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A B S T R A C T   

As transportation network companies and automobile manufacturers continue to invest in the 
development of self-driving vehicles, it can be expected that autonomous taxi (a-taxi) fleets will 
become a major component of on-demand transport services in the foreseeable future. The ma-
jority of existing automated fleet management systems focus on central dispatch strategies that 
rely on real-time information and communication. This paper proposes a novel decentralised 
cooperative cruising method for offline operation of a-taxi fleets, which serves as a contingency 
plan during a full communication shutdown. The proposed method acts as an emergency plan for 
the system to continue serving passengers with the objective of maximising the total number of 
served passengers by the fleet. The method uses historical trip data to estimate PageRank cen-
tralities of roads as a proxy of long-term likelihood of finding waiting passengers over a series of 
trips. The proposed method uses this metric to (i) compute weighted shortest paths for vacant a- 
taxi cruising route planning, and (ii) partition the network into homogeneous regions for effective 
cruising destination choice (mission planning). The movements of vacant a-taxis between regions 
are modelled as a Markov chain such that a transition probability matrix is computed to achieve 
the optimal spatial distribution of vacant a-taxis to maximise the total expected pick-ups by the 
fleet, estimated based on bilateral meeting functions. Compared to benchmark strategies which 
select destinations randomly and cruise along the shortest travel time path, the proposed method 
shows significant improvements in service performances for different fleet sizes.   

1. Introduction 

On-demand shared mobility services such as ride-sourcing systems have experienced explosive growth in recent years and have 
emerged as an essential mode for daily commute. Meanwhile, investments have flowed into the autonomous vehicle industry (e.g. by 
Google, Uber, Tesla, Argo, and Cruise among others) to commercialise self-driving vehicles. With a merger between the two, it is 
expected that on-demand mobility services will deploy self-driving technology in the near future, and autonomous taxi (a-taxi) fleets 
will become a pillar of on-demand transportation services. 

The majority of ride-sourcing fleet management methods in literature require real-time (i) location information of vehicles/a-taxis 
(moving agents) and waiting passengers (stationery resources), and (ii) communication between a central dispatching unit and a-taxis. 
These make centralised methods prone to communication disruption. In this paper, we propose a decentralised method to determine 
cruising destinations and cruising paths for fully automated taxi fleets when the communication between a-taxis and passengers via the 

* Corresponding author. 
E-mail address: mohsen.ramezani@sydney.edu.au (M. Ramezani).  

Contents lists available at ScienceDirect 

Transportation Research Part C 

journal homepage: www.elsevier.com/locate/trc 

https://doi.org/10.1016/j.trc.2021.103336 
Received 24 December 2020; Received in revised form 30 May 2021; Accepted 4 August 2021   

mailto:mohsen.ramezani@sydney.edu.au
www.sciencedirect.com/science/journal/0968090X
https://www.elsevier.com/locate/trc
https://doi.org/10.1016/j.trc.2021.103336
https://doi.org/10.1016/j.trc.2021.103336
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2021.103336&domain=pdf
https://doi.org/10.1016/j.trc.2021.103336


Transportation Research Part C 131 (2021) 103336

2

central dispatch unit is lost. Furthermore, the method is designed to be cooperative such that a-taxis cruise by anticipating the 
movements of other a-taxis to collectively increase the total number of served passengers, rather than competing with each other. The 
designed method enables the a-taxi fleet to continue operating during a communication shutdown by utilising historical data of 
passengers pick-up and drop-off locations. 

Designing cruising and matching strategies for fleets of moving agents (e.g. taxis, ride-sourcing vehicles, a-taxis, and in general the 
supply) to meet/find stationary resources (e.g. waiting passengers, and in general the demand) have been studied in the literature 
considering different problem settings. For static type of dial-a-ride problems (i.e. the future information of supply and demand is 
known in advance with less emphasis on real-time changes), the optimal cruising path for picking up multiple passengers is often 
studied as a pick-and-delivery problem (Psaraftis et al., 2016; Berbeglia et al., 2010; Naccache et al., 2018; Cordeau, 2006; Colorni and 
Righini, 2001). For dynamic types of the problem with real-time spatial and temporal changes in supply and demand (e.g. taxi sys-
tems), a plethora of papers tackle different operational aspects of these systems, mostly with centralised considerations. For example, 
Wong et al. (2014, 2015) suggested a cruising path for taxis by finding the cumulative probability of successful passenger pick-ups 
along the routes. Ramezani and Nourinejad (2018) studied the use of centralised macroscopic approaches for transferring (reposi-
tioning) of taxis in large networks. A centralised dispatching system by shifting the priority from customers to taxis is studied in 
Maciejewski et al. (2016). A combination of centralised and decentralised dispatching systems has been proposed to decrease the 
required workload of dispatching in Duan et al. (2020). More specifically, various centralised dispatching methods for autonomous 
fleets to find passengers have been developed, for instance see (Liang et al., 2020; Hörl et al., 2019; Vosooghi et al., 2019; Hyland and 
Mahmassani, 2018; Ma et al., 2017) among others. Interested readers may also refer to review articles (Pillac et al., 2013; Narayanan 
et al., 2020; Hyland and Mahmassani, 2017; Mourad et al., 2019) that introduce detailed characteristics of on-demand shared mobility 
systems and shared autonomous fleets. 

To date, few studies have been dedicated to address the effect of incomplete, uncertain, or complete shutdown of information and 
communication channels on the operation of ride-sourcing fleets. This requires investigating decentralised or distributed cruising 
methods. For example, Guo and Wolfson (2018) utilised a gravitational model for decentralised route planning of fleet vehicles. Ayala 
et al. (2018) fused historical data with online information modification to temporarily modify the attractiveness of locations in which 
there are no resources (e.g. waiting passengers) to reduce sensitivity to errors and noises in real-time communication. Hu et al. (2019) 
and Buchin et al. (2019) investigated the dispatch problem when taxi drivers make decentralised cruising decisions without 
communicating among themselves. Hu et al. (2019) used k-means method to spatially cluster Manhattan into 150 regions. Each region 
is ranked by a weight affected by the number of pick-ups and drop-offs in the region. Taxi drivers then choose their destinations based 
on the ranking. Buchin et al. (2019) mainly uses a Lévy flight strategy to limit the choice set of intersections as cruise destinations 
before performing a weighted random selection. Both methods have a risk of creating local supply surplus and accumulating excessive 
vacant taxis over time. 

The issue of communication loss can also be tackled with a different approach; by designing algorithms that are resilient to 
communication loss or disruptions. For instance, resilient control strategies have been developed to address cyber-attacks and dis-
ruptions in perimeter control applications (Haddad and Mirkin, 2020; Mercader and Haddad, 2021). The proposed method can be 
classified as an offline anticipatory multi-agent method that aims to search for static (impatient) targets with unknown-locations in a 
given environment. Multi-agent coordination is often studied in the field of robotics. For example, Zedadra et al. (2016) investigated 
foraging problems which require agents to roam in an unknown environment to search for resources (i.e. food) and transport them 
back to depots (i.e. nests). The algorithm relies on indirect communication by leaving trail marks (i.e. pheromones). The limitation of 
real-time communication and information are also common in research on unmanned aerial vehicles (UAVs) and autonomous un-
derwater vehicles (AUVs) due to their complex operational environments. Although the methods cannot be directly appplyied to 
transportation networks, concepts such as fleet cooperation and mission planning are relevant to our paper. Hadi et al. (2021) reviews 
recent literature of cooperative control methods for AUVs, and Eaton et al. (2016) reviews articles for UAVs. 

The proposed cruising method has two main components: regional profitability estimation and dynamic probabilistic decision- 
making. The regional profitability is determined by the normalised PageRank (PR) value of each road. The roads PR values reflect 
the profitability of each road in terms of servicing a sequence of passengers. This paper utilises a breadth-first search (BFS) algorithm to 
partition the network into a number of homogeneous regions with respect to the obtained normalised PR values. The partitioning 
algorithm guarantees the connectivity within each region. By aggregating the normalised road PR values in a region, the overall 
regional profitability can be obtained. The a-taxi cruising within each region is designed to be a random search as all the roads in each 
region are expected to have similar level of long-term profitability. 

Each a-taxi independently chooses to either stay in their region and continue random search or leave for one of the neighbouring 
regions. To determine the optimal inter-regional movement for vacant a-taxis, first, the method estimates the optimal number of 
vacant a-taxis in each region to maximise the expected number of passenger pick-ups in the entire network. We adopt a Cobb-Douglas 
meeting function with two inputs (i.e. the number of vacant a-taxis and the estimated number of waiting passengers) to estimate the 
number of pick-ups in each region. Second, the evolution of the number of empty a-taxis in each region is modelled as a Markovian 
process to determine the transition probability matrix that distributes vacant a-taxis among the regions to reach the obtained optimal 
number of vacant a-taxis in each region. Technologically, one can envision the proposed method to be implemented by an offline on- 
board module installed in each a-taxi. 

The remainder of this article is organised as follows. Section 2 defines the problem and lists relevant assumptions. Section 3.1 
presents the outline of the method. In Section 3.2, we introduce the road PR value and its application in the proposed decentralised 
cooperative cruise strategy. Section 3.3 proposes the partitioning algorithm that is developed based on BFS algorithm. The proposed 
cruising method for finding the optimal inter-regional movements of a-taxis is elaborated in Sections 3.4 and 3.5. The advantages of 
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using the proposed method are investigated by implementing the algorithm on NYC Taxi & Limousine Commission (TLC) datasets. The 
datasets and simulation benchmarks are presented in Section 4. The results are discussed in Section 4.4 and the paper is concluded in 
Section 5. 

2. Problem definition 

Let us assume a fully automated ride-sourcing system that consists of autonomous vehicles (a-taxis) only. The principal operations 
of the system is governed by a central platform that collects real-time information of origin and destination of travel requests and the 
current location and status of a-taxis (occupied or vacant). The central platform also assigns vacant a-taxis to unserved waiting pas-
sengers. This paper focuses on designing an offline cruising method for such a system when there is a disruption in real-time 
communication. We assume the disruption results in no communication among the a-taxis, between the a-taxis and the platform, 
between the passengers and the platform, and between the passengers and the a-taxis. This cruising method would be decentralised 
because the central platform has no role in dispatching the vacant a-taxis. Instead, a-taxis would control how to search for waiting 
passengers on their own. We design this decentralised cruising method to be cooperative as well. That is, the primary goal is to enable 
the system to continue operating during communication shutdown with the main objective of increasing the total number of pick-ups 
by the fleet (not individual a-taxis). This objective is expected to reduce the search time of a-taxis and waiting time of passengers. 

Before the communication shutdown and loss of communication with the central dispatch platform, a-taxis receive route planning 
decisions from the centralised dispatching system that, for example, uses bipartite matching to maximise passenger pick-ups while 
minimising the total cruising distance, e.g. see Zhan et al. (2016). During communication disruption, an on-board module implements 
the proposed decentralised coordinated method as a common optimisation algorithm. Each a-taxi individually selects a destination 
(mission planning) and search for waiting passengers along its cruising paths (route planning) to maximise the total expected pick-ups 
in the network by the whole fleet. The proposed method utilises historical passenger pick-up and drop-off times and locations to 
partition the network into homogeneous regions in terms of the expected profitability. 

In this paper, we assume that  

(i) There is no real-time communication between a-taxis and the central dispatch unit. This means an a-taxi cannot communicate 
with waiting passengers or other a-taxis during the communication shutdown. 

Fig. 1. Framework of the decentralised cooperative cruising method. Initial inputs are the network map and historical passenger origins/destinations. 
Static outputs are computed at the beginning of communication loss and remain fixed afterwards. Dashed arrows indicate how the dynamic outputs 
are updated at fixed time intervals. Vacant a-taxis use the corresponding matrix of transition probabilities to choose their destination regions 
(mission planning) and reach there via the PR-based shortest paths (route planning). 
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(ii) The cruising behaviour of a-taxis is decided by an on-board module that implement the proposed decentralised cooperative 
method. Their cruising decisions depend on both time and location.  

(iii) A-taxis have the last known positions of waiting passengers before the communication shutdown. This serves as the initial 
condition of communication shutdown period.  

(iv) During the communication loss, the total number of a-taxis (i.e. fleet size) does not change.  
(v) Occupied a-taxis provide trip services to passengers by delivering them to their destinations via the shortest travel time route.  

(vi) Static map information and historical origin and destination data of trips are available to the proposed method.  
(vii) Vacant a-taxis are allowed to provide street-hailing services, meaning they can pick up passengers on their cruising route. They 

can detect and pick up a waiting passenger within a 20-s travel time radius.  
(viii) The dynamic effect of congestion, and other time-varying road conditions such as speeds and traffic signals are not considered.  

(ix) Stationary passengers do not wait indefinitely (Wang et al., 2020). In this paper, they choose another travel mode after a fixed 
patience time of 10 min. An order expiration negatively impacts the overall service quality. 

3. Method 

3.1. Method outline 

The proposed decentralised cooperative cruising method functions without real-time information of passengers and a-taxis. As inputs, 
the method requires the network map and historical trip records (origins and destinations). These inputs are used to estimate a metric, 
PageRank (PR) value, that indicates each road’s long-term likelihood that a-taxis can find passengers on. The PR value serves two 
purposes. First, it is used in Dijkstra’s shortest path algorithm to scale road travel times so that a-taxis tend to travel along the more 
profitable routes (route planning, see Section 3.2). Second, we use it to partition the network graph into regions of roughly the same PR 
values so that a cruising destination can be selected at a regional level (mission planning, see Section 3.3). Next, historical training data 
are used to model the aggregated dynamics of pick-ups in regions represented by parsimonious meeting functions (Section 3.4). These 
calibrated functions are used to estimate the desired number of vacant a-taxis in each region in each time period. During each interval, 
vacant a-taxis cruise between regions to achieve the desired numbers. A probability matrix is computed to guide a-taxis inter-regional 
cruising (Section 3.5). The method considers the vacant a-taxi distribution in regions as the network state, and estimates a transition 
matrix to reach the desired state as the steady state of a Markov chain. Fig. 1 outlines the proposed method. 

The proposed method is cooperative. This is realised by letting every vacant a-taxi follow the same zonal transition probability 
matrix to optimise the unified objective of maximising the expected passenger pick-ups by the fleet (see Eq. 3). Each a-taxi does not 
seek to maximise individual profits, but to improve the overall number of trip services in the network. The method outline in Fig. 1 
shows a set of static outputs to characterise the network conditions that remain fixed during the communication shutdown. The 
dynamic outputs are calculated at discrete time intervals (e.g. every 5 min) to adjust mission planning decisions, considering potential 
variations in the passenger demand and location of vacant a-taxis. For practical implementations, this method can be executed by on- 
board computer modules installed in each a-taxi. The module can be automatically activated once communication with the central 
management unit is disrupted. 

Fig. 2. There are 3 trip requests on both roads A and B, with destinations [X,Y,Z] and [X′

,Y ′

,Z′ ] respectively. Road B is more profitable (with a 
higher PR value) for the fleet operator in the long term because there is a greater probability to find the next passenger on the subsequent desti-
nation roads. 
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3.2. PageRank-based cruising 

We propose a novel approach to compute efficient cruising paths which maximise the probability of finding a series of passengers 
using the PageRank (PR) algorithm (Page et al., 1999). Unlike a typical fastest/shortest path with a myopic and greedy approach, the 
proposed cruising method considers the probability of finding subsequent passengers after each drop-off. The long-term profitability of 
a road for the fleet operator (in terms of more potential pick-ups over a series of trips) is reflected by the number of passengers and 
whether their destinations are also profitable. The example in Fig. 2 explains why PR is a more appropriate measure of road profit-
ability than trip pick-up counts. 

The PR algorithm was initially designed to analyse browsing activities on the Internet. It is one of the fundamental algorithms to 
rank popular and influential websites in recommendation systems. In a directed graph, the PR centrality is a node property repre-
senting its importance, as a variant of the eigenvector centrality. The PR calculation is based on the concept of Markov chains. The state 
space of node PR values, which sums to 1, is iteratively updated by passing down source node values to child nodes until the state space 
converges. The source node value is shared equally among its out-flowing/downstream nodes. Usually a damping/teleportation factor 
less than 1 is used to account for users who access a node via means not represented in the graph. In a transportation network, the 
damping/teleportation factor can be set as 1 because teleportation is not possible. 

Road PR values are estimated with historical trip records to quantify the long-term profitability of roads by considering trips as a 
series of pick-ups and drop-offs. Since the profitability of a road is determined by how many potential trips it leads to, the PR value of a 
road is shared among all roads where passengers would travel to this destination based on the ratio of trip volumes. This process is 
iterated until the PR values converge (e.g. with a tolerance of 10− 6). After convergence of the PR calculation, the final PR value of Road 
i is normalised by its travel time as, 

PR(i) =
1

tt(i)

∑

j∈D(i)

wijPR(j)
L(j)

(1)  

where tt(i) is the fixed travel time to traverse Road i; D(i) is the set of passenger trip destinations from Road i; L(j) is the total number of 
trips from all roads in the network where passengers travel to Road j as their trip destination, and wij is the total number of trips from 
Road i to j during the study period. In other words, 

∑
iwij = L(j)∀i ∈ all roads. Once converged, the PR value is normalised by tt(i) to 

Fig. 3. Comparison between (a) normalised road pick-up counts and (b) normalised PR values. The intensity of red colour represents the magnitude 
of values. Given the non-linear distribution, raw PR values and trip counts are raised to a power of 0.35 before being scaled between 0 and 1 to 
illustrate extreme values. 
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mitigate bias against shorter roads. 
Results of road PR values using historical trip origin-destination pairs are compared with trip pick-up counts in Fig. 3. The dis-

tribution of both values are non-linear, with extremely high values concentrated at certain locations due to high volumes of trip records 
at those roads. Their values show a strong linear correlation with Pearson’s coefficient of 0.971 and Spearman’s coefficient of 0.979. In 
addition, the correlation coefficients are 0.518 and 0.794 respectively between normalised drop-off counts and PR values. As shown in 
the figure, PR values are able to identify areas with high passenger trip demand. 

Dijkstra’s shortest path algorithm has been known as an efficient method in route planning problems (Dijkstra, 1959; Zwick, 2001). 
To compute the most efficient cruising path, we apply Dijkstra’s algorithm with the inverse of normalised PR (i.e. 1/PR(i)) as the 
weight of each road. The algorithm identifies a (directed) sequence of roads between a source road and a destination road such that the 
total path weight is minimised. In the proposed cruising method, a-taxis plan their cruising routes by following these PR-based shortest 
paths between their current locations and cruising destinations. 

3.3. Network partitioning 

The second (offline) step of the method is to partition the city network by grouping roads with similar normalised PR values to 
enable the efficient selection of cruising destinations for mission planning. Hence, a-taxis could roam randomly within each region 
with a similar expected long-term profitability. This process of identifying relatively homogeneous regions is beneficial by: (1) 
aggregating historical data to analyse systematic patterns rather than noisy fluctuations; (2) providing a cruise direction rather than a 
specific location to avoid inefficiencies in overcrowding; and (3) enabling an elegant mathematical model to minimise the passenger 
order expiration ratio. 

The proposed partitioning method guarantees to divide the network into non-overlapping connected regions without specifying the 
exact number of regions or the location of region centroids. Regions are formed in iterations such that one region is generated at a time. 
Regions are connected, meaning each region can be accessed via at least one neighbouring region. We use a variant of breadth-first 
search (BFS) to cluster neighbouring roads into a region. Unlike a basic BFS, our algorithm sequentially expands each region and 
the search depth is relative to the current region (a group of multiple roads) instead of a single road (i.e.the root node in a graph). This 
partitioning approach is similar to a flood-fill algorithm which has been applied in robotics to avoid obstacles, and in transportation 
problems to calculate the shortest paths with distance maps (Anvari et al., 2015). A BFS approach is relatively flexible to impose 
boundary constraints while ensuring node connectivity within regions. 

The partitioning algorithm clusters unlabelled roads starting from the one with the highest PR value. A region expands by including 
a connected neighbouring road directly upstream or downstream to the current region. Neighbouring roads are arranged in a candidate 
queue (a data structure similar to an ordered list) such that the best road candidate is evaluated first in each iteration. The selection 
criterion of road addition is based on the change in regional homogeneity, represented by the standard deviation of road PR values 
within each region. In each iteration, the road that increases regional homogeneity the most (or increases the heterogeneity the least) 
among the road candidates is added to the current region. Once a road is added, its connected neighbours are also added to the 

Fig. 4. Roads are sequentially added to a region (in green). Neighbouring candidates (in orange) are directly connected to the region. The selected 
candidate minimises the standard deviation in PR values. The region expands in one of the neighbouring directions, analogous to how a landscape is 
flooded gradually. The expansion terminates when the increase in intra-regional heterogeneity exceeds the dynamic threshold θR. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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candidate queue for the next iteration of expansion. 
A dynamic threshold θR is defined depending on the number of identified regions (R), as a termination condition to identify region 

boundaries. The expansion of a region ends if the addition of a road increases regional heterogeneity more than the threshold. The 
initial cut-off threshold θ0 is negative such that regional homogeneity is improved with the inclusion of each road. Since the distri-
bution of PR values usually follows a power law distribution (Avrachenkov and Lebedev, 2006; Chen et al., 2014), it is expected that 
the improvement in regional homogeneity would decrease as more roads are clustered. Therefore, θR is halved for each new region to 
relax the termination condition to avoid splitting peripheral regions which have similarly low PR values. After the termination of 
regional expansion, a new region is initiated from the road with the highest PR value in the remainder of the unclustered network (not 
necessarily connected with existing regions). The process is repeated until all roads are clustered. 

While the threshold θR specifies the tolerance for heterogeneity in PR values, sizes can be controlled by limiting the minimum and 
maximum number of roads in each region. The lower limit kmin determines the minimum number of roads to attain an acceptable level 
of accuracy in regional PR means and variances. The upper limit kmax prevents over-sized regions. If a region has less than kmin roads, it 
will be merged into a neighbouring region with the closest mean PR value, which may result in sizes larger than kmax. 

Fig. 4 is an example to show how neighbouring roads are clustered sequentially. Pseudo-code of the proposed partitioning method 
is stated in Algorithm 1. 

Algorithm 1. Proposed Network Partitioning Algorithm    

Some examples of partitioning outcomes are presented in Fig. 5 where neighbouring regions are plotted in different colours. Figure 
(b) which contains minimum 50 and maximum 500 roads in each region is used in numerical experiments, given its suitable region 
sizes and level of homogeneity in road PR values. 
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3.4. Optimal spatial distribution of vacant A-taxis 

The primary objectives of the decentralised cooperative cruising method is to pick up as many passengers as possible without real-time 
information or communication. The theoretical approach of the cruising strategy is based on bilateral meeting/matching functions. 
Schroeter (1983) introduced such a function to analyse matching behaviours between traditional taxis and passengers for a radio 
dispatch system and the airport taxi stand operation. It is also widely applied in the labour market to model search frictions between 
the demand side and supply side (in this context, waiting passengers and vacant a-taxis) (Mortensen and Pissarides, 1994; Petrongolo 
and Pissarides, 2001). A meeting function gives reasonably accurate estimates of the passenger-vehicle dynamics for regions with 
homogeneous traffic states (Yang et al., 2010; Yang and Yang, 2011; Ramezani and Nourinejad, 2018; Nourinejad and Ramezani, 
2020). This paper uses a Cobb-Douglas meeting function shown in eq. (2).Function inputs are updated at discrete time intervals (τ) to 
capture effects of applying the proposed method over time. 

MI(τ) = αIRI(τ)γ1 VI(τ)γ2 (2)  

where MI(τ),RI(τ), and VI(τ) are the expected number of pick-ups, the average number of waiting passengers, and the average number 
of vacant a-taxis respectively in Region I during time interval τ. Static parameters αI,γ1, and γ2 describe pick-up patterns in each region, 
where αI is a unique constant for Region I. The elasticity coefficients, γ1 and γ2, are fixed and common for all regions. These static 
parameters are obtained by fitting a linear mixed model, explained in detail in Appendix B. 

By utilising the concept of meeting function, the total expected pick-ups in the network (with N regions as an outcome of Section 
3.3) can be maximised as in eq. (3): 

V*
I (τ) = argmax

VI (τ)

∑N

I=1
M̂I (τ) (3)  

s.t.RI(τ) = R̂I (τ − 1) + ΔRh
I (τ) − M̂I (τ − 1) ∀I ∈ {1,⋯,N} (3a)  

R̂I (τ)⩾0 ∀I ∈
{

1,⋯,N
}

(3b)  

R̂I (0) is known ∀I ∈
{

1,⋯,N
}

(3c)  

∑N

I=1
VI(τ) = βF. (3d) 

The exact number of waiting passengers during simulation cannot be directly monitored by the system without real-time 
communication. However, it can be estimated by a mass conservation relation as in constraint (3a). The expected number of 

Fig. 5. Different region sizes with [kmin,kmax] roads. Larger limits generally result in more regions. Also shown in Appendix C, increasing region sizes 
lead to more intra-region heterogeneity. However, smaller regions would compromise the accuracy of meeting function estimations (Section 3.4). 
Thus, the 39-region partitioning outcome is selected. 
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waiting passengers in Region I at each interval τ is raised by the historical number of new passenger trip requests ΔRh
I (τ), and reduced 

by the number of expected pick-ups during the previous interval M̂I (τ − 1). Although the underlying assumption of achieving all ex-
pected pick-ups may not be realised and would underestimate the resultant R̂I (τ), it is partially offset by overlooking the passenger 
cancellation which overestimates passenger counts. In addition, the estimated number of waiting passengers in Region I must satisfy 
the non-negative constraint in (3b). Nevertheless, a mass conservation model still has the shortcoming of accumulating errors over 
time. 

The initial conditions are specified in (3c) and (3d). We interpret the initial waiting passenger distribution RI(0) as the last known 
position of trip requests before communication shutdown. We also assume the vacant a-taxi fleet size as a ratio (β) of the total fleet size 
(F) to estimate network conditions during the period of communication loss. Ratio β is assumed to be time-invariant. Based on 
simulation results shown in Fig. 6a, the number of vacant a-taxis varies smoothly and tends to be stable. Thus, we assume a fixed β =

1/3 for simplification. Numerical experiments have indicated insensitivity of this ratio and yield similar results even if the actual 
number of vacant a-taxis is applied. 

Eq. (3) is computed for every interval τ during the period of communication loss. The resultant V*
I (τ) values represent the desired 

number of vacant a-taxis in each region such that the total number of pick-ups in the network is maximised. Decentralised cooperative 
cruise gives mission planning recommendations in the form of a probability matrix such that each vacant a-taxi can stochastically move 
between regions to achieve the desired numbers V*

I . 

3.5. Steady-state transition probabilities for decentralised cruising 

The regional cooperative cruise of a-taxis can be considered as a discrete-time Markov chain with a state vector representing the 
number of vacant a-taxis in each region and a transition matrix P(τ) representing their movements between regions during each update 
interval (τ). In a Markov chain, an initial state vector converges to a steady-state distribution πτ after applying P(τ) repeatedly such that 
πτP(τ) = πτ. 

The vector πτ represents the steady-state outcome of a-taxi cruising. It can be related with the optimal number of vacant a-taxis in 
each region (V*

I in eq. (3)) to find an appropriate P(τ) such that the realisation of P(τ) guides the vacant a-taxis to their desired regional 
destinations. There are N elements in πτ, representing N regions, so the probability matrix P(τ) has a dimension of N× N. 

The transition matrix P(τ) can be solved by eq. (4) which minimises the 2-norm (squared root of the sum of squared errors) in 
convergence. In theory, the resultant P(τ) converges any initial vector to the steady state πτ after several iterations. The P(τ) is used as a 
probability matrix for cruising a-taxis to decide to either stay within their current region or leave for a neighbouring region. 

argmin
P(τ)

‖ πτP(τ) − πτ ‖ (4)  

s.t.πτ =
[
V*

1 (τ),V*
2 (τ),⋯,V*

N(τ)
]

(4a)  

P(τ) ⋅ 1N×1 = 1N×1 (4b)  

0⩽P(τ)I,J⩽AI,J ∀I, J ∈
{

1,⋯,N
}
. (4c) 

Condition (4a) defines the steady-state distribution πτ. Matrix P(τ) is a right stochastic matrix, meaning its row entries sum to 1 
(4b). Element P(τ)I,J denotes the probability of an a-taxi in Region I choosing Region J as its cruising destination. We design the cruising 
method to only recommend connected neighbouring regions to vacant a-taxis. To this end, an adjacency matrix A is defined by the 
network partitioning outcome to limit transition probabilities (4c). Element AI,J is 1 if Regions I and J are neighbours to each other, and 
0 otherwise. 

Nonetheless, the effectiveness of transition matrix P(τ) is limited. Specifically, not all vacant a-taxis can arrive at their target road 
within the interval τ, meaning the state space may not converge to the optimal state πτ before a new transition matrix is computed. The 
choice of τ is complex depending on the dynamic network traffic conditions, size of regions, a-taxi travel speeds, and discretisation of 
continuous a-taxi movements. In this paper, we use τ = 5 min and a-taxis do not update their destinations during cruising even though 
there might be a new P(τ) matrix for optimal mission planning. 

After an a-taxi selects a destination region based on the probability matrix, a specific road is chosen randomly inside the region if 
the a-taxi chooses to stay within the current region because the intra-regional road PR values are similar. If an a-taxi chooses to leave 
for one of the neighbouring regions, the method scales each of their selection probabilities by the travel time to a random road in these 
regions. Depending on the current location of the cruising a-taxi, this means a closer neighbouring region is more likely to be selected 
as the destination than a distant one such that a-taxis may arrive at their target regions sooner. Algorithm 2 explains the secondary 
destination choice process which determines the destination road to compute the cruising path. Eventually, vacant a-taxis follow the 
PR-based shortest paths (see Section 3.2) to cruise and search for waiting passengers en route. 
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Algorithm 2. Destination Road Choice 

4. Numerical experiments 

The effectiveness of the proposed method is tested in an event-based simulation. The simulation arranges a-taxis’ and passengers’ 
activities in an event queue by their trigger times. A-taxis and passengers interact in the Manhattan transportation network which is 
represented by a directed graph. New York City yellow taxi trip records in 2016 (Taxi and Limousined Limousine Commission, 2016) 
are used, both as a historical dataset for our method and a replication of morning peak passenger trip requests during the commu-
nication disruption (Hamedmoghadam et al., 2019). The historical dataset consists of 20 weekdays in May 2016 and the test dataset 
contains 5 randomly selected weekdays in June 2016. These trip records provide historical trip details such as passenger trip origin/ 
destination and their pick-up time. There are a total of 1,059,948 trip records in the historical dataset and 260,191 entries in the test 
dataset after data cleaning and filtering. 

The morning peak hours from 7 − 10 am (3 h) are considered, with the first hour being a warm-up period during which the central 
matching system manages a-taxi movements. Between 8 − 10 am, it is assumed that there is no communication between the central 
dispatching unit and the a-taxi fleet. In addition, an a-taxi cannot receive real-time information of other a-taxis or passenger orders. 
Each a-taxi follows the cruising recommendation from the offline on-board module that implements the proposed decentralised 
cooperative cruising method such that the fleet productivity is maximised during the communication shutdown. 

4.1. Simulator 

This paper uses COMSET simulator which is programmed to specifically evaluate the efficiency of taxi search strategies without 
real-time communication (van Barlingen et al., 2019; ACM, 2019). In COMSET, the Manhattan road network is constructed as a 
directed graph using OpenStreetMap data. Intersections are constructed as nodes and roads as edges. The graph is processed such that 
intersections in close proximity are grouped as one node. All dead ends are also removed to make the graph strongly connected which 
prevents a-taxis from being trapped. As a result, the graph contains 4360 intersections and 9542 roads connecting these intersections. 
The COMSET simulator simplifies the effects of congestion and road conditions by scaling all vehicle speeds as some fixed proportions 
of the road speed limits. Speeds are calibrated such that the simulated shortest trip travel time is similar to the historical trip duration. 

In the simulator, all events are associated with a location and a trigger time. Passengers remain stationary with two possible states 
— waiting or expired. Passengers wait for vacant a-taxis before they cancel their order upon reaching a fixed 10-min patience time. 
Once picked up, passengers are transported to their destinations via the shortest travel time path. The corresponding a-taxi becomes 
occupied and stops searching. Without accessing real-time passenger locations, a pick-up is successful if an a-taxi is within 20-s travel 
time from a passenger (about 50 − 60 m detection range on most roads). It considers the travel direction so that a-taxis must be able to 
reach the passenger location within 20 s. Vacant a-taxis cruise to their planned destination via the sequence of roads advised by the 
proposed cruising method. A new destination is planned if no passengers are found along the cruising route. 

4.2. Experiment setup and benchmark strategies 

At the beginning of the simulation, a-taxis with a fixed fleet size are randomly placed on the network graph. A warm start is applied 
for one hour which uses a central bipartite matching algorithm at 10-s intervals. To be precise, the minimum-weight maximum 
bipartite matching considers the shortest travel times between all possible waiting passengers and vacant a-taxis as weights. The 
solution gives one-to-one pairs of passenger-vehicle assignments until one of the set is exhausted, while minimising the total travel time 
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for all pick-ups. The computation of a centralised dispatch requires accurate vehicle and passenger locations. 
Besides the warm start, we also include central matching to show near-optimal values for comparison, even though it has the unfair 

advantage of real-time information and communication. The other benchmark strategy is random destination which points vacant a- 
taxis to a random intersection in the network. A-taxis then follow the shortest path based on either travel time (tt) or PageRank (PR) to 
reach the cruising destination. The random destination method with PR-based shortest paths has the same route planning logic as the 
proposed method but without mission planning considerations. 

These benchmarks represent different levels of information availability. Random destination with tt-based shortest paths does not 
use any real-time or historical data. The PR-based shortest cruising paths utilise historical trip records to calculate road PR values. The 
proposed decentralised cooperative cruise also uses historical data for road PR values and regional meeting functions. Central matching 
needs access to real-time information. 

4.3. Simulation outputs 

Simulation results include 4 performance measures to evaluate the decentralised cooperative cruise method. The mean a-taxi cruise 
time denotes how long an a-taxi remains vacant on average during the 2 h. The mean passenger wait time reflects how long a passenger 
has waited on average until pick-up or order expiration. The order expiration percentage measures how many passengers are not 
picked up by any a-taxi within 10 min. The total number of pick-ups is the number of successful passenger pick-ups by the entire a-taxi 
fleet in 2 h. 

4.4. Results 

This section evaluates simulation results of the proposed cruising method and compares them with the benchmark strategies 
introduced in Section 4.2. Central matching is also included to show near-optimal values. However, it should be noted that the cen-
tralised strategy takes full advantage of real-time locations of a-taxis and passengers while the other strategies do not use such in-
formation. Although the proposed strategy cannot achieve the same level of passenger pick-up rate as central matching, it still shows 
significant improvements over random destination benchmarks. 

To evaluate the effectiveness of following a PR-based shortest path for cruising, the random destination strategy is applied with both 
the travel time (tt) and PR-based shortest paths. Based on the mean results of 5 test days in Table 1, the PR-based shortest cruising path 
yields better performances than tt-based paths by prioritising roads with a higher likelihood to find passengers upon each drop-off. 
With 6000 a-taxis, an average of 1343 more trips can be served in 2 h, and an average of 35 s waiting time reduction per trip can 
be achieved. Service performance improvements of applying the proposed decentralised cooperative cruise against the benchmark 

Table 1 
Mean simulation outputs over 5 test days of the proposed and benchmark cruising strategies. Fleet sizes ranging from 3000 to 7000 are tested. 
Percentage improvements in the parentheses are compared against benchmark results using random destination with tt-based shortest paths.  

Fleet size Mean A-taxi cruise time (s) Mean passenger wait time (s) Order Expiration Total pick-ups 

Random destination with tt-based shortest paths 

3000 2450.2 406.6 53.4% 15715.2 
4000 2901.2 358.6 45.2% 18705.4 
5000 3321.8 319.8 38.8% 20973.8 
6000 3796.2 288.0 34.4% 22643.4 
7000 4380.4 263.2 31.2% 23798.0 

Random destination with PR-based shortest paths 

3000 1837.8 (− 25.0%) 362.2 (− 10.9%) 46.6% (− 6.8%) 18288.4 (+16.4%) 
4000 2524.4 (− 13.0%) 313.8 (− 12.5%) 39.2% (− 6.0%) 20968.0 (+12.1%) 
5000 3111.2 (− 6.3%) 278.6 (− 12.9%) 34.4% (− 4.4%) 22772.4 (+8.6%) 
6000 3752.8 (− 1.1%) 253.0 (− 12.2%) 31.0% (− 3.4%) 23986.4 (+5.9%) 
7000 4391.2 (− 0.2%) 236.2 (− 10.3%) 28.8% (− 2.4%) 24786.2 (+4.2%) 

Decentralised cooperative cruise 

3000 2133.0 (− 12.9%) 362.2 (− 10.9%) 46.0% (− 7.4%) 18502.0 (+17.7%) 
4000 2681.2 (− 7.6%) 297.2 (− 17.1%) 35.8% (− 9.4%) 22174.8 (+18.5%) 
5000 3231.2 (− 2.7%) 249.0 (− 22.1%) 29.4% (− 9.4%) 24583.2 (+17.2%) 
6000 3750.2 (− 1.2%) 214.4 (− 25.6%) 25.4% (− 9.0%) 26140.2 (+15.4%) 
7000 4223.4 (− 3.6%) 189.4 (− 28.0%) 22.4% (− 8.8%) 27204.2 (+14.3%) 

Central matching 

3000 915.4 (− 62.6%) 371.4 (− 8.7%) 38.8% (− 14.6%) 21849.2 (+39.0%) 
4000 1257.6 (− 56.7%) 314.4 (− 12.3%) 23.4% (− 21.8%) 27830.2 (+48.8%) 
5000 1656.2 (− 50.1%) 273.6 (− 14.4%) 10.2% (− 28.6%) 32762.8 (+56.2%) 
6000 2287.4 (− 39.7%) 194.4 (− 32.5%) 2.0% (− 32.4%) 35464.8 (+56.6%) 
7000 3167.6 (− 27.7%) 150.0 (− 43.0%) 0.6% (− 30.6%) 35804.8 (+50.5%)  
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strategy are shown in the parentheses in Table 1. All four measures demonstrates improvements over different fleet sizes. 
As the total fleet size increases from 3000 to 7000, trip service performances improve in general. Larger a-taxi fleets serve more 

trips at the expense of longer average a-taxi cruising time. The average passenger waiting time is nearly halved (47.7% reduction) and 
order expiration can be reduced by 23.6% as the fleet size increases from 3000 to 7000. With 3000 a-taxis, the proposed method has 
similar performances as the PR-based random destination strategy. However, as the fleet size increases, the proposed method becomes 
significantly more efficient, especially with respect to the number of total passenger pick-ups (up to 14.3%) and mean passenger 
waiting time (up to 28%). 

Central matching benchmark results are included to indicate the near-optimal performance. The effectiveness of the proposed 
method can be analysed by evaluating the improvement in performance measures from a simple random destination strategy towards 
the near-optimal central matching scenario that uses real-time information. As the fleet size increases, a centralised system outperforms 
decentralised strategies to a greater extent. For instance, the proposed method is 45.4% as efficient as central matching in passenger 
pick-up numbers with 3000 a-taxis, but only 28.4% as efficient with 7000 a-taxis. Regarding the mean passenger waiting time, the 
decentralised methods may even result in shorter waiting times with a small fleet size because a-taxis tend to prioritise passengers 
along profitable routes. With 7000 a-taxis, the proposed method can reduce the mean passenger waiting time from 263.2 seconds to 
189.4 seconds, which is still 65.2% as efficient as central matching which has a mean waiting time of 150 s. Note that the calculation of 
mean waiting time includes cancelled trip requests as 600 s each, leading to even lower mean waiting times for the proposes method if 
only served passengers are considered. This observation suggests that service frequency on roads with higher PR values increases at the 
expense of lower coverage in the less popular areas, when we compare decentralised cooperative cruising against central matching. 

Simulation results for 6000 a-taxis are analysed to compare the efficiency of decentralised methods with the theoretical scenario 
without communication loss (i.e. central matching). The 5-day mean simulation outputs are plotted as time-series in Fig. 6 from 
8 : 00 − 10 : 00 after the 1-h warm start which implements central matching. Fig. 6a and b show the time evolution of total numbers of 
vacant a-taxis and waiting passengers in the network respectively from 8 : 00 − 10 : 00. The proposed strategy performs better than 
random destination benchmarks with fewer vacant a-taxis and waiting passengers for most of the simulation duration. The number of 

Fig. 6. Time evolution of 5-day average performance measures for 6000 a-taxis. As expected, decentralised strategies (without real-time infor-
mation) result in more vacant a-taxis and waiting passengers than central matching (with real-time information). Decentralised cooperative cruise 
shows improvements over random destination benchmarks with approximately 240–360 fewer vacant a-taxis, about 190–350 fewer waiting pas-
sengers on average. There are also 16–25 fewer order expiration per minute (or 1900–3000 fewer total expiration in 2 h). 
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order expiration per minute and the cumulative number are plotted in Fig. 6c and d respectively. The rate of increase shows how the 
proposed decentralised cooperative cruise reduces order expiration over time. 

Fig. 7 is a histogram of the percentage distribution of passenger waiting times on all 5 test days. An order expiration is equivalent to 
a fixed 600-s waiting time, leading to high percentage counts in the last bin. Decentralised cooperative cruise outperforms both random 
destination benchmarks with shorter passenger waiting times in general, evident from the right-skewed distribution. Most passengers 
(more than 50%) are picked up within 1 min, suggesting how the proposed cruising method can successfully identify new trip requests 
at the “hot spots”. Central matching distribution is more evenly distributed, with the highest percentage counts in all bins except the two 
ends, because central assignments are not affected by a-taxis’ detection range. It allows a-taxis to find passengers without being in a 
close proximity, thus showing different pick-up patterns. 

5. Summary and future research 

This paper has proposed a decentralised cooperative cruising strategy for fully automated taxi (a-taxi) fleets when the communication 
between the a-taxis and passengers via a central dispatch unit is lost. Unlike centralised fleet management systems, the proposed 
contingency strategy is decentralised such that a-taxis make cruising decisions individually based on recommendations of the offline 
method. The proposed decentralised cruising method is designed as a multi-agent cooperative method with a unified goal to maximise 
the expected total number of passenger pick-ups in the network by the fleet, rather than to maximise individual gains. The method 
utilises historical trip records to mathematically derive the desirable numbers of vacant a-taxis in different regions of the network and 
recommends the best travel paths between cruising origins and destinations. 

Historical trip origin-destination data are used to calculate road PageRank centralities and partition the network to make efficient 
cruising decisions (route and mission planning) in the absence of real-time information. The proposed method maximises the total 
expected passenger pick-ups in the network which can be estimated from the macroscopic pick-up patterns in each region. A Cobb- 
Douglas regional meeting function is derived by fitting simulation outputs using historical datasets with a linear mixed-effects 
model. Optimal numbers of vacant a-taxis in each region can be estimated based on estimated number of waiting passengers. By 
considering a-taxi movements between regions as a Markov chain, a transition probability matrix is calculated such that numbers of 
vacant a-taxis converge to the optimal values. The proposed method mathematically determines the recommended cruising desti-
nations and travel routes for a-taxis when there is no communication channel among the central dispatch unit, a-taxis, and passengers. 

The effectiveness of the proposed method is compared against benchmark strategies in an event-based simulator, using real-world 

Fig. 7. Distribution of passenger waiting times over 5 test days with 6000 a-taxis. Passengers wait longer with random destination than decentralised 
cooperative cruise in general. Since a trip request expires in 10 min, the last bin contains a significant proportion of trip counts. Mean passenger 
waiting times are plotted as dashed vertical lines. 
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Manhattan trip records on 5 different test days. The proposed method has shown significant improvements over the random destination 
benchmarks, especially in the passenger service aspects for a large fleet size. While the performance of PR-based random destination 
diminishes as the fleet size increases, the regional cruising component in the proposed method is able to retain these benefits and 
further reduces the mean passenger wait time by up to 28%. 

There are some potential future research directions. The proposed method can be improved by incorporating demand forecasting 
(Ke et al., 2019). We can investigate the use of mixed fleet compositions with different cruising purposes. A part of the fleet can be 
exploitative, while the other part can be exploratory and cruise to serve more remote trips for service coverage. Electric vehicles can 
also be considered as an alternative vehicle type since a-taxis are likely to use renewable energy sources (Jing et al., 2017; Jing et al., 
2018; Bongiovanni et al., 2019). Different levels of communication loss can be considered. For example, passenger locations might be 
unavailable while communication with the central dispatch unit still functions such that a-taxis can still coordinate effectively. 
Designing robust centralised dispatching methods resilient to partial communication disruptions also needs further research. 
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Appendix A. Welford’s method for computing variance 

Welford’s method (Welford, 1962) elaborated in eq. (A.1) is an online algorithm for calculating mean and variance of n samples. In 
our case, the standard deviation in normalised PR indicates intra-regional homogeneity. We apply Welford’s method to track changes 
in regional homogeneity which determines whether a road among all candidates is qualified to be added into a region. 

xn =
(n − 1)xn− 1 + xn

n
(A.1)  

σ2
n =

(
n − 1

)
σ2

n− 1 +
(
xn − xn− 1

)(
xn − xn

)

n
.

Appendix B. Meeting function estimation 

The meeting function parameters are calculated by fitting a linear mixed-effects model where coefficients γ1 and γ2 are fixed effects 
applicable to all regions and αI is a random effect which varies among different regions. The αI values represent intrinsic properties of 
each region such as their size and internal connectivity. 

Observations of variables MI(τ), RI(τ), and VI(τ) are collected and aggregated at 5-min intervals from the random destination 
benchmark simulation (see Section 4.2) for 20 days in the historical dataset. Observations are grouped by their pick-up regions. A 
linear form can be obtained by taking the natural logarithm of eq. (2), 

ln MI(τ) = ln αI + γ1 ln RI(τ)+ γ2 ln VI(τ).

The two fixed-effect coefficients γ1,γ2, and region-based random effect coefficient αI are fitted using an expectation maximisation 
algorithm and solved by maximum likelihood estimation, with normally distributed errors (Seabold and Perktold, 2010; Lindstrom and 
Bates, 1988). The resultant coefficients adhere to the non-negativity constraint. 

With 39 regions in the network, fixed coefficients γ1 and γ2 are 0.354 and 0.148 respectively. The value of αI ranges from 0.60 to 
10.48, with a mean of 3.54. Fig. B.8 demonstrates the goodness-of-fit of the regional meeting function estimates per 5-min interval. The 
calibrated meeting function can accurately estimate the number of pick-ups for the given RI(τ) and VI(τ), with R2 = 0.959,MAE =

4.36, and RMSE = 7.43. 
The value of αI is often modelled as a dependent variable of a characteristic variable (ΦI) which represents some spatial property of 

the region. For example, in Yang et al. (2010): 
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αI = u(ΦI)
w (B.1)  

ln αI = ln u+w ln ΦI (B.2)  

where u and w are positive constants. In this case, the value of αI shows a strong linear correlation with the total regional PR, with a 
Pearson’s correlation coefficient of 0.849. Fitting eq. (B.2) by an ordinary least squres (OLS) regression yields lnu = 3.14(u = 23.09)
and w = 0.358 with R2 = 0.721. 

Appendix C. Clustering analysis 

To quantify regional homogeneity and compare it between different partitioning outputs, we use a metric known as the Silhouette 
Index (SI), or mean road silhouette score which is a common measure of clustering quality. It takes a value between − 1 (poorly 
clustered) and 1 (perfectly clustered). SI of Region I is calculated as 

SII =

(
∑kI

i=1

b(i) − a(i)
max(a(i), b(i))

)/

kI (C.1)  

a(i) =
|PR(i) − PR(j)|

kI − 1
(C.2)  

b(i) =
|PR(i) − PR(j′ )|

kJ
(C.3)  

where a(i) is the intra-regional mean absolute difference in road PR values for road j ∕= i in the same region; b(i) is the inter-regional 
mean absolute difference in road PR values for road j′ in the closest neighbour; kI is the number of roads in Region I. 

Some examples of SI results are listed in Table C.2. Regional homogeneity generally improves with more, smaller regions. However, 
it also means fewer samples are available for the calibration of regional meeting functions, compromising the accuracy of macroscopic 
pick-up dynamics. Thus, kmin is preferably larger than 10 − 20 to be able to represent the local attractiveness with its PR value. The 
value of kmax is dependent on the total number of roads in the network. It should be set such that inter-regional cruising does not require 
too much time for the method to be effective. Our numerical experiment uses the 39-region output with kmin = 50 and kmax = 500. 

Fig. B.8. 5-min pick-ups estimated by the calibrated meeting functions vs. random destination simulation results, using the 20-day historical dataset.  
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Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L., 2013. A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225, 1–11. 
Psaraftis, H.N., Wen, M., Kontovas, C.A., 2016. Dynamic vehicle routing problems: Three decades and counting. Networks 67, 3–31. 
Ramezani, M., Nourinejad, M., 2018. Dynamic modeling and control of taxi services in large-scale urban networks: A macroscopic approach. Transp. Res. Part C: 

Emerg. Technol. 94, 203–219. 
Schroeter, J.R., 1983. A Model of Taxi Service under Fare Structure and Fleet Size Regulation. Bell J. Econ. 14, 81–96. 
Seabold, S., Perktold, J., 2010. statsmodels: Econometric and statistical modeling with python. In: 9th Python in Science Conference, pp. 92–96. 
Taxi and Limousine Commission, 2016. Yellow taxi trip records. 
Vosooghi, R., Puchinger, J., Jankovic, M., Vouillon, A., 2019. Shared autonomous vehicle simulation and service design. Transp. Res. Part C: Emerg. Technol. 107, 

15–33. 
Wang, X., Liu, W., Yang, H., Wang, D., Ye, J., 2020. Customer behavioural modelling of order cancellation in coupled ride-sourcing and taxi markets. Transp. Res. Part 

B: Methodol. 132, 358–378. 
Welford, B.P., 1962. Note on a Method for Calculating Corrected Sums of Squares and Products. Technometrics 4, 419–420. 
Wong, R.C.P., Szeto, W.Y., Wong, S.C., 2014. A cell-based logit-opportunity taxi customer-search model. Transp. Res. Part C: Emerg. Technol. 48, 84–96. 
Wong, R.C.P., Szeto, W.Y., Wong, S.C., 2015. A two-stage approach to modeling vacant taxi movements. Transp. Res. Part C: Emerg. Technol. 59, 147–163. 
Yang, H., Leung, C.W.Y., Wong, S.C., Bell, M.G.H., 2010. Equilibria of bilateral taxi-customer searching and meeting on networks. Transp. Res. Part B: Methodol. 44, 

1067–1083. 
Yang, H., Yang, T., 2011. Equilibrium properties of taxi markets with search frictions. Transp. Res. Part B: Methodol. 45, 696–713. 
Zedadra, O., Seridi, H., Jouandeau, N., Fortino, G., 2016. A Cooperative Switching Algorithm for Multi-Agent Foraging. Eng. Appl. Artif. Intell. 50, 302–319. 
Zhan, X., Qian, X., Ukkusuri, S.V., 2016. A Graph-Based Approach to Measuring the Efficiency of an Urban Taxi Service System. IEEE Trans. Intell. Transp. Syst. 17, 

2479–2489. 
Zwick, U., 2001. Exact and approximate distances in graphs — a survey. In: auf der Heide, F.M. (Ed.), Algorithms — ESA 2001. Springer Berlin Heidelberg, Berlin, 

Heidelberg. pp. 33–48. 

L. Chen et al.                                                                                                                                                                                                           

http://refhub.elsevier.com/S0968-090X(21)00339-9/h0185
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0190
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0195
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0200
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0200
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0205
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0220
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0220
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0225
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0225
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0230
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0235
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0240
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0245
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0245
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0250
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0255
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0260
http://refhub.elsevier.com/S0968-090X(21)00339-9/h0260

	Decentralised cooperative cruising of autonomous ride-sourcing fleets
	1 Introduction
	2 Problem definition
	3 Method
	3.1 Method outline
	3.2 PageRank-based cruising
	3.3 Network partitioning
	3.4 Optimal spatial distribution of vacant A-taxis
	3.5 Steady-state transition probabilities for decentralised cruising

	4 Numerical experiments
	4.1 Simulator
	4.2 Experiment setup and benchmark strategies
	4.3 Simulation outputs
	4.4 Results

	5 Summary and future research
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Welford’s method for computing variance
	Appendix B Meeting function estimation
	Appendix C Clustering analysis
	References


