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A B S T R A C T   

In urban networks, traffic congestion can be curbed by deconcentrating the temporal distribution 
of the travel demand. In this paper, we propose an optimal staggered work schedules problem to 
minimize the network total travel time and prevent the schedule delay in the trips of commuters 
over morning peaks in a bicentric network. The objective is to optimize the work start times of 
individual firms with minimum deviations from their initial schedules while taking into account 
that commuters choose their departure time selfishly to minimize their travel cost. We formulate 
the optimal work schedule problem in a bicentric network as a multi-objective optimization 
program that simultaneously minimizes the total travel time and the schedule deviation for the 
firms while satisfying near-equilibrium temporal conditions. The time-varying congestion dy-
namics are modeled using macroscopic fundamental diagrams. We solve the optimization prob-
lem for a test network and analyze the sensitivity of the Pareto solution to the policy parameters 
of the model. We assess the accuracy and effectiveness of the proposed method using an 
individual-level trip-based macroscopic simulation model. The numerical results demonstrate 
that implementing the proposed optimal staggered work schedules strategy accounting for 
commuters’ departure trip time choice can significantly reduce the traffic congestion in urban 
networks.   

1. Introduction 

Traffic congestion counts as a critical issue in large cities, one that imposes a tremendous burden on the society, economy, and 
environment. The travel demand management policies aim to alleviate congestion by altering the travel behavior of network users. 
However, implementing policies that require penalizing the travelers during the peak periods faces social resistance and technical 
challenges that significantly limit the effectiveness of the user-based policies, e.g., congestion pricing. The staggered work schedules is 
a practical alternative to the user-based policies that indirectly alter the travel behavior of the users by shifting the schedules of their 
activities at destinations. 

The trip scheduling problem was introduced in Vickrey (1969) for the morning commutes through a first-in, first-out single 
bottleneck with a fixed capacity. Commuters wish to arrive at their destinations punctually; however, it is physically impossible for 
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everyone to be on time when the demand exceeds the capacity. By adjusting the start time of their trips, rational commuters minimize 
the combined cost of congestion delay (the difference between actual and free-flow travel times) and schedule deviation (the difference 
between actual and wished arrival times) associated with their trips. The cumulative result of the individual trip start time decisions 
can lead to an equilibrium state (under some conditions) in which no commuter can reduce their combined travel cost by changing the 
start time of the trip. Vickrey’s congestion theory has been further elaborated in the literature by accounting for the heterogeneity in 
the wished schedule and schedule penalty preferences of the commuters (Henderson, 1974, 1981; Hendrickson and Kocur, 1981; 
Arnott et al., 1992, 1994; van den Berg et al., 2011; Liu et al., 2015; Wu and Huang, 2015; Amirgholy and Gonzales, 2017; Long and 
Szeto, 2019). The existence and uniqueness of the equilibrium solution is also proved for a general distribution of the wished schedules 
in Smith (1984) and Daganzo (1985), and for users with heterogeneous schedule penalty preferences in Lindsey (2004). 

The morning commute problem has been also studied in urban networks with an aggregated traffic model, i.e., macroscopic 
fundamental diagram (MFD). The concept of MFD with an optimum accumulation is initiated by (Godfrey, 1969). Similar ideas are 
later introduced by (Herman and Prigogine, 1979; Mahmassani et al., 1984; Daganzo, 2007). The empirical existence of MFD is shown 
by (Geroliminis and Daganzo, 2008). Recently, Loder et al. (2019) provided further empirical evidence on the existence of MFD from 
many cities around the world. MFD provides a unimodal, low-scatter, and demand-insensitive relationship between network-wide 
traffic states (e.g. accumulation, speed, production, and trip completion flow) for an urban region. A number of models have been 
developed to estimate MFD considering limited loop detector data (Saffari et al., 2020), probe vehicle data (Leclercq et al., 2014) or 
both loop detector and probe vehicle data (Ambühl and Menendez, 2016). MFD has offered the possibility of designing network-level 
traffic management and control schemes. Some examples are perimeter control in urban networks (Aalipour et al., 2018; Su et al., 
2020; Ingole et al., 2020), regional route guidance (Yildirimoglu et al., 2018), and pricing strategies (Zheng et al., 2016; Gu et al., 
2018). MFD has also been studied in the context of dynamic traffic assignment models and several methods have been proposed; a 
numerical algorithm focusing on multiple regions (Yildirimoglu and Geroliminis, 2014; Batista and Leclercq, 2019), a single origin- 
destination pair with two alternative routes (Laval et al., 2018), a continuum approximation model (Aghamohammadi and Laval, 
2020), and an assignment model with multiple modes (Liu and Geroliminis, 2017; Petit et al., 2021). 

Combining Vickrey’s congestion theory with MFD modeling makes it possible to model the morning commute problem in urban 
networks, in which the network outflow can be formulated as a function of the instantaneous vehicular accumulation, e.g. see Ger-
oliminis and Levinson (2009). However, dependence of the network outflow at each point in time upon prior states of traffic makes the 
problem intractable (Arnott, 2013). Various studies make different assumptions to solve tractable versions of the network problem: the 
users’ travel times in the network depend only on the vehicular accumulation at the time of their arrivals to the network (Small and 
Chu, 2003; Geroliminis and Levinson, 2009); the MFD is a two-step function (Fosgerau and Small, 2013); the probability that indi-
vidual users exit the network at each point in time is directly proportional to the region speed and inversely proportional to their trip 
length (Arnott, 2013); the MFD can be represented by Greenshields’ relation (Arnott et al., 2016); the travel time of users remains 
constant off the peak (Amirgholy and Gao, 2017). Alternatively, the exact solution of the network problem can be numerically esti-
mated by a trip-based simulation model (Arnott, 2013; Mariotte et al., 2017; Lamotte and Geroliminis, 2018; Sirmatel et al., 2021). 
These efforts can be used to design demand management policies for large urban networks (Yildirimoglu and Ramezani, 2019; 
Kumarage et al., 2021). While there are many studies focusing on equilibrium properties, less attention has been given to how the 
resulting framework, involving both Vickrey’s theory and MFD modelling, can be useful to develop staggered work schedules, aiming 
to alleviate traffic congestion in the network. 

The staggered work schedules is a demand management policy that deconcentrates the distribution of the work start times with the 
aim of spreading the peak travel demand. The idea of alleviating the rush-hour traffic congestion by flattening the peak demand has 
been widely discussed in the literature (Henderson, 1981; D’Este, 1985; Zhang et al., 2005; Mun and Yonekawa, 2006; Takayama, 
2015; Shabanpour et al., 2017; Li et al., 2017). The underlying theory is based on a central principle of microeconomics that rational 
agents make efficient decisions when faced the full social consequences (benefits and costs) of their actions (Arnott et al., 2005). In 
urban networks, work trips make up the majority of the morning travel demand. The congestion delay can then be minimized by 
incentivizing the firms to make efficient choices of work start times. The incentivizing policies can be implemented in various forms, e. 
g., time-varying wage rates for workers (Henderson, 1981; Wilson, 1988), time-dependent tax deductions for firms (Arnott et al., 2002; 
Amirgholy and Gao, 2017), and compensation payments made to employers for each reassigned employee (Yushimito et al., 2014; 
Yushimito et al., 2015). Even though the changes in work schedules have usually been implemented with ad hoc strategies in practice, 
they have been shown to be effective in reducing the traffic congestion in large cities such as New York (O’Malley, 1974), Toronto 
(Greenberg and Wright, 1974), Ottawa (Safavian and Mclean, 1975), Singapore (Wilson, 1988), Honolulu (Giuliano and Golob, 1990), 
Geneva (de Palma et al., 1998), and Brisbane (Cleary et al., 2010). On an aggregated level, the cumulative result of the efficient work 
start time choices of individual firms should lead to an optimal distribution of the travel demand over the peak, and alleviate traffic 
congestion in the whole network. Nonetheless, the existing studies mostly focus on small-scale networks with a limited number of 
employers to consider, and overlook the complex interaction between a large number of employers located in various zones and 
districts of the network. This paper fills this gap by developing a systematic approach to tackle staggered work schedules problem in 
bicentric large-scale networks considering the employers (firms) constraints. 

In this paper, we propose an optimal staggered work schedule strategy (for bicentric cities) that involves multiple criteria. A good 
design of the optimal work schedules should (i) minimize the total travel time in the network (ii) under near-equilibrium conditions 
(iii) with minimal changes in the initial work schedules of employers. Essentially, the goal is to mitigate the traffic congestion through 
the changes in the work schedules of firms (i.e. employers of commuters). However, an optimal design of the work schedule must also 
consider the new collective traffic conditions that occur when commuters change their departure times in response to changing work 
schedules. In other words, the optimal schedule design must be consistent with (near) equilibrium conditions, which approximately 
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captures travellers’ response to changing schedules. Additionally, the optimal design should not significantly deviate from the initial 
work schedules and yield as minimal changes as possible, because implementing substantial changes in work schedules may face 
resistance from both employers and employees. The two objectives, minimizing total travel time in network and minimizing the 
deviation from the initial firms work schedules, may be conflicting in nature, which calls for a multi-objective optimisation framework 
where each objective can be represented as a weighted term. We evaluate the Pareto solution of the optimization problem by per-
forming a sensitivity analysis on the weight terms of the model. Furthermore, the impacts of the work schedules and commuters’ 
departure time choice on traffic conditions (under user equilibrium conditions) are captured by an accumulation-based bathtub (MFD) 
model, which allows an elegant optimization structure for this large scale problem. 

The proposed framework further accounts for multiple employers with various work schedules, and includes a lower-level 
(employer-level) optimisation problem that decomposes the optimal (regional) work schedule to work start times of different firms 
in each region. The objective of the employer-level problem is to optimize the work schedules of the individual firms with minimum 
deviations from the desired schedules. To provide a numerical experiment, we solve the optimization problem for a bicentric network 
and present the set of optimal work schedules for the firms. Noteworthy, we develop a detailed trip-based MFD simulation model to 
assess the accuracy and effectiveness of the proposed approach. The trip-based model takes into account the characteristics of indi-
vidual commuters such as trip length, wished arrival time, and lateness and earliness willingness. The results indicate that the 
congestion in the network can be substantially curbed with small changes in the work schedules while satisfying equilibrium 
conditions. 

In this paper, we consider and envision a city with two metropolitan centres offering a concentration of jobs and a wide range of 
goods and services. We acknowledge that the era of the traditional city, with one central business core surrounded by residential rings 
of low density, may no longer be sustainable; cities are evolving toward a polycentric, multi-nodal model. For instance, Greater Sydney 
Commission has developed a 30-min city concept with three major centers as the centerpiece of its 40-year plan. The aim is all 
Sydneysiders to be able to reach one of the three metropolitan centers in less than half an hour. The move towards such polycentric 
structures will also require the design of work hours, which this paper aims to achieve through a systematic approach. Note that, the 
assumed bicentric network configuration is not meant to be representative of all cities; the proposed framework can be adjusted and 
extended to incorporate other polycentric city scenarios. 

The remainder of the paper is organized as follows: Section 2 introduces an overview of the proposed framework. Section 3 
elaborates the main principles for the modelling of the bicentric urban network. In Section 4, we present the mathematical formulation 
of the optimization problems at the network-level and employer-level. Section 5 evaluates the results of the numerical experiments and 
the trip-based simulation model. Lastly, conclusions of the paper are summarized in Section 6. 

2. Overview of the methodology 

In urban networks, the rush-hour traffic congestion can be alleviated by spreading the temporal distribution of the demand over the 
peak period. The objective of the proposed optimal work schedule strategy is to (i) minimize total time spent (or congestion) in the 
network (ii) with minimal changes (or deviation) from the original work schedules (iii) while taking into consideration travellers’ 

Fig. 1. The structure of the proposed methodology.  
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departure time choices (i.e., user equilibrium conditions). This schedule optimisation strategy can be formulated as an (abstract) 
optimization problem, see ‘Schedule Optimisation’ in Fig. 1. While the objective is to minimize congestion and schedule deviation, the 
resulting solution should satisfy (approximated) user equilibrium conditions and congestion propagation dynamics in the network. In 
this study, we model the congestion dynamics of the bicentric network on a macroscopic level as a multi-reservoir MFD-based queuing 
system with time-dependent demand and state-dependent capacity, i.e., accumulation-based MFD. Note that this approach is quite 
different from the single-bottleneck models, which assume capacity is constant, or other MFD-based morning commute models, which 
assume that trip scheduling problem arises only after the system exceeds the critical accumulation. In this queuing system, rational 
users seek to minimize their own travel costs in the network by adjusting the start times of their trips subject to adherence to the work 
start time of their firm (this can be an interval, for instance 8:00 am - 8:30 am). The cumulative result of the individual trip scheduling 
decisions leads to temporal equilibrium or user equilibrium (UE) conditions at the network level in which no one can reduce their 
travel cost by shifting the start time of their trip. Nonetheless, given the state-dependent capacity feature of the accumulation-based 
MFD model, it remains a challenge to find an analytical solution to UE conditions in multi-reservoir networks. Note that this is the case 
despite all the commonly adopted assumptions on first-in-first-out behavior and constant trip length (i.e., all users in the same reservoir 
travel the same distance). 

Therefore, there is need for further simplification in relation to the target UE solution so that an analytical relation can be derived 
within the optimization problem. Hence, we define ‘approximated user equilibrium’ conditions, as shown in Fig. 1. Considering the 
fact that this is a schedule design problem, we opt for a scenario where everyone arrives at work on time and no one suffers a schedule 
cost. The opposite would imply that, even with the optimal schedule scenario, the design capacity is not enough for commuters to 
arrive on time and some have to arrive at their destination earlier or later than they wish. This clearly does not indicate ideal conditions 
that one should be seeking when designing optimal work schedules. However, this approach (imposing a zero-schedule delay 
approximation) does not guarantee that the final solution is the best solution in terms of the total cost (i.e., sum of queuing cost and 
schedule cost); there may be other scenarios where the total cost is less albeit producing non-ideal conditions. Note that the afore-
mentioned zero-schedule cost approximation is adopted only at the aggregated design stage (i.e., schedule optimisation in Fig. 1)) to 
generate the optimal work schedules; the resulting solution will later be put to the test considering more realistic UE settings (i.e., 
‘iterative user equilibrium’ as shown in Fig. 1) where individual users can make individual trip scheduling decisions and a schedule 
cost may arise as a result of collective decisions in the network. 

The decision variables in the schedule optimisation problem are the work schedules and UE travel times, see Fig. 1. UE travel times 
indicate the total costs that commuters experience considering zero-schedule cost approximation and can be considered a by-product 
of the optimisation framework, whereas the optimal work schedule is the actual outcome of the optimisation framework that needs to 
be further tested considering employer-level schedules and more realistic UE settings. The proposed staggered work schedule strategy 
comprises of two levels; in the top level aggregated region-level schedules are considered and optimised, while at the employer level, 
the aggregated optimal work schedule is broken down into to the work start period of individual firms (employers). In other words, we 
consider a bi-scale formulation where the congestion is curbed with a travel demand management method that alters the work start 
period of individual firms. 

Ultimately, the optimal work start periods of firms are incorporated into iterative UE module, where commuters make departure 
time (or trip scheduling) decisions with respect to travel costs (including schedule costs) they experience in the traffic system, see 
Fig. 1. The decision update mechanism here is modelled as a day-to-day assignment model, and the system dynamics of the bicentric 
network are modelled using a trip-based MFD model. Intrinsically, this model relies on an aggregated traffic performance function (i.e., 
speed-MFD), but unlike the accumulation-based MFD, it allows the modelling of individual travellers with distinct characteristics such 
as lateness and earliness willingness and individual trip decisions. Hence, it is a suitable model to retrieve individual travel costs 
(including travel time and schedule costs) and to establish the ‘actual’ UE conditions that result from the work schedule that has been 
designed by the proposed schedule optimisation program. Note that the same UE module is used to build the baseline scenario too, 

Fig. 2. Schematic of the bicentric urban network. Trips originate in residential Region 1 with destination in downtown Regions 2 or 3 where the 
firms are located. 
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where the work schedule is the baseline schedule representing the initial conditions. 

3. Main principles for the modelling of the bicentric urban network 

The bicentric structure of the network in this queuing system allows us to consider that the trips originated in the residential Region 
1 have destinations in either of the downtown Regions 2 or 3, surrounded by Region 1, as illustrated in Fig. 2. Note that our scenario 
does not include other types of demand (e.g., from Region 2 to Region 1) which should be insignificant in the morning commute of this 
bicentric network. In this model, the travel time that users bear in their commutes to Region i ∈ {2,3} also depends on the trip schedule 
of the commuters to Regions j ∕= i,j ∈ {2,3}, since their trips have an overlap in Region 1. We capture the dynamics of the congestion 
in the bicentric network by an accumulation-based bathtub model in which the outflow of Region 1 is the inflow to Regions 2 and 3. 
The interrelationships between the region outflow and accumulation in each region is represented by the MFD. We simultaneously 
optimize the work schedule of the commuters to Regions 2 and 3 satisfying both temporal equilibrium conditions and system 
dynamics. 

In the proposed modeling framework, the morning trips have an origin in the residential suburban area, Region 1, and a destination 
in one of the city centers, Regions 2 or 3, please see Fig. 2. Thus, it is reasonable to assume that commuters directly travel to their final 
destinations in Region 2 or 3, without passing through a third region. Nevertheless, to account for small number of travellers who 
might prefer to cross a third region in reality or pass the region boundaries more than one time, traffic assignment models (route 
choice) aiming for equilibrium conditions in the context of MFD modelling could be incorporated as a future research (Yildirimoglu 
and Geroliminis, 2014; Guo and Ban, 2020). 

The proposed framework builds on several key principles: (i) approximated user equilibrium definition, (ii) congestion propagation 
dynamics or accumulation-based MFD modelling, and (iii) iterative user equilibrium approach, which will be introduced in the 
following subsections. Please refer to Fig. 1 for their use in the proposed framework. 

3.1. Approximated user equilibrium 

Commuters starting their trips in Region 1 wish to arrive at their destinations in Regions 2 and 3 punctually. However, in certain 
scenarios, the rapid decline in the network speed with the rise of the accumulation in Regions 1, 2, and 3 over the morning peak can 
make it physically impossible for everyone to be on time. Thus, the commuters may experience longer travel times in the network and 
arrive at their destinations earlier or later than they wish. Total cost in the system, including travel times and schedule cost, can be 
significantly curbed by flattening the distribution of the wished arrival times or work schedules. The schedule optimization scheme 
that we propose in this study aims for a scenario where all commuters arrive on time and no schedule cost is observed. In this case, all 
the users arrive at their destinations in regions 2 and 3 on time experiencing the minimum delay in their trips. Bearing no schedule cost, 
users seek to minimize their own travel times by adjusting their trip schedules. Thus, under the equilibrium condition, the travel time 
remains equal for each and every individual user who has a destination in the same region, i.e., region 2 or 3. In other words, our target 
scenario is the one where all travellers (with the same destination) have the same travel time with zero schedule cost; this way, no 
traveller would have an incentive to change their departure time and induce schedule cost. Note that if travel time is the same for every 
commuter, changing departure time would simply cause a schedule cost that did not exist in the original departure time choice. 

In a single bottleneck or a single region context, the change in travel times during the peak hours has to be accompanied with 
changing schedule costs in order to satisfy equilibrium conditions and guarantee that no one can improve their cost. However, this is 
not needed in the bicentric network that we consider; the increase in travel time in one region may be compensated by the decrease in 
travel time in the other region such that travel times are approximately equal for all travellers. Note that the single bottleneck and the 
single region bathtub models assume that the travel time is constant under uncongested conditions, and the schedule cost appears once 
the system exceeds the capacity flow. Nevertheless, Yokohama MFD presented in Geroliminis and Daganzo (2008) shows that average 

Fig. 3. The queueing diagram of the bicentric urban network with an optimal wished curve. Wi(t) is the optimal cumulative distribution of the 
staggered-wished arrival times at Region i ∈ {2,3} that is designed to be equal to the cumulative distribution of their actual departure times from 
Region i,Di(t). This is a deliberate design approach such that the schedule cost is zero. 
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speed in the network changes from approximately 30 km/h at zero accumulation to 15 km/h at the critical accumulation (brink of 
congested regime). In this study, we relax the ‘constant travel time’ assumption for the uncongested regime and account for variations 
in travel time in the whole range of accumulations. 

Now, let us elaborate the approximated user equilibrium conditions that we target to have in the proposed optimal work schedule 
scenario. Note that this discussion does not account for an arbitrary work schedule and corresponding equilibrium conditions; it refers 
specifically to the proposed optimal work schedule distribution and the corresponding UE conditions where schedule cost does not 
exist. Having zero-schedule cost in the approximated UE scenario will allow us to develop an elegant formulation of the congestion 
dynamics and UE conditions. It is envisaged that the optimal work schedule distribution will yield a scenario in which all the com-
muters experience equal travel times to Region i ∈ {2,3} during the peak period, i.e., equilibrium travel time, τ*

1i: 

τ1i(N) = τ*
1i for N ∈ [1,Ni] (1)  

where Ni denotes the total number of commuters with destination in Region i and τ1i(N) is the travel time of commuter N from Region 1 
to i, which can be expressed as the summation of the travel times of commuter N through Regions 1 and i, τ1(N) and τi(N) respectively: 
τ1i(N) = τ1(N) + τi(N). 

The queuing diagram of Fig. 3 illustrates the UE conditions in the bicentric network for an optimal distribution of the wished arrival 
times. In this queuing diagram, W̃i(t) is the cumulative distribution of the initial work schedule of employers in Region i, i.e., the 
cumulative distribution of the wished arrival times of the commuters at their destinations in Region i in the initial scenario. In contrast, 
Wi(t) is the optimal cumulative distribution of the wished arrival times of the commuters at their destinations in Region i resulting from 
the schedule optimization problem, please see Fig. 1. Note that W̃i(t) is depicted in the diagram for comparison to Wi(t); the remaining 
curves/variables belong only to the optimal work schedule scenario. For users to bear no schedule cost in their commutes in the 
optimal work schedule scenario, the cumulative counts of the wished arrivals at destinations in Region i by time t, Wi(t), should be 
exactly equal to the cumulative counts of the actual departures from Region i (or the actual arrivals at destinations in Region i) by time 
t, i.e., Di(t) : Wi(t) = Di(t). Considering the bicentric network structure presented in Fig. 2, the cumulative counts of the arrivals at 
Region i by time t,Ai(t), is equal to the cumulative counts of the departures from Region 1 by time t that have a destination in Region i, 
D1i(t) : Ai(t) = D1i(t). A1i(t) is the cumulative counts of the arrivals by time t in Region 1 with a destination in Region i. With this 
definition of the arrival and departure curves, the travel time that users bear in their commutes from Region 1 to their destinations in 
Region i can be graphically presented as the horizontal distance between the cumulative arrival curve in Region 1, A1i(t), and the 
cumulative departure curve from Region i, Di(t). For the equilibrium condition to hold (Eq. 1), the horizontal distance between these 
curves should remain exactly equal for all the users over time: τ*

1i = D− 1
i (N) − A− 1

1i (N) for N ∈ [1,Ni]. In other words, A1i(t) should be a 
translate of Wi(t) or Di(t) to the left of t-axis by τ*

1i. Nevertheless, it is obvious that the arrival and departure curves introduced here are 
also a function of congestion dynamics, which will be introduced in the next subsection. The arrival (and departure) curves resulting 
from congestion dynamics and resulting from user equilibrium principles may not be consistent with each other. That means, A1i(t)
resulting from the approximated user equilibrium defined in Eq. eq:eql may not satisfy the congestion dynamics that will be presented 
in the next subsection. This will be further discussed in Section 4, particularly with respect to the formulation of the optimisation 
problem. 

3.2. Congestion dynamics - Accumulation-based MFD model 

We consider an accumulation-based bathtub model to capture the traffic dynamics in the bicentric network. In this model, the 
relationship between the network outflow and the vehicular accumulation is determined by the MFD. Let us assume that the urban 
network is partitioned into three regions each with well-defined MFDs, as shown in Fig. 2. Let n1i(t) [veh] denote the vehicle accu-
mulation in Region 1 with destination in Region i ∈ {2,3} at time t. Also let ni(t) [veh] be the total accumulation in Region i ∈ {2,3} at 
time t. Evidently, n1(t) = n12(t) + n13(t). 

Considering the approximated UE conditions described in Eq. 1, the traffic flow conservation equations of the bicentric urban 
network are as follows: 

dn1i(t)
dt

= Ȧ1i(t) − Ḋ1i(t) i ∈ {2, 3} (2)  

dni(t)
dt

= Ȧi(t) − Ḋi(t) = Ḋ1i(t) − Ẇi(t) i ∈ {2, 3} (3)  

where Ȧ1i(t) is the slope of the arrival curve to Region 1 with final destination in Region i at time t, Ḋ1i(t) is the slope of the departure 
curve from Region 1 to Region i at time t, Ȧi(t) is the slope of the arrival curve to Region i, Ḋi(t) is the slope of the departure curve from 
Region i, and Ẇi(t) is the slope of the departure curve from Region i (and the network) at time t. The queuing diagram presented in 
Fig. 3 is consistent with the accumulation-based model defined above. That means, Ȧ1i(t) is the input travel demand to Region 1 with 
destination in Region i at time t, and Ḋ1i(t) is the transfer flow from Region 1 to Region i at time t (hence the negative sign in Eq. 2). 
Similarly, Ȧi(t) is the input travel demand to Region i at time t, and Ḋi(t) is the exit flow from Region i at time t (hence the negative sign 
in Eq. 3). Considering the structure of the bicentric urban network, Ȧi(t) = Ḋ1i(t), and due to zero schedule delay assumption outlined 
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in Eq. 1, Ḋi(t) = Ẇi(t). Therefore, Eq. 3 can be rewritten as Ḋ1i(t) − Ẇi(t). 
Accordingly, the vertical distance between the arrival and departure curves of Region i ∈ {2,3} represents the accumulations of 

Region i at each point in time, ni(t) = Ai(t) − Di(t). Similarly, the accumulation of Region 1 is the difference between the cumulative 
arrivals and departures of Regions 1, n1(t) = A1(t) − D1(t) where A1(t) =

∑
i∈{2,3}A1i(t) and D1(t) =

∑
i∈{2,3}D1i(t), in the bicentric 

network. 
Given the MFD of Regions 1 and i ∈ {2,3}, G1(⋅) and Gi(⋅), we estimate the region outflow at time t as a function of the accu-

mulation of the region at time t, i.e., Ẇi(t) = Ḋi(t) = Gi(ni(t)). For Region 1, we have Ḋ1(t) = G1(n1(t)), while Ḋ1(t) =
∑

i∈{2,3}Ḋ1i(t)
and n1(t) =

∑
i∈{2,3}n1i(t). A further assumption is needed to determine the accumulation components in Region 1. Consistent with the 

accumulation-based MFD models in the literature, we assume the ratio of outflow from Region 1 to Region i to the total outflow from 
Region 1 is equal to the instantaneous ratio of accumulations of vehicles in Region 1 with respect to their destinations, i.e. n12(t)/n13(t)
= Ḋ12(t)/Ḋ13(t). 

The above relations describe the congestion propagation dynamics that are needed to estimate the arrival and departure curves in 
Fig. 3. Let us assume Wi(t) is known and differentiable. As our target optimal scenario does not involve schedule cost, Wi(t) = Di(t). 
And, the MFD dynamics requires that Gi(ni(t)) = Ḋi(t) or Gi(ni(t)) = Ẇi(t). This simply means the number of vehicles completing their 
trips at time t is a function of MFD, Gi, and accumulation, ni(t). Graphically speaking, at each time t, one can find the slope of Di(t) or 
Wi(t), and using the inverse of MFD function, derive the corresponding ni(t), and finally vertically add ni(t) to Wi(t) to estimate Ai(t). A 
similar procedure can be applied to estimate A1i(t). MFD of Region 1 requires that G1(n1(t)) = Ḋ12(t) + Ḋ13(t). Note that the two 
derivative terms on the right hand side can be numerically computed from the cumulative curves, i.e., A2(t) = D12(t) and A3(t) =

D13(t). G1 is known as well. Hence n1(t) can be estimated. Also by definition n1(t) = n12(t) + n13(t), and as described above n12(t)/
n13(t) = Ḋ12(t)/Ḋ13(t). Given these relations, n12(t) and n13(t) can be estimated. And, A1i(t) can be constructed, i.e., A1i(t) = Ai(t) +
n1i(t). Essentially, given Wi(t), Ai(t) and A1i(t) can be calculated considering the approximated user equilibrium definition (i.e., Wi(t)
= Di(t)) and the outlined congestion dynamics. The above relations are the methodological principles that are mathematically 
expressed in the optimization problem in Section 4. Note that the queuing diagram presented in Fig. 3 presents an ideal scenario where 
the arrival curve A1i(t) fully satisfies both approximated user equilibrium principles and congestion dynamics. Nevertheless, such ideal 
conditions may not be possible to achieve in a real implementation, which will be discussed in Section 4 considering the formulation of 
the schedule optimisation problem. 

Having the components of the accumulation-based model formulated, the staggered work schedule method minimizes the total 
travel time of all commuters through the regions of the bicentric network by optimizing the wished arrival times W2(t) and W3(t) of the 
commuters at their destinations while considering the behavioral reaction of drivers captured by changes in arrivals to Region 1, A1i(t). 
Also note that the UE conditions presented in the previous subsection and the congestion dynamics presented above may not result in 
the same arrival and departure curves, particularly the same A1i. This mismatch will be further discussed in Section 4, and will be 
added as one of the terms to minimize in the objective function. 

Due to its low complexity and analytical tractability, the accumulation-based MFD model presented above is a promising tool to 
develop network-level traffic management schemes. Nevertheless, this modeling approach does not allow tracking of individual ve-
hicles in the network, and the framework that we build around this model has certain limitations, e.g., constant average trip length (l), 
first-in first-out, etc. In order to address some of the limitations, in this work, we will test the optimisation results in a more detailed 
simulation model which allows tracking of individual travellers. Daganzo and Lehe (2015, 2018, 2017) propose a different model 
(called the trip-based MFD model) where vehicles might have different trip lengths and move toward their destination with respect to 
the average speed in the region defined by ‘speed-MFD’, V(n). The speed-MFD can be expressed as V(n) = P(n)/n, where P(n) is the 
‘production-MFD’ that is P(n) = G(n) ⋅ l in steady-state conditions. We develop the trip-based MFD model of the bicentric network and 
apply the optimized work schedules to evaluate the network total travel time. 

3.3. An iterative algorithm to determine user equilibrium conditions 

To address UE conditions that would result from an arbitrary work schedule scenario, we turn over to the trip-based MFD model 
(more details on this model are provided in the next subsection) and an iterative assignment approach, see the iterative UE module in 
Fig. 1. Essentially, this approach enables the observation of individual travel costs, including travel times and schedule costs, which are 
necessary for individual trip scheduling decisions to be made. In this framework, we adopt a day-to-day assignment model where 
commuters update their departure time decisions considering their perceived travel cost, which is a combination of historical travel 
cost and current cost. Although it does not guarantee an exact equilibrium solution (or convergence for that matter), this iterative 
approach approximates the equilibrium conditions in complex system settings such as the bicentric network that we consider in this 
study. Note that while a numerical approximation of the analytical equilibrium solution exists for single region networks (Amirgholy 
and Gao, 2017), such solutions are not available for the multi-regional networks, e.g., the bicentric network under study. For more 
details on the implemented day-to-day assignment model, see (Yildirimoglu and Ramezani, 2019). The iterative UE module is used as 
the testbed (i.e., the plant representing reality) in the proposed framework for two purposes; (i) to identify the baseline scenario 
considering the initial work schedules, and (ii) to assess and validate the proposed optimal work schedule scenario without the as-
sumptions on approximated UE conditions (i.e., zero schedule delay). 

The trip-based MFD model is a disaggregated and network-wide model that takes into account individual commuter characteristics 
such as trip length, arrival time, and lateness and earliness characteristic. We consider the event-based implementation of the trip- 
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based MFD model for the bicentric network. The events are arrival to Region 1 (departure from the residential place), transfer to 
Region 2 or 3 depending on the final destination, and departure the network from the destination region (arrival to their working 
place). The model gets updated when an event occurs. These events are associated with changes in the accumulation of regions (i.e., 
n12,n13,n2,n3) that lead to changes in the speeds of the regions according to the speed-MFD, V1(n1),V2(n2),V3(n3) respectively. Based 
on the region speed, the traveled distance of all commuters is updated. The vehicles exit the region or the network once their traveled 
distance becomes equal to their assigned trip lengths. Intuitively, each traveller has two pre-assigned trip lengths, one in Region 1 and 
one in their destination Region i. This iterative and unevenly-clocked procedure continues till all the commuters reach their desti-
nations and their travel times in Region 1 and the destination region is calculated. The pseudo algorithm of the trip-based MFD model 
for the bicentric network is provided in Appendix A. This modelling approach allows us to estimate the schedule cost of each commuter 
as the difference between their wished departure time and their actual departure time can be estimated. Note that in schedule opti-
misation framework we employ the approximated UE conditions to ease the optimization program. Use of trip-based model relaxes this 
assumption as each traveler has their schedule cost that plays a role in establishment of user equilibrium condition. 

4. Formulation of the optimal work schedule problem 

The proposed staggered work schedule strategy comprises of two levels; Section 4.1 introduces the top level problem of aggregated 
schedule optimisation, while Section 4.2 introduces the employer level problem, where the aggregated optimal work schedule is 
broken down into to the work start period of individual firms (employers). Please see Fig. 1 for the sequencing of the two levels as well 
as the key principles required in the proposed framework. 

4.1. Multi-objective schedule optimisation 

Ideally, the objective of the proposed schedule optimization scheme is to minimize the congestion cost and the schedule deviation (i. 
e., change from the original work schedules) subject to equilibrium conditions and congestion propagation dynamics, as presented 
in‘schedule optimisation’ in Fig. 1. Nonetheless, to exactly satisfy equilibrium conditions with zero-schedule delay approximation, the 
horizontal distance between the arrival curve (to Region 1) and departure curve (from destination Region i) should remain exactly the 
same for all users over time: τ*

1i = D− 1
i (N) − A− 1

1i (N) for N ∈ [1,Ni], as described in Section 3.1. This is a very strict constraint for the 
proposed optimization framework to handle. Therefore, we opt to transfer this constraint to the objective function as a penalty term 
that accounts for the constraint violation. Mathematically speaking, we define a new arrival curve, Ã1i, that represents the arrival 
pattern under perfect equilibrium conditions; Ã1i should simply be translate of Di with a lag of τ1i. The added penalty term aims to 
minimize the difference between the equilibrium arrivals, Ã1i, and the system arrivals, A1i, which complies with congestion propa-
gation dynamics. Our approach does not guarantee that the two curves will be identical, but ensures they will be as close as possible, i. 
e. near-equilibrium conditions. Additionally, this penalty term has to be associated with a higher weight than others, given that it refers 
to constraint violations in the original problem. 

In light of the above discussion, we formulate the optimal work schedule problem as a multi-objective optimisation problem 
considering multiple aspects of the problem in hand. The objective function presented in Eq. 4a consists of three terms that are sur-
rogates for equilibrium approximation, congestion cost, and schedule deviation. Each term is associated with a weight parameter, i.e., α,β,
γ, which will be further discussed in the next section. We have combined these terms into one single-objective scalar function using the 
scalarization method. Alternatively, this problem can be formulated as a bi-level programming or a game theory problem, where the 
upper level might focus on the allocation of work start times, and the lower level accounts for the response of travellers to the new 
schedule (satisfying the equilibrium condition). Nonetheless, the scalarization method has been widely used to tackle multi-objective 
problems, and the solution to this single-objective function is an efficient solution for the original multi-objective problem, i.e. Pareto- 
optimal solution (Caramia and Dell’Olmo, 2020). Essentially, the first term equilibrium approximation indicates a measure of similarity 
between the arrival curve that arises from system dynamics, i.e., A1i, and the one that complies with equilibrium conditions, i.e., Ã1i, 
which is translate of Wi as in Eq. 4j. The second term congestion is a surrogate of the total time spent in the system; in each time step 
t,A1i(t) and Di(t) represents the number of vehicles (with destination i) that has entered and left the network, respectively. (In other 
words, A12(t) + A13(t) − D2(t) − D3(t) = n1(t) + n2(t) + n3(t).) The last term, schedule deviation, indicates the shift from the initial work 
schedule, i.e., W̃i(t), to the optimal work schedule, i.e., Wi(t). The decision variables include the travel times to each destination region, 
i.e. τ*

12,τ*
13, that we expect to observe and remain approximately constant under equilibrium conditions. Additionally, the values of the 

optimal wished curves, W2 = {W2(t) | 0⩽t⩽tf} and W3 = {W3(t) | 0⩽t⩽tf}, are to be identified as part of the optimisation program. 
Note that tf denotes the final time of process. 

The constraints presented in Eq. 4b–4k arise from the illustration shown in Fig. 3 and the key principles outlined in Section 3.1 and 
Section 3.2. They represent the accumulation-based bathtub model (i.e., system dynamics) and the user equilibrium conditions in the 
bicentric network. Eq. 4b guarantees that all the travel demand is served between time 0 and tf . Eq. 4c simply states that the wished 
curves and the departure curves are equal to each other, which implies there is no schedule cost in the optimal scenario that we aim for 
(i.e., approximated UE). Eq. 4d relates the derivative of the wished curve (or the departure curve) in the destination Region i ∈ {2,3} to 
the MFD function Gi and the accumulation of vehicles in Region i,ni. The accumulation ni is related to the departure curve from Region 
1 to destination Region i, as presented by Eq. 4e. Similarly, the total outflow from Region 1, i.e., 

∑
i∈{2,3}Ḋ1i is equal to the MFD 

function G1 and the accumulation n1, see Eq. 4f. Obviously, as Eq. 4g shows, the resulting accumulation n1 is the sum of partial 
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accumulations in Region 1 with different destinations, i.e. n1(t) =
∑

i∈{2,3}n1i(t), and as Eq. 4h shows, it is split in proportion to the 
outflow or transfer flows to destination regions. Eq. 4i relates the arrival curve A1i to the congestion dynamics considering the de-
parture curve D1i and the partial accumulation n1i. On the other hand, Eq. 4j defines the (expected) equilibrium arrival curve, i.e., Ã1i, 
as a curve parallel to the wished curve, i.e., Wi, with a time lag of τ*

1i. In other words, Ã1i, as it is parallel to the wished curve Wi or the 
departure curve Di with a time lag of τ*

1i, allows us to define the equilibrium conditions where every traveller (with destination i) has 
approximately the same travel time τ*

1i and has no earliness/lateness cost, i.e., A1i ≈ Ã1i. Lastly, Eq. 4k requires the positivity of the 
states of the system.  

minimize
W2 ,W3 ,τ*

12 ,τ
*
13

∑

i∈{2,3}

∫ tf

0

[

α
(

A1i(t) − Ã1i(t)
)2

+ β(A1i(t) − Di(t))2
+ γ

(
Wi(t) − W̃i(t)

)2
]

dt (4a)  

subject to
Wi(0) = 0, Wi(tf) = W̃i(tf) i ∈ {2, 3} (4b)  

for t ∈ [0, tf ] :

Wi(t) = Di(t) i ∈ {2, 3} (4c)  

Ẇi(t) = Gi(ni(t)) i ∈ {2, 3} (4d)  

D1i(t) = Di(t)+ ni(t) i ∈ {2, 3} (4e)  

G1(n1(t)) =
∑

i∈{2,3}

Ḋ1i(t) (4f)  

n1(t) =
∑

i∈{2,3}

n1i(t) (4g)  

n12(t)
n13(t)

=
Ḋ12(t)
Ḋ13(t)

(4h)  

A1i(t) = D1i(t)+ n1i(t) i ∈ {2, 3} (4i)  

Ã1i(t) = Wi(t+ τ*
1i) i ∈ {2, 3} (4j)  

n1i(t)⩾0, ni(t)⩾0 i ∈ {2, 3}. (4k) 

The above formulation defines the optimal wished curve values W2 and W3 in continuous format. To solve this optimisation 
program, as Eq. 5 shows, we define the optimal wished curve as a generalised logistic function with 5 parameters to identify, i.e., ωi. 
Briefly, generalised logistic functions are proposed as an extension of logistic or sigmoid functions, with the capability of producing 
more flexible S-shaped curves, including asymmetric curves. We choose to represent the optimal wished curves as generalised logistic 
functions due to its flexibility in creating asymmetric curves and its parametric nature, which allows an elegant optimisation structure. 
Other functional forms of the wished curve can be readily integrated in the proposed optimization. On the other hand, Eq. 6 defines the 
equilibrium arrival curve, i.e., Ã1i, as a generalised logistic function with the same parameters ωi but with a time lag of τ*

1i. In other 
words, Ã1i is parallel to the wished curve Wi or the departure curve Di with a time lag of τ*

1i. By defining the optimal wished curves as 
generalised logistic functions, we replace the decision variables W2,W3 with the parameters of the logistic function ω1

2,⋯,ω5
2 and ω1

3,⋯,

ω5
3, and allow the travel times τ*

12, τ*
13 to be continuous variables, which makes the optimisation structure tractable. Additionally, as the 

optimal wished curve Wi follows a generalised logistic function, its derivative in Eq. 4d can be analytically computed; however, the 
derivatives Ḋ1i require a numerical differentiation. As we build the system dynamics with fine time intervals, we note that the nu-
merical differentiation produces accurate results. It is worth mentioning that the initial wished curve W̃i is an input to the optimisation 
problem, and does not have to follow a generalised logistic function. 

Wi(t) = ω1
i +

ω2
i − ω1

i

(1 + ω3
i ⋅ exp( − ω4

i ⋅ t) )1/ω5
i

i ∈ {2, 3} (5)  

Ã1i(t) = ω1
i +

ω2
i − ω1

i

(1 + ω3
i ⋅ exp( − ω4

i ⋅ (t + τ*
1i)) )

1/ω5
i

i ∈ {2, 3} (6) 

The overarching objective of the optimal work schedule problem is to minimize the traffic congestion in the network (the second 
term in Eq. 4a) under near-equilibrium conditions (the first term in Eq. 4a) with minimal changes in the initial work schedules (the 
third term in Eq. 4a). These objectives may have a conflicting nature; in order to minimise the traffic congestion in the system, one 
needs to make significant changes in the work schedules, and possibly create uniformly distributed work schedules across the peak 
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hours. Nevertheless, applying such changes through employer taxation and other forms would not be easy, and cause significant 
compliance issues. On the other hand, it is obvious that with no changes in the initial work schedules, traffic conditions would not 
improve. Additionally, the changes in the work schedules will change departure times, which realistically captures the reaction of 
travellers under user equilibrium assumptions. In other words, the optimal work schedule scenario should take account of travellers’ 
reaction when optimising the congestion cost with minimal schedule changes. Intuitively, these objectives are often conflicting; hence, 
we choose to formulate the optimal work schedule problem as a multi-objective optimisation problem. Considering the nature of the 
problem, it is clear that no single solution exists that simultaneously optimizes each objective. Therefore, with assigning different 
weight parameters to each objective/term in the objective function, we find a representative set of Pareto optimal solutions. While it is 
difficult to argue that one solution is better than others in the Pareto frontier, our aim is to quantify the trade-offs in satisfying the 
different objectives, and identify a compromising solution that accounts for multiple aspects of the problem. 

The optimization problem is a non-convex nonlinear program (NLP) due to the nonlinear nature of MFD (a third-order polynomial 
function is adopted in this study) and the resulting congestion propagation dynamics as presented in Eq. 4b–4 k. Note that the 
congestion propagation dynamics serve as the constraints to the optimization problem and define a nonlinear and non-convex solution 
space for the optimization problem, see for instance Eq. 4h. This makes the whole optimization problem non-convex and nonlinear. 
The resulting constrained NLP includes 12 decision variables; the parameters of the logistic function ω1

2,⋯,ω5
2 and ω1

3,⋯,ω5
3, and the 

equilibrium travel times τ*
12, τ*

13. The resulting NLP can be efficiently solved via, e.g., sequential quadratic programming or interior 
point solvers (see Diehl et al. (2006) for details). In this study, software implementation of the optimization is done using the CasADi 
toolbox (Andersson et al., 2018) in which the NLPs are solved by the interior point solver IPOPT (Wächter and Biegler, 2006). A 
tolerance level of 10− 8 and 3000 maximum iterations has been used in all runs to identify the optimal solution. 

4.2. Employer-level optimisation 

In Section 4.1, we described the upper level of the optimal work schedules problem in which the departure curves (or wished curves 
W2(t) and W3(t)) are optimized. Those curves identify the outflow rate from each city-center (Region 2 or 3) that is the work start times 
of multiple firms aggregated at the level of region. To complete the overall optimal work schedule problem, we develop an optimi-
zation program that decomposes the optimal work schedules to work start times of different firms in the region. The following is the 
lower level (employer-level) of the staggered work schedule optimization problem that is considered for each region independently. 
Thus for the sake of brevity, the region index is omitted. 

Let us assume 𝒦 denotes the set of firms in the region indexed by k. Further, the decision variables are the incentivized work start 
periods of the firms, i.e. [ts

k,t
e
k], the beginning of the work start period and the end time of the work start period of firm k respectively. 

minimize
tsk ,t

e
k

∑

k∈𝒦

[⃒
⃒ts

k − t̃s
k| + |te

k − t̃e
k|
]
+ δ

∫ tf

0
[|W(t) − W*(t)|]dt (7a)  

subject to
0⩽ts

k < te
k⩽tf k ∈ 𝒦

(7b)  

Δk⩽te
k − ts

k k ∈ 𝒦 (7c)  

W*(t) = ℱ([ts
k, te

k]) k ∈ 𝒦. (7d) 

Eq. 7a represents the objective function of the lower level optimization program. The first term in Eq. 7a measures the deviations 
between the incentivized work start periods and the initial work start periods of the firms, [̃ts

k, t̃
e
k]. The second term weighted by δ 

measures the difference between the optimal work schedule of the region, W(t), and the incentivized work schedule of the region 
aggregated from individual work start period of firms. Note that W(t) is an input in Eq. 7a while it is the output of the upper level multi- 
objective optimization program in Eq. 4a. The incentivized beginning and end times of the work start period of firm k, i.e. respectively 
ts
k and te

k, should be between time 0 and the final time tf . Also, the incentivized beginning of the work start period of firm k should be 
before the end time of the work start period. These constraints are considered in Eq. 7b. To accommodate a work start period for firms 
rather than a single point of time, 0 < Δk is considered in Eq. 7c to guarantee a minimum duration for the work start period of firm k (e. 
g. 15 min). Lastly. the aggregated incentivized work schedule of the region, W*(t), is simply the superposition of work start periods of 
all firms that is represented with function ℱ . Note that ℱ also takes into consideration the number of employees of all the firms. 

The employer-level optimization program, Eq. 7a, is nonlinear and constrained with a non-empty feasibility set. Thus, the solution 
existence can be verified but the uniqueness cannot be established. Note that, the non-uniqueness of Eq. 7a solution does not pose a 
challenge in the overall proposed method since the wished curve optimisation program in Eq. 4a, does not depend on the solution of 
Eq. 7a. The optimization program 7a comprises of two times of the number of firms decision variables; the incentivized work start 
periods of the firms. The optimization program can be efficiently solved using different numerical solvers. In this paper, we resort to 
the interior point algorithm implemented in Matlab. We run 40 instances of the (local) optimization with random initial points with the 
tolerance on the constraint violation equal to 10− 6, the maximum number of iterations equal to 1000, the maximum number of 
function evaluations set to 3000, the termination tolerance on the first-order optimality as 10− 6, and the termination tolerance on the 
decision variables set as 10− 10. The details of the results of the employer-level work start time optimization is presented in Section 5.3. 
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5. Numerical experiments 

This section is structured as follows. First, we provide the numerical settings for the proposed case study. Second, we discuss the 
results of the top-level optimisation problem of the regional work schedules. Third, we present the results of the employer-level 
schedule design problem. Finally, we test the proposed strategy using the trip-based MFD model, and provide a comparison to the 
baseline scenario. 

5.1. Numerical settings 

The numerical case study is based on the bicentric network presented in Fig. 2. In numerical experiments, we use two MFD-based 
traffic models; the accumulation-based and the trip-based MFD models, as outlined in Fig. 1. The accumulation-based model is the 
basis of the multi-objective schedule optimisation problem to identify the optimal solution for the work schedules. The trip-based MFD 
model together with the iterative UE approach is used as the testbed (i.e., the plant representing reality) for two purposes; (i) to identify 
the baseline scenario1 where the user equilibrium conditions should be established with a generalised travel cost including both the 
travel time and the earliness/lateness cost, and (ii) to assess the proposed optimal work schedule scenario considering both the quality 
of the equilibrium approximation and the resulting traffic conditions. Note that while a numerical approximation of the analytical 
equilibrium solution exists for single region networks (Amirgholy and Gao, 2017), such solutions are not available for the multi- 
regional networks, e.g., the bicentric network under study. Therefore, we resort to the trip-based model and aim to establish user 
equilibrium conditions through an iterative framework, where we employ a day-to-day departure time assignment model (Yildir-
imoglu and Ramezani, 2019). The pseudo algorithm of the trip-based MFD model for the bicentric network is provided in Appendix A. 
For more details on the implemented trip-based MFD model see (Yildirimoglu and Ramezani, 2019; Li et al., 2021). 

Tables 1 and 2 present the parameters for the accumulation-based and the trip-based model, respectively. These two models rely on 
equivalent representations of the MFD function, but have inherently different approaches to model traffic congestion dynamics. While 
the travellers are subject to varying trip lengths and earliness/lateness coefficients in the trip-based MFD model, the schedule opti-
mization model employs the accumulation-based MFD model where the average trip length is constant. Note that without loss of 
generality the same production or speed MFD functions and the average trip lengths are used in all three regions. The outflow MFD 
function, which is considered in the multi-objective formulation, is G(n) = P(n)/l. 

Although the optimisation problem (Eq. 4b–4 k) is presented in a continuous format, we discretize the problem to solve it with 
digital computers. Time step in the accumulation-based model and so the multi-objective optimisation formulation is Δt = 10 s. 
Additionally, for each Δt = 10 s, we apply Runge Kutta (RK4) method using a step size of 1 s. The trip-based MFD model is inherently 
event-based with no constant time step. 

Table 1 
Accumulation-based MFD model parameters.  

Accumulation-based model Specification 

Production function P(n) = a ⋅ n3 +b ⋅ n2 +c ⋅ n [veh⋅m/s]  
Outflow MFD G(n) = P(n)/l  
Parameters a = 9.98 ⋅ 10− 8,b = − 0.002, c = 9.78  
Parameters l = 2300[m], njam = 104 [veh], ncr = njam/3 [veh]   

Table 2 
Trip-based MFD model parameters. 𝒩 and 𝒰 represent the Gaussian 
and uniform distributions respectively.  

Trip-based model Specification 

Speed function V(n) = P(n)/n [m/s]  
Trip length l + 𝒩

(
0, (0.1 ⋅ l)2

)

Earliness parameter 𝒰(0.3,0.7)
Lateness parameter 𝒰(2.5,5.5)

1 The baseline scenario indicates the traffic conditions that result from the initial wished curve. This scenario is presumably congested, and in-
volves schedule costs that allow for temporal equilibrium conditions to hold. 
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5.2. Multi-objective optimisation results 

To determine the Pareto frontier resulting from the multi-objective formulation in Eq. 4a, we solve the optimisation problem with 
possible combinations of the following weight parameters; α = {1000},β = {0.25, 0.50, 0.75, 1.00, 2.50, 5.00, 10.00, 25.00, 50.00}, 
and γ = {0.25, 0.50, 0.75, 1.00, 2.50, 5.00, 10.00, 25.00, 50.00}. We deliberately assign a high value and do not change the value of α 
as this term indicates the penalty for constraint violation in relation to the equilibrium approximation. 

Fig. 4 presents the optimal solutions in the 3 hyperplanes (i.e., congestion-schedule deviation, equilibrium-schedule deviation, and 
congestion-equilibrium) color-coded with respect to the value of β and γ, while α = 1000 in all the tests. In all the 3 hyperplanes, the 
optimal solutions are sensitive to the value of γ (i.e., the weight for the schedule deviation term) as evidenced by the grouping of results 
with respect to the value of γ in Figs. 4(a), (c), and (e). However, the value of β (i.e., the weight for the congestion term) plays a lesser 
role in the optimal value of the three objectives. We note that the schedule deviation term is inversely correlated with the congestion and 
the equilibrium terms (see Figs. 4(a) and (c)). This makes intuitive sense; the more we shift from or spread the initial schedule, the 
further we reduce the congestion in the system. On the other hand, there is a positive correlation between the congestion and the 
equilibrium terms, because the more congested, the more difficult it is to satisfy equilibrium conditions where every traveller pre-
sumably has the same travel time. 

Fig. 4(a) shows that the congestion term reaches its minimum for γ = {0.25,0.50,0.75}, where it is less than half of its maximum 
value at γ = 50.00. In fact, the congestion term becomes insensitive to the the changes in γ below 0.75; in other words, while the 
schedule deviation values keep rising with decreasing values of γ below 0.75, the congestion cost remains more or less constant. This 
implies that making further changes in work schedules below γ = 0.75 has little to no impact on the congestion cost in the system. 
Additionally, the scenarios with γ = {0.25,0.50,0.75} are accompanied with high schedule deviation values and therefore indicate a 
significant shift in the work schedules, which may not be easy to implement. At the other end of the spectrum, we note that the schedule 
deviation term plateaus with the increasing congestion cost and reach very low values, which represents a scenario very similar to the 
initial conditions. For γ = 1.00 and γ = 2.50, we note that the schedule deviation is significantly low compared with its maximum value 
at γ = 0.25, and that there is significant improvement in the associated congestion cost. While it is hard to argue that one of the optimal 
solutions in the Pareto frontier is better than others, the optimal solutions at γ = 1.00 and γ = 2.50 present a good compromising 
solution where the schedule deviation from the initial scenario is moderate and the congestion is significantly curbed. 

The pattern in Fig. 4(c) is very similar to the one in Fig. 4(a); from the equilibrium perspective, the difference between the solution at 
γ = 0.25 and the solution at γ = 1.00 or γ = 2.50 is quite minimal, compared with the higher equilibrium terms that we observe at γ =

50.00. We also note that the equilibrium term differs from the schedule deviation and congestion values by two orders of magnitude, as 
intended by the high value of α=1000, see the axis ranges in Fig. 4. Additionally, even with the low values of β = 0.25 and γ = 0.25, 
equilibrium term does not vanish, albeit becoming extremely small. This confirms our initial hypothesis that satisfying exact equi-
librium conditions in the proposed schedule design procedure is quite difficult, and shows the value in the adopted constraint violation 
approach. 

Fig. 4(e), as discussed earlier, depicts a positive correlation between the congestion and the equilibrium terms; in other words, these 
two objectives are not conflicting. Nevertheless, the changes in the equilibrium values are quite minimal compared with the changes in 
the congestion values. Again, the solutions with γ = 1.00 and γ = 2.50 indicate a good compromising scenario for both the congestion 
and the equilibrium terms. Considering the findings from the Pareto frontier analysis, we conclude that the optimal solution corre-
sponding to {α, β, γ} = {1000,2.50,2.50} is an adequate scenario that can be further tested to assess the full impact of the proposed 
method. 

Fig. 5(a) and (b) presents the cumulative arrival, departure, and wished curves corresponding to the optimal solution with {α,β,γ}
= {1000,2.50,2.50}. Note that the total number of vehicles going to Regions 2 and 3 in the peak period are not the same. The figures 
also include the initial wished curve W̃i of Region i and the equilibrium arrival curve Ã1i, i.e., the arrival curve that satisfies temporal 
equilibrium conditions. As the temporal equilibrium conditions dictate the same travel time for all users of the same origin-destination 
pair, Ã1i must be parallel to the departure curve (or the wished curve, as we assume no schedule cost exists) with a time lag of τi which 
itself is a decision variable in the multi-objective optimisation problem, see Eq. 4a. Note that, in both Fig. 5(a) and (b), the equilibrium 
arrival curve Ã1i is very similar to the actual arrival curve A1i, which implies that the resulting optimal solution adequately captures the 
equilibrium conditions and provides approximately the same travel time to all users. This is an important result emphasizing the 
applicability and the stability of the proposed scheme; the changes in the work schedule inherently change the departure time patterns, 
but the resulting patterns align with the temporal equilibrium assumptions. 

Note that traffic conditions are not constant throughout the peak period; Fig. 5(c) shows the changing accumulation values in the 
bicentric urban network. However, as the congestion in the network is dramatically curbed as a result of the schedule optimisation 
process (the critical accumulation is about 3300 [veh]), the change in the experienced speed in the peak period is minimal, which 
allows a decent approximation of the user equilibrium conditions, in other words a good agreement between Ã1i and A1i. We also 
observe that the shift from the initial work schedules (i.e., the difference between the initial wished curve W̃i and the optimal wished 
curve Wi) is significant but not excessive in both regions. Fig. 5(d) allows a comparison of the wished curves in Regions 2 and 3. We 
note that, although the total number of vehicles and the initial schedule distribution is quite different, the proposed optimization 
program modifies both curves in a similar manner and yields minimal changes in the schedules particularly for those wanting to arrive 
in the middle of the peak period, see e.g., the difference between W2 and W̃2 from t = 80 min to t = 120 min, and the difference 
between W3 and W̃3 from t = 60 min to t = 100 min. 
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Fig. 4. Pareto optimal solutions; equilibrium, congestion, and schedule deviation refer to the three terms in Eq. 4a weighted by α,β,γ, respectively.  
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5.3. Results of employer-level optimization 

To fully evaluate the performance of the proposed staggered work scheduling optimization, the optimized wished curves of Regions 
2 and 3, i.e. W2 and W3, are used in the employer-level optimization problem as in Eq. 7a. We consider ten different firms in each 
region and allocate them with initial work start times such that the aggregated regional wished curves represent the initial wished 
curves as in the dashed lines in Fig. 5(d). Each firm in Regions 2 and 3 has 650 and 950 employees respectively and we assume 
employees of each firm arrive to their work locations uniformly in time within the work start duration of the firm. We select δ = 1 in Eq. 
7a and Δk = 15min in Eq. 7c for k = 1,⋯,10. 

Fig. 6 displays the results of the employer-level optimization. The incentivized work start times of each firm in Region 2 and Region 
3 are displayed in Fig. 6(a) and (b) respectively. The aggregated superposition of the incentivized employers work start times are 
depicted in Fig. 6(b) and (d) for Regions 2 and 3 where a close match between incentivized wished arrival curves, i.e. W*

2 and W*
3, and 

the optimal wished arrival curves from the upper-level optimization, i.e. W2 and W3, are apparent. This highlights that the proposed 
two-level staggered work schedule optimization can be implemented by incentivizing/regulating individual employers in each region 
to mitigate the network congestion while each traveller react to the incentivized work start times selfishly. 

5.4. Baseline scenario and performance tests with the trip-based MFD model 

To scrutinize the performance and validity of the proposed staggered work schedule optimization and the underlying 
accumulation-based MFD model, we input the optimized arrival curves to the network, A12 and A13, that are the output of optimization 
Eq. 4a to the trip-based MFD testbed. The dynamics of congestion in this testbed are governed by the speed MFD. This testbed is more 
disaggregated than the accumulation-based MFD model such that each vehicle is modeled individually by considering its unique 

Fig. 5. Results from the multi-objective optimisation; (a) cumulative arrival, departure, and wished curves for vehicles going from Region 1 to 2, (b) 
cumulative arrival, departure, and wished curves for vehicles going from Region 1 to 3, (c) accumulations in the three regions, (d) initial and 
optimal wished curves for Regions 2 and 3. 
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Fig. 6. Results of employer-level work start times; (a) incentivized work start times of firms in Region 2; (b) the incentivized, optimal, and initial 
cumulative wished curves of Region 2; (c) incentivized work start times of firms in Region 3; and (d) the incentivized, optimal, and initial cu-
mulative wished curves of Region 3. 

Fig. 7. The accumulations of Regions 1,2, and 3 in trip-based MFD testbed. (a) with the optimal arrival curves; (b) with the optimal wished curves; 
(c) baseline scenario with the initial wished curves. Results in (a) and (b) are consistent with each other demonstrating that the iterative assignment 
approach is valid. Consistency of (a) with the outcomes of the optimization based on accumulation-based MFD modeling as in Fig. 5(c) validates the 
overall accuracy of the optimal-staggered work schedule method. 
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arrival time, transfer time, departure time, trip length, and earliness and lateness parameters. Accordingly, travel time and schedule 
cost of each traveller under user equilibrium and schedule optimization scenarios can be estimated. The results of this test, i.e. 
accumulation of Regions 1,2, and 3, are depicted in Fig. 7(a). Comparison with the prediction of the proposed staggered work schedule 
optimization program in Fig. 5(c), demonstrates close similarity of accumulation of the three regions. 

Moreover, we used the optimal wished curves, W2 and W3, and applied them in the day-to-day assignment model to compute the 
arrival time to the network (that is the departure time from the residential places). That is, commuters change their arrival time every 
day based on their travel times and schedule costs in previous days until they reach equilibrium conditions where they do not have an 
incentive to change their departure time. This requires an iterative use of the trip-based MFD model. Further details of the iterative 
procedure can be found in Yildirimoglu and Ramezani (2019). The resulting accumulations in the three regions under equilibrium 
conditions are presented in Fig. 7(b). The consistency between the accumulations of the three regions with forward-implementation of 
the trip-based MFD model, Fig. 7(a), and the iterative day-to-day implementation of the trip-based MFD model, Fig. 7(b), demonstrates 
that the proposed optimal staggered work schedule optimization can result in near-equilibrium temporal conditions. The results of the 
baseline scenario corresponding to the initial wished curves under equilibrium conditions are presented in Fig. 7(c). Evidently, all the 
three regions experience higher accumulation of vehicles. The network total travel time in baseline scenario is 10.18 × 106 [veh.sec] 
and the total schedule cost is 28.54 × 105 [veh.sec]. The proposed optimal staggered work schedule results in the total travel time and 
total schedule cost as 8.79 × 106 [veh.sec] and 7.22 × 105 [veh.sec] respectively. This is 14% and 75% decrease in total travel time and 
total schedule cost respectively. 

6. Conclusion 

In this paper, we have proposed a method to design optimal work schedules in bicentric cities. While it is clear that traffic 
congestion can be alleviated by spreading the peak demand distribution, a rigorous method is needed in the design of optimal work 
schedules (i) to minimise traffic congestion, (ii) to produce a desirable outcome that is consistent with temporal equilibrium conditions 
of commuters arrival time choice, and (iii) incurring minimal changes in the initial work schedules of employers. This paper fills this 
gap, and develops a multi-objective optimisation problem that builds on the accumulation-based bathtub MFD model. The proposed 
framework also accounts for multiple employers with various schedules, and decomposes the regional aggregated work schedule 
distributions into starting times for separate businesses through a lower-level optimisation problem. The results from a bicentric 
network are promising; traffic congestion can be significantly curbed with little changes in the initial work schedules while satisfying 
temporal equilibrium conditions. 

A future research direction might be to incorporate freeway links into the modelling framework; downtown areas in most cities are 
connected to the peripheral network with critical freeway infrastructure which often gets congested in the peak hours. While MFD 
adequately captures the congestion propagation in the urban areas, a disaggregated link-level traffic modeling approach is needed for 
freeway links. This requires the integration of the existing aggregated modeling framework and a dedicated freeway model in a hybrid 
modelling environment (Haddad et al., 2013; Han et al., 2020). Note that temporal equilibrium conditions in this framework should 
account for both link-level and region-level congestion characteristics. Considering other modes of travel specifically public transport 
options in forms of buses and trains would add more realistic dimensions into the traffic modeling (Loder et al., 2017). Additionally, 
the proposed model can be tested with a microscopic simulation model to further consider the modeling mismatch between our 
aggregated and low complexity model (i.e., accumulation-based bathtub model) and the fine-grained traffic simulation. Finally, it is 
evident that to adopt and sustain staggered work schedules policies and to achieve their ultimate goal, which is congestion mitigation, 
cities have to incentivize employers and/or employees. This is a key challenge and a crucial aspect of the staggered work schedules 
problem that is a priority for future research. 
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Appendix A. Trip-based MFD algorithm for the bicentric network 

Algorithm 1. Trip-based MFD pseudo-code  
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Initialize each traveller (i): {tarr
i ,Tw

i ,di, l1i , l
di
i , scheduling penalties}

%arrival time of traveller to Region 1; wished departure time of traveller from 

destination region; destination region (2 or 3); traveller trip length in 

Region 1; traveller trip length in destination region; scheduling penalties 

Initialize event_list = []

Initialize [n12 , n13 , n2, n3] = [0,0, 0,0] %vehicle accumulation  
Initialize j = 0 %event counter  
Initialize tj = tinit  

current_speed = [V1(n1),V2(n2),V3(n3)]

for All travellers (i) do  
event_list ← tarr

i , the arrival time to Region 1   
event_list ← ttra

i , the potential transfer time from Region 1 to the destination region considering 
constant V1(n1)

event_list ← tdep
i , the potential departure time from the destination region considering constant 

V1(n1) and Vdi (ndi )

end for 
Sort event_list 
while Items in event_list do  

j ← j + 1   
Determine the next event closest to tj− 1 and let its corresponding time as tj  

l1i ← l1i − V1(n1) ⋅ (tj − tj− 1) ∀i in Region 1 %update the remaining trip length in Region 1  

ldi
i ← ldi

i − Vdi (ndi ) ⋅ (tj − tj− 1) ∀i in Region di %update the remaining trip length in 

destination region   

if the first closest event is a vehicle arrival then  
if di == 2 then   

n12 ← n12 + 1   
else  

n13 ← n13 + 1   
end if  

end if 
if the first closest event is a vehicle transfer then  

if di == 2 then   
n12 ← n12 − 1; n2 ← n2 + 1  

else  
n13 ← n13 − 1; n3 ← n3 + 1   

end if  
end if  
if the first closest event is a vehicle departure then  

if di == 2 then   
n2 ← n2 − 1   

else 
n3 ← n3 − 1   

end if  
output ← [Texp

i , schedulingpenalties × (Tw
i − Texp

i )] %the experienced travel time and 

schedule cost of vehicle i   
end if  
Remove the first closest event from the event_list  
Update [V1(n1),V2(n2),V3(n3)]

Update the potential transfer and departure times of all vehicles in event_list considering new 
constant [V1(n1),V2(n2),V3(n3)]

end while   
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