 (𝑡) [veh] Number of vehicles in Region 𝐼 with final destination in Region 𝐼 at time 𝑡
𝑁𝐼𝐽 (𝑡) [veh] Number of vehicles in Region 𝐼 with destination Region 𝐽 at time 𝑡
𝑄𝐼𝐼 (𝑡) [veh/s] Travel demand generated in Region 𝐼 with final destination of Region 𝐼 at time 𝑡
𝑄𝐼𝐽 (𝑡) [veh/s] Travel demand generated in Region 𝐼 with destination Region 𝐽 at time 𝑡
𝑀𝐼

𝐼𝐼 (𝑡) [veh/s] Internal outflow from Region 𝐼 with destination of Region 𝐼 through Region 𝐼 at time 𝑡
𝑀𝐻

𝐼𝐽 (𝑡) [veh/s] External outflow from Region 𝐼 with destination Region 𝐽 that passes through Region 𝐻
at time 𝑡

𝑈𝐼𝐽 (𝑡) Perimeter control output between Region 𝐼 and Region 𝐽 at time 𝑡
𝛩𝐻
𝐼𝐽 (𝑡) Proportion of vehicles in Region 𝐼 with destination Region 𝐽 that pass through Region 𝐻

at time 𝑡
𝜂𝐽𝐼𝐼 (𝑡) Proportion of transfer flows that pass the boundary between Region 𝐼 and Region 𝐽 at

time 𝑡 immediately (without travel through series of subregions in their departure
region) with final destination in Region 𝐼

𝜂𝐽𝐼𝐽 (𝑡) Proportion of transfer flows that pass the boundary between Region 𝐼 and Region 𝐽 at
time 𝑡 immediately (without travel through series of subregions in their departure
region) with final destination in Region 𝐽

𝐿𝐼𝐼 (𝑡) [m] Average trip length of trips from Region 𝐼 to Region 𝐼 at time 𝑡
𝐿𝐼𝐽 (𝑡) [m] Average trip length of trips from Region 𝐼 to Region 𝐽 at time 𝑡
𝑃𝐼 (𝑁𝐼 (𝑡)) [veh m/s] Production MFD for Region 𝐼 with accumulation 𝑁𝐼 at time 𝑡
𝜎(𝑁𝐼 (𝑡)) [veh] Standard deviation of accumulations among all links in Region 𝐼
𝑁 jam

𝐼,𝜌𝑠
[veh] Jam accumulation in Region 𝐼 for the network at switching state 𝜌𝑠

𝜎het𝐼 [veh] Standard deviation of |ℛ𝐼 (𝑡)| negative binomial distributions with mean density of 𝑁𝐼 (𝑡)
∕ |ℛ𝐼 (𝑡)|

𝛬̄𝐼 (𝑡) Average protection index for Region 𝐼 at time 𝑡
𝑈min and 𝑈max Lower and upper bounds of perimeter control outputs
𝐴𝜌𝑠 , 𝐵𝜌𝑠 and 𝐷𝜌𝑠 Constant matrices that characterize the linearized discrete-time accumulation dynamics

of the network at switching state 𝜌𝑠
𝐾𝜌𝑠 Constant control gain of the network at switching state 𝜌𝑠
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Appendix B. Descriptions of linearized matrices 𝑨𝝆𝒔 and 𝑩𝝆𝒔

Linearizing Eq. (7) with respect to the SS demand, accumulations, and control outputs at the switched state 𝜌𝑠, results in the
following dynamic equations:

𝛥𝑁̇𝜌𝑠 (𝑡) = 𝐴̃𝜌𝑠𝛥𝑁𝜌𝑠 (𝑡) + 𝐵̃𝜌𝑠𝛥𝑈𝜌𝑠 (𝑡) + 𝛥𝑄𝜌𝑠 (𝑡) + 𝐎̃
(

𝛥𝐿𝜌𝑠 (𝑡), 𝛥𝛩𝜌𝑠 (𝑡), 𝛥𝜂𝜌𝑠 (𝑡)
)

, (B.1)

where 𝐴̃𝜌𝑠 and 𝐵̃𝜌𝑠 are defined below. Discretization of Eq. (B.1) results in Eq. (16) with 𝐴𝜌𝑠 = (𝐼𝒔𝒏 + 𝜏𝐴̃𝜌𝑠 ), 𝐵𝜌𝑠 = 𝜏𝐵̃𝜌𝑠 , and
𝜌𝑠 = 𝜏𝐼𝒔𝒏 . Let us define
̃𝐼 (𝑁∗

𝐼,𝜌𝑠
, 𝜎(𝑁∗

𝐼,𝜌𝑠
)) ≜ (2𝐷̃3𝐼𝑁∗

𝐼,𝜌𝑠
+𝐷̃2𝐼 )(𝐷𝜎𝐼 𝑒

𝛽𝐼 (𝜎𝐼 (𝑁∗
𝐼,𝜌𝑠

)−𝜎het𝐼,𝜌𝑠
)+(1−𝐷𝜎𝐼 ))+

(

𝐷̃3𝐼𝑁∗2
𝐼,𝜌𝑠

+ 𝐷̃2𝐼𝑁∗
𝐼,𝜌𝑠

+ 𝐷̃1𝐼

)

𝛽𝐼𝐷𝜎𝐼 𝜕𝜎𝐼 (𝑁
∗
𝐼,𝜌𝑠

)𝑒𝛽𝐼 (𝜎𝐼 (𝑁
∗
𝐼,𝜌𝑠

)−𝜎het𝐼,𝜌𝑠
)

nd 𝑁 jam
𝐼 𝜕𝜎𝐼 (𝑁∗

𝐼 ) ≜ 3𝜒∗
3𝐼 (𝑁

∗
𝐼 ∕𝑁

jam
𝐼 )2 + 2𝜒∗

2𝐼 (𝑁
∗
𝐼 ∕𝑁

jam
𝐼 ) + 𝜒∗

1𝐼 , 𝑃 ∗
𝐼,𝜌𝑠

≜ 𝑃𝐼 (𝑁∗
𝐼,𝜌𝑠

, 𝜎(𝑁∗
𝐼,𝜌𝑠

)), and 𝐹 ∗
𝐼,𝜌𝑠

≜ 𝐹𝐼 (𝑁∗
𝐼,𝜌𝑠

, 𝜎(𝑁∗
𝐼,𝜌𝑠

)), 𝐼 ∈ {1, 2}.

hereupon, we have 𝐴̃𝜌𝑠 =
[

𝐴̃𝑖𝑗,𝜌𝑠

]

, 𝐵̃𝜌𝑠 =
[

𝐵̃𝑖𝑘,𝜌𝑠

]

, 𝑖, 𝑗 ∈ {1,… , 4}, and 𝑘 ∈ {1, 2}, wherein the elements are defined in the sequel:

𝐴̃11,𝜌𝑠 = −𝛩1∗
11,𝜌𝑠

(

𝑁∗
11,𝜌𝑠

𝐿∗
11,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

+
𝑃 ∗
1,𝜌𝑠

𝑁∗
1,𝜌𝑠

𝐿∗
11,𝜌𝑠

)

− 𝑈∗
12,𝜌𝑠

𝛩2∗
11,𝜌𝑠

𝜂2∗11,𝜌𝑠

(

𝑁∗
11,𝜌𝑠

𝐿∗
12,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

+
𝑃 ∗
1,𝜌𝑠

𝑁∗
1,𝜌𝑠

𝐿∗
12,𝜌𝑠

)

,

𝐴̃12,𝜌𝑠 = −𝑈∗
12,𝜌𝑠

𝛩2∗
11,𝜌𝑠

𝜂2∗11,𝜌𝑠
𝑁∗

11,𝜌𝑠
𝐿∗
12,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

− 𝛩1∗
11,𝜌𝑠

𝑁∗
11,𝜌𝑠

𝐿∗
11,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

,

𝐴̃13,𝜌𝑠 = 𝑈∗
21,𝜌𝑠

𝛩1∗
21,𝜌𝑠

𝜂1∗21,𝜌𝑠

(

𝑁∗
21,𝜌𝑠

𝐿∗
21,𝜌𝑠

𝐹 ∗
2,𝜌𝑠

+
𝑃 ∗
2,𝜌𝑠

𝑁∗
2,𝜌𝑠

𝐿∗
21,𝜌𝑠

)

,

𝐴̃14,𝜌𝑠 = 𝑈∗
21,𝜌𝑠

𝛩1∗
21,𝜌𝑠

𝜂1∗21,𝜌𝑠
𝑁∗

21,𝜌𝑠
𝐿∗
21

𝐹 ∗
2,𝜌𝑠

,

𝐴̃21,𝜌𝑠 = −𝑈∗
12,𝜌𝑠

𝛩2∗
12,𝜌𝑠

𝜂2∗12,𝜌𝑠
𝑁∗

12,𝜌𝑠
𝐿∗
12,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

,

𝐴̃22,𝜌𝑠 = −𝑈∗
12,𝜌𝑠

𝛩2∗
12,𝜌𝑠

𝜂2∗12,𝜌𝑠

(

𝑁∗
12,𝜌𝑠

𝐿∗
12,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

+
𝑃 ∗
1,𝜌𝑠

𝑁∗
1,𝜌𝑠

𝐿∗
12,𝜌𝑠

)

,

𝐴̃23,𝜌𝑠 = 𝑈∗
21,𝜌𝑠

𝛩1∗
22,𝜌𝑠

𝜂1∗22,𝜌𝑠
𝑁∗

22,𝜌𝑠
𝐿∗
21,𝜌𝑠

𝐹 ∗
2,𝜌𝑠

,

𝐴̃24,𝜌𝑠 = 𝑈∗
21,𝜌𝑠

𝛩1∗
22,𝜌𝑠

𝜂1∗22,𝜌𝑠

(

𝑁∗
22,𝜌𝑠

𝐿∗
21,𝜌𝑠

𝐹 ∗
2,𝜌𝑠

+
𝑃 ∗
2,𝜌𝑠

𝑁∗
2,𝜌𝑠

𝐿∗
21

)

,

𝐴̃31,𝜌𝑠 = 𝑈∗
12,𝜌𝑠

𝛩2∗
11,𝜌𝑠

𝜂2∗11,𝜌𝑠

(

𝑁∗
11,𝜌𝑠

𝐿∗
12,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

+
𝑃 ∗
1,𝜌𝑠

𝑁∗
1,𝜌𝑠

𝐿∗
12,𝜌𝑠

)

,

𝐴̃32,𝜌𝑠 = 𝑈∗
12,𝜌𝑠

𝛩2∗
11,𝜌𝑠

𝜂2∗11,𝜌𝑠
𝑁∗

11,𝜌𝑠
𝐿∗
12,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

,

𝐴̃33,𝜌𝑠 = −𝑈∗
21,𝜌𝑠

𝛩1∗
21,𝜌𝑠

𝜂1∗21,𝜌𝑠

(

𝑁∗
21,𝜌𝑠

𝐿∗
21,𝜌𝑠

𝐹 ∗
2,𝜌𝑠

+
𝑃 ∗
2,𝜌𝑠

𝑁∗
2,𝜌𝑠

𝐿∗
21,𝜌𝑠

)

,

𝐴̃34,𝜌𝑠 = −𝑈∗
21,𝜌𝑠

𝛩1∗
21,𝜌𝑠

𝜂1∗21,𝜌𝑠
𝑁∗

21,𝜌𝑠
𝐿∗
21,𝜌𝑠

𝐹 ∗
2,𝜌𝑠

,

𝐴̃41,𝜌𝑠 = 𝑈∗
12,𝜌𝑠

𝛩2∗
12,𝜌𝑠

𝜂2∗12,𝜌𝑠
𝑁∗

12,𝜌𝑠
𝐿∗
12,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

,

𝐴̃42,𝜌𝑠 = 𝑈∗
12,𝜌𝑠

𝛩2∗
12,𝜌𝑠

𝜂2∗12,𝜌𝑠

(

𝑁∗
12,𝜌𝑠

𝐿∗
12,𝜌𝑠

𝐹 ∗
1,𝜌𝑠

+
𝑃 ∗
1,𝜌𝑠

𝑁∗
1,𝜌𝑠

𝐿∗
12,𝜌𝑠

)

,

𝐴̃43,𝜌𝑠 = −𝑈∗
21,𝜌𝑠

𝛩1∗
22,𝜌𝑠

𝜂1∗22,𝜌𝑠
𝑁∗

22,𝜌𝑠
𝐿∗
21,𝜌𝑠

𝐹 ∗
2,𝜌𝑠

− 𝛩2∗
22,𝜌𝑠

𝑁∗
22,𝜌𝑠

𝐿∗
22,𝜌𝑠

𝐹 ∗
2,𝜌𝑠

,

𝐴̃44,𝜌𝑠 = −𝛩2∗
22,𝜌𝑠

(

𝑁∗
22,𝜌𝑠

𝐿∗
22,𝜌𝑠

𝐹 ∗
2,𝜌𝑠

+
𝑃 ∗
2,𝜌𝑠

𝑁∗
2,𝜌𝑠

𝐿∗
22,𝜌𝑠

)

− 𝑈∗
21,𝜌𝑠

𝛩1∗
22,𝜌𝑠

𝜂1∗22,𝜌𝑠

(

𝑁∗
22,𝜌𝑠

𝐿∗
21,𝜌𝑠

𝐹 ∗
2,𝜌𝑠

+
𝑃 ∗
2,𝜌𝑠

𝑁∗
2,𝜌𝑠

𝐿∗
21,𝜌𝑠

)

,

𝐵̃11,𝜌𝑠 = −𝛩2∗
11,𝜌𝑠

𝜂2∗11,𝜌𝑠𝑁
∗
11,𝜌𝑠

𝑃 ∗
1,𝜌𝑠

𝑁∗
1,𝜌𝑠

𝐿∗
12,𝜌𝑠

, 𝐵̃12,𝜌𝑠 = 𝛩1∗
21,𝜌𝑠

𝜂1∗21,𝜌𝑠𝑁
∗
21,𝜌𝑠

𝑃 ∗
2,𝜌𝑠

𝑁∗
2,𝜌𝑠

𝐿∗
21,𝜌𝑠

,

𝐵̃21,𝜌𝑠 = −𝛩2∗
12,𝜌𝑠

𝜂2∗12,𝜌𝑠𝑁
∗
12,𝜌𝑠

𝑃 ∗
1,𝜌𝑠

𝑁∗
1,𝜌𝑠

𝐿∗
12,𝜌𝑠

, 𝐵̃22,𝜌𝑠 = 𝛩1∗
22,𝜌𝑠

𝜂1∗22,𝜌𝑠𝑁
∗
22,𝜌𝑠

𝑃 ∗
2,𝜌𝑠

𝑁∗
2,𝜌𝑠

𝐿∗
21,𝜌𝑠

,

𝐵̃31,𝜌𝑠 = −𝐵̃11,𝜌𝑠 , 𝐵̃32,𝜌𝑠 = −𝐵̃12,𝜌𝑠 , 𝐵̃41,𝜌𝑠 = −𝐵̃21,𝜌𝑠 , and 𝐵̃42,𝜌𝑠 = −𝐵̃22,𝜌𝑠 .

ppendix C. Estimating region accumulation STD

Given that the network at the subregion level pertains homogeneous MFD characteristics, it has been shown using empirical
ata (Geroliminis and Sun, 2011) that the accumulation STD of each subregion can be estimated by a unimodal 3rd degree
olynomial function of the subregion’s normalized accumulation (i.e. accumulation over jam accumulation):

𝜎(𝑛𝑖(𝑡)) = 𝛼𝜎3𝑖

(

𝑛𝑖(𝑡)

𝑛jam𝑖

)3

+ 𝛼𝜎2𝑖

(

𝑛𝑖(𝑡)

𝑛jam𝑖

)2

+ 𝛼𝜎1𝑖

(

𝑛𝑖(𝑡)

𝑛jam𝑖

)

, (C.1)

where 𝑛jam𝑖 is the jam accumulation of Subregion 𝑖 ∈ ℛ and 𝛼𝜎𝑚𝑖 , 𝑚 ∈ {1, 2, 3}, are scalar parameters that can be obtained from the
historical links’ accumulations in the subregion (see Figure 4 in (Geroliminis and Sun, 2011)).

To scale this up at the region level, a well-defined function as Eq. (C.1) cannot be defined due to the density heterogeneity of the
network. By plotting the STD versus mean occupancy of the network as demonstrated in Fig. C.10, it is clear that the network’s STD
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Fig. C.10. Equioutflow lines in the average occupancy vs. STD occupancy plane. Each solid line represents the variation of the STD of density with respect to
the average density for a network with outflow constrained to a certain bin. In this figure, 𝑀 represents the total outflow of the network. The data for this
figure is obtained as Figure 4 in Ramezani et al. (2015).

occupancy may not be uniquely defined by its mean occupancy. However, the figure highlights that the STD and mean occupancy
are strongly correlated through production, in a way that a well-defined 3rd order polynomial can fit to the data given a certain
outflow. Conclusively, the occupancy STD can be uniquely defined as a function of the mean occupancy and outflow:

𝜎(𝑁𝐼,𝜌𝑠 (𝑡)) = 𝜒3𝐼,𝜌𝑠 (𝑡)
⎛

⎜

⎜

⎝

𝑁𝐼,𝜌𝑠 (𝑡)

𝑁 jam
𝐼,𝜌𝑠

⎞

⎟

⎟

⎠

3

+ 𝜒2𝐼,𝜌𝑠 (𝑡)
⎛

⎜

⎜

⎝

𝑁𝐼,𝜌𝑠 (𝑡)

𝑁 jam
𝐼,𝜌𝑠

⎞

⎟

⎟

⎠

2

+ 𝜒1𝐼,𝜌𝑠 (𝑡)
⎛

⎜

⎜

⎝

𝑁𝐼,𝜌𝑠 (𝑡)

𝑁 jam
𝐼,𝜌𝑠

⎞

⎟

⎟

⎠

, (C.2)

where 𝑁 jam
𝐼,𝜌𝑠

is the jam density of Region 𝐼 , and 𝜒𝑚𝐼,𝜌𝑠 (𝑡) = 𝜒𝑚𝐼,𝜌𝑠 (𝑃𝐼,𝜌𝑠 (𝑡)), 𝑚 ∈ {1, 2, 3} are scalar functions that are acquired from
the comprehended data regression process. At a switching instance, the nominal 𝜒∗

𝑚𝐼,𝜌𝑠
parameters are identified by finding the best

polynomial (among all polynomials shown in Fig. C.10) that fits to the nominal accumulation (𝑁∗
𝐼,𝜌𝑠

) and STD occupancy (𝜎(𝑁∗
𝐼,𝜌𝑠

)).
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