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Abstract

The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of

public charging stations, limited battery capacity, range anxiety and long battery charging

time. This paper investigates the congestion/flow pattern captured by stochastic user equi-

librium (SUE) traffic assignment problem in transportation networks with BEVs, where the

BEV paths are restricted by their battery capacities. The BEV energy consumption is

assumed to be a linear function of path length and path travel time, which addresses both

path distance limit problem and road congestion effect. A mathematical programming model

is proposed for the path-based SUE traffic assignment where the path cost is the sum of the

corresponding link costs and a path specific out-of-energy penalty. We then apply the con-

vergent Lagrangian dual method to transform the original problem into a concave maximiza-

tion problem and develop a customized gradient projection algorithm to solve it. A column

generation procedure is incorporated to generate the path set. Finally, two numerical exam-

ples are presented to demonstrate the applicability of the proposed model and the solution

algorithm.

Introduction

Battery electric vehicles (BEVs) have received much attention in the past few years due to their

advantages in reducing greenhouse gas emissions, noise pollution, reliance on fossil oil and

improving the efficiency of electricity grid by vehicle-to-grid technology [1]. Similarly, most of

the autonomous vehicles currently under development appear to be electric powered. When

they are matured enough to be wide-spread in car manufacturing market, electrified autono-

mous vehicles are likely to change travel behavior and traffic patterns. Governments and auto-

motive manufacturers have recognized the value of these vehicles in helping the environment

and are encouraging BEV ownership through economic incentives and public charging station

deployment [2]. Currently, however, BEV users still suffer from the inconvenience of limited

driving range, long charging time and insufficient public charging stations [3]. In addition,

range anxiety of BEV drivers will inevitably add a certain level of restrictions to BEV drivers’

path choices, at least for a long future period prior to the coverage of recharging infrastructures

reaching a sufficient level [4], especially for those BEVs with limited battery capacities.
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BEV companies are trying to overcome this limited range requirement by implementing

fast charging stations, where a vehicle can be charged in minutes rather than hours to full

capacity [5]. However, operating fast charging stations is costly and fast charging reduces the

life of a battery due to the irreversible damages to charging cells [6]. Despite the development

of fast charging techniques, BEVs still take more time to recharge than the time needed for a

standard gasoline vehicle to refuel. Hence, BEV commuters are more likely to charge their

vehicles at home rather than at stations [7].

Nevertheless, insufficient charging stations and limited driving range for BEVs make traffic

assignment problem (TAP) more challenging due to the incorporation of path distance con-

straints and battery capacity constraints. The existing TAP models should be modified to bet-

ter describe commuters’ behavior with the prevalence of BEVs. There have been many

endeavors to address this problem. Among which, some studies enforce flow of a path to be

zero if the path distance is greater than the driving range limit of BEVs. The classic Frank-

Wolfe method with a constrained shortest path algorithm can be applied to solve this problem

under deterministic user equilibrium (DUE) [8]. As an extension of static path distance con-

straint, stochastic range anxiety resulting in stochastic path distance constraint has been con-

sidered in networks [9–11]. Network equilibrium problem was further addressed when

modeling transportation networks that accommodated both gasoline vehicles (GVs) and BEVs

[4, 12, 13]. A multi-class dynamic user equilibrium model was proposed to evaluate the perfor-

mance of the mixed traffic flow network, where GVs chose paths with minimum travel time

and BEVs selected paths to minimize the generalized costs including travel time, energy cost

and range anxiety cost. It was also pointed out that the BEV energy consumption rate per unit

distance traveled is lower at moderate speed than at higher speed resulting in an equilibrium

that BEVs choose paths with lower speed to conserve battery energy [14]. Relay/charging

requirement has been taken into account in network equilibrium problems and was formu-

lated as a nonlinear integer programming [15]. It was found that traffic congestion would

affect fuel economy of BEVs and BEVs might become more fuel-efficient as the average speed

increases, particularly at local arterials [16]. Hence, another work considered recharging time

based on flow-independent energy consumption in the base network equilibrium model and

further extended the proposed DUE model with flow-dependent energy consumption assump-

tion [3].

However, a more realistic and general situation is that travel time is a random variable and

is perceived by travelers in an imperfect, stochastic manner. For example, travel time varies

due to stochastic traffic flow conditions. Moreover, battery energy consumption rate is demon-

strated to be not only distance-dependent but also time-dependent because it is pointed out

that heating and air-conditioning systems of BEVs may consume a substantial amount of

energy of the total battery capacity and reduce the BEV’s range limit [17]. Therefore it can be

estimated well if link flow volume can be predicted more precisely. Although the stochastic

user equilibrium (SUE) principle plays a more realistic role than DUE principle in describing

road user’s path choice behavior, the general SUE TAP considering both multinomial logit

(MNL) and multinomial probit (MNP) loading with driving range limit constraints has

received little attention because of its complexity. As a rational extension of general SUE with

flow-independent path distance constraints [18, 19], the SUE traffic assignment model consid-

ering flow-dependent link energy consumption is referred to as general SUE traffic assignment

with battery capacity constraints.

Previously proposed side constraints for the TAP are basically imposed on traffic flows

through nodes, links, paths or O-D pairs and may be grouped into two major categories, i.e.

link-based and path-based constraints [9]. The first category is generally referred to as the sto-

chastic TAP with link capacity [see e.g., [20–22]]. A milestone is Meng’s linearly constrained
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minimization model, which is a general SUE traffic assignment problem with link capacity

constraints. This work was inspired by the stochastic social optimum (SSO) traffic assignment

with the objective of minimizing the total perceived travel time by Maher, Stewart [23].

Maher, Stewart [23] found that the solution of SSO could be achieved by solving a SUE prob-

lem using the marginal cost function. Meng, Lam [22] demonstrated that SUE flow pattern

could be generated by solving an SSO problem applying a modified link travel time function.

Early developed algorithms to solve the unconstrained logit-based SUE problem were link-

based, e.g. [24]. These link-based algorithms do not require path storage and often use Dial’s

STOCH algorithm or Bell’s alternative as the stochastic loading step [25, 26].

The second category, the stochastic TAP with path-based constraints, has received much

less attention. Only deterministic TAP with flow-independent path-based constraints under

BEV scheme has been considered in these studies [3, 4, 8, 12, 15, 19, 27]. In general, they

assumed that BEV users could charge only at trip origins and destinations, that the distance of

any feasible trip must not exceed the given distance limit [8, 9, 12]. However, for general SUE

TAP, no research has taken flow-dependent path energy consumption constraints into the

general SUE TAP model.

The main challenge of using a path-based algorithm in the past is the memory requirement.

This restriction has been relaxed considerably in recent years due to rapid advances in the

computing resources. Different from link-based algorithms above, path-based algorithms

require explicit path storage to directly compute the logit path choice probabilities. Olof, Jan

[28] developed a path-based algorithm based on the disaggregated simplicial decomposition

(DSD) algorithm to solve the MNL SUE problem. Among the path-based algorithms for the

traffic equilibrium problem with additive path costs, much attention has been paid to the DSD

algorithm and the gradient projection (GP) algorithm [29]. GP algorithm has been shown as a

successful path-based algorithm for solving traditional traffic equilibrium problem with addi-

tive and non-additive path costs due to its global convergence and simple implementation

[30]. A comparison work of evaluating the performance and robustness of these two path-

based algorithms can be found in Chen and Lee [31]. Furthermore, to investigate the impact of

step size scheme, different step size strategies of the path-based algorithms developed to solve

the C-logit SUE models based on an adaptation of the GP method were investigated in [32].

Another inevitable problem of the path-based problem is the way of generating paths. A possi-

ble alternative path set can be obtained from a path choice set generation algorithm [33].

Behaviorally, this has an advantage of explicitly identifying paths which are most likely to be

used and also allows a greater flexibility to include path-specific attributes that might not be

obtainable directly from the link attributes [33, 34].

This paper is concerned with a general SUE TAP with battery capacity constraints, as an

extension and generalization of the previous DUE TAP version with driving distance con-

straints or battery capacity constraints. To the best of our knowledge, it remains to be an open

question to find an exact solution method for solving the general SUE problem with path-

based constraints, incorporating column generation to avoid path enumeration on a transport

network with BEV.

Meng, Lam [22] proposed a solution framework combining Lagrangian dual (LD) method

with GP algorithm for general SUE problem with link capacity constraints. However, due to

the existence of the implicit path-specific battery out-of-energy function, it remains uninvesti-

gated if this framework can also be applied for path-based constraints. Hence, for the general

SUE TAP, we also adopt the solution method framework of combining LD with GP and prove

its applicability. Specifically, the path set in this paper is generated prior to the assignment

using column generation procedure which has been embedded in the GP algorithm [35] to

Stochastic traffic assignment of electric vehicles with battery capacity constraints
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avoid path enumeration. The GP algorithm iteratively updates the Lagrangian multiplier cor-

responding to each path, until the optimal solution is obtained.

To sum up, the contributions of this study are threefold. Firstly, to enrich the general SUE

family with side constraints (link-based and path-based) and make consistence with side-con-

strained general DUE condition, it is believed that this is the first paper studying a general

SUE model with path-based constraints. Secondly, a holistic methodology is proposed for gen-

eral SUE traffic assignment model with battery capacity constraints on BEV scheme, in which

the path choice is restricted by the battery capacity with a single charge. Thirdly, a Lagrangian

dual based exact solution method incorporating column generation is developed for solving

this path-constrained general SUE model.

The remainder of this paper is organized as follows. In Sections 2, we elaborate the problem

formulation and analyze its solution properties. Section 3 presents an LD reformulation and

details its algorithmic implementations by incorporating a convergent GP subroutine and col-

umn generation procedure. Section 4 presents the numerical results of applying the algorithm

procedure to two case studies. Section 5 provides the concluding remarks.

Notation, problem description and model formulation

Let us assume the transport network is modeled as a connected graph, denoted by G = (N,A),

where N and A are sets of nodes and links, respectively. (r,s) stands for certain ordered pairs of

nodes, r 2 R and s 2 S,where node r is an origin and node s is a destination. R� N and S� N
are sets of origins and destinations, respectively. There are non-negative travel demands qrs

between (r,s). q ¼ ðqrsÞ
T
; 8ðr; sÞ is a column vector for all the travel demands. Let Krs be the set

of paths connecting O-D pair (r,s), f rs
k be traffic flow on path k 2 Krs, f rs

¼ ðf rs
k Þ

T
; k 2 Krs be a

column vector of all these path flows between O-D pair (r,s), and f ¼ ðf rs
Þ

T
; 8ðr; sÞ be a column

vector of all the path flows over the entire network. Let va denote traffic flow on link a 2 A and

v ¼ ðvaÞ
T
; a 2 A is a column vector of all link flows. The path flows and link flows should com-

ply with fundamental flow conservation equations:

va ¼
X

ðr;sÞ

X

k

f rs
k d

rs
a;k; 8a 2 A ð1Þ

qrs ¼
X

k

f rs
k ; 8ðr; sÞ ð2Þ

f rs
k � 0; 8ðr; sÞ; k 2 Krs; ð3Þ

where d
rs
a;k = 1 if path k 2 Krs between O-D pair (r,s) traverses link a 2 A, and 0 otherwise.

Let ta(va) denote the separable travel time function of link a 2 A that is assumed to be a pos-

itive, strictly increasing, convex and continuously differentiable function of the traffic flow on

the link. All the link travel time functions are grouped into a column vector.

tðvÞ ¼ ðtaðvaÞÞ
T
; a 2 A. Travel time on path k 2 Krs between O-D pair (r,s) can be considered

as a function of all the path flows, denoted by crs
k ðfÞ with the expression

crs
k ðfÞ ¼

X

a

taðvaÞd
rs
a;k ð4Þ

To generate a SUE flow pattern by solving a SSO problem, a modified link travel time func-

tion �taðvaÞ corresponding to link travel time function ta(va),a 2 A is defined to be positive,

Stochastic traffic assignment of electric vehicles with battery capacity constraints
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strictly increasing and continuously differentiable [22].

�taðvaÞ ¼

Zva

0

taðxÞdx

va
; va > 0

tað0Þ; va ¼ 0

ð5Þ

8
>>>>><

>>>>>:

With modified link travel time functions f�taðvaÞ; a 2 Ag, the corresponding path modified

travel time can be expressed as

�crs
k ðfÞ ¼

X

a2A

�taðvaÞd
rs
ak; 8ðr; sÞ; k 2 Krs ð6Þ

Let �crsðfÞ ¼ ð�crs
k ðfÞÞ

T
; k 2 Krs be a column vector of all the modified path travel times

between O-D pair (r,s). In terms of any positive feasible path flow pattern f, there are continu-

ously differentiable path-specific dummy functions, �drsðfrs
Þ 2 <

jKrsj; 8ðr; sÞ, so that the conven-

tional SUE conditions associated with the path travel time functions can be satisfied by path

flow pattern f, fð�crsðfÞ þ �drsðfrs
Þg; 8ðr; sÞ, namely

f rs
k ¼ qrs � Prs

k ðð�c
rsðfÞ þ �drsðfrs

ÞÞ ð7Þ

where Prs
k ðð�c

rsðfÞ þ �drsðfrs
ÞÞ is referred to as the probability of choosing a given path that has the

minimum perceived generalized path cost and Prs
k ðð�c

rsðfÞ þ �drsðfrs
ÞÞ ¼ PrðUrs

k < Urs
l ; 8l 2 KrsÞ.

The perceived generalized path cost of any path k 2 Krs connecting O-D pair (r,s), Urs
k is random

variable, where Urs
k ¼ �crs

k þ
�drs

k þ ε
rs
k . εrs

k is the random perception error of the path cost and �drs
k

represents an additional additive cost variable across all links associated with path k 2 Krs to ful-

fill Eq (7) which is the SUE condition. At the optimum, the additional path-specific cost term

�drs�
k ðf

rsÞ ¼
X

a

vað@�ta=@vaÞd
rs
a;k, thus �crs

k þ
�drs

k ¼
X

a2A

ð�ta þ vað@�ta=@vaÞÞd
rs
a;k representing the

induced marginal system cost if a new traveler is added into the system traversing on path k 2
Krs connecting O-D pair (r,s) [36] or the so-called marginal social cost [23]. The analytical

expressions of �drsðfrs
Þ is presented under logit-based SUE conditions in [23, 36]. The path-spe-

cific cost �drs
k ðf

rsÞ can be expressed as,

�drs
k ¼ �

1

r
ln½

f rs
k

qrs

X

k

expð� rð�crs
k þ

�drs
k ÞÞ� � �crs

k ; 8ðr; sÞ; k 2 Krs: ð8Þ

where ρ is the scale parameter of the logit model.

To simplify the traffic network modeling, only BEV (as an alternative traffic mode) is consid-

ered and a set of assumptions regarding demand heterogeneity and travel behaviors are consid-

ered. First, it is assumed that the demand population is only comprised of a single class of BEV.

Certainly, if needed, multiple types of BEV with different battery capacities, initial battery charg-

ing state (fully charged or not), range anxiety level (a safety margin that BEV drivers would like

to reserve before battery depletes) and energy consumption functions can be readily incorpo-

rated into the model without changing the problem’s nature and model’s structure [12].

Second, we assume a given fixed travel demand and SUE principle. In other words, stochas-

ticity and elasticity of travel demand are not considered regardless of its stochastic nature [37,

38]. Each BEV traveler chooses a path that minimizes his/her perceived travel cost and no one

can reduce his/her perceived cost by unilaterally switching to an alternative path. The travel

cost consists of two parts: path energy consumption and possible battery out-of-energy cost.

Stochastic traffic assignment of electric vehicles with battery capacity constraints
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When BEV runs out of battery before reaching destination, battery out-of-energy cost occurs,

e.g. a roadside assistance cost. Furthermore, without loss of generality, we assume that BEV

travelers use a common form of systematic travel cost for determining their travel choices.

In our network equilibrium analysis, we implicitly assume that all BEV are fully charged at

their origins (e.g. home garages), and there is no battery-charging or battery-swapping stations

in the network. In most transportation networks, it may take a number of years to deploy suffi-

cient electricity-recharging infrastructures for achieving a certain level of coverage. Conse-

quently, BEV users would choose the path whose energy consumption is less than or equal to

the battery capacity, denoted by D. Although it is difficult to foresee how future developments

in battery and vehicular technologies may enhance the fuel economy of BEVs at various traffic

conditions, the link energy consumption in this paper is assumed to increase with the increas-

ing energy consumption of heating and air-conditioning system over time, which is a linear

function of link length and modified link travel time, namely, eaðvaÞ ¼ ala þ b�taðvaÞ; 8a 2 A
[3]. The authors, however, do not claim the applicability and suitability of the defined energy

consumption function for accurate quantification of link energy consumption. One must con-

sider the relationship between energy consumption and travel time (speed). Note that �taðvaÞ is

the modified link travel time function. In practice, each path k 2 Krs would have a path energy

cost and EV drivers have perception error on this cost. Any feasible path flow pattern should

satisfy the battery capacity constraints:

f rs
k ðD � alrsk � b�crs

k Þ � 0;8ðr; sÞ; k 2 Krs ð9Þ

With the above battery capacity constraints, the generalized path travel cost is defined by

ĉrs
k ¼ alrsk þ b�crs

k ð10Þ

which means that if the energy consumption is smaller than or equal to the battery capacity,

the flow of BEV users going through path k is nonnegative,; otherwise, the trip flow should be

equal to zero.

f rs
k � 0; if alrsk þ b�crs

k � D

f rs
k ¼ 0; if alrsk þ b�crs

k > D
; 8ðr; sÞ; k 2 Krs ð11Þ

(

Remark 1. If we set α = 0, the problem would turn into a travel time-constrained SUE TAP;

if setting β = 0, it becomes a SUE TAP with driving distance constraints. Therefore, flow-

dependent battery capacity constraint is a generalization of BEV’s driving distance constraint.

Model formulation

This section introduces the general SUE traffic assignment model in terms of path flows with

battery capacity constraints as follows:

minZðf Þ ¼
X

r

X

s

qrsSrsð�crsðfÞ þ �drsðfrs
ÞÞ �

X

r

X

s

X

k

�drs
k ðf

rsÞ � f rs
k ð12Þ

s.t. (1), (2), (3), (9)

where Srsð�crsðfÞ þ �drsðfrs
ÞÞ ¼ E½minf�crsðfÞ þ �drsðfrs

Þg� is the satisfaction function, i.e., the

expected value of the minimum perceived travel time for travelers between O-D pair (r,s). The

satisfaction function is a continuously differentiable, concave function [39]. Compared to the

Meng’s model [22] for general SUE with link capacity constraints, the difference lies in the

constraints of model (12). This model also possesses two vital propositions as follows.

Stochastic traffic assignment of electric vehicles with battery capacity constraints
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Proposition 1. Any local minimum f� of the minimization model (12)- satisfies the general-

ized SUE conditions, and the optimal Lagrangian multipliers associated with battery capacity

constraint (9) are battery out-of-energy costs.

Proposition 2. The SUE link flow pattern induced by any local minimum solution of the

minimization model (12)- is unique.

The mathematical proof of proposition 1 can be accessed in the appendix file “S1 Text”,

while proposition 2 can be proved by following exactly the same procedure as in Meng, Lam

[22] and substituting μa in their work with φa in Eq (17).

Problem feasibility

The extra battery capacity constraint in the above model could result in problem infeasi-

bility. If the energy consumption of all the paths connecting an O-D pair exceeds the bat-

tery capacity, the travel demand between this O-D pair cannot be assigned to the network

without causing additional battery out-of-energy cost. The infeasible O-D pairs can be

detected by comparing minimum energy cost path with battery capacity under free flow

scenarios.

Solution method

Lagrange Dual (LD) method. The objective function (12) includes an inexplicit path-

specific dummy functions, �drsðfrs
Þ, therefore the original problem cannot be solved

directly. Nevertheless, LD formulation of the original model can be established to examine

if the proposed algorithms can successfully solve the proposed problem. The solution

equivalence between the original problem and the LD problem can be realized if the dual

problem is maximized with respect to the Lagrangian multipliers according to the dual

theorem.

In order to get the optimal Lagrangian multipliers with respect to the battery capacity con-

straint in the minimization model, the LD maximization is defined as

max
m�0

LðμÞ ð13Þ

LðμÞ ¼ min
f2O
½ZðfÞ þ

X

r

X

s

X

k

mrs
k f rs

k ðalrsk þ b�crs
k � DÞ� ð14Þ

where μ ¼ ð� � � ; mrs
k ; � � �Þ 2 RjKrsj, where mrs

k is the Lagrangian multiplier associated with battery

capacity constraints (9), where |Krs| denotes the number of elements in set Krs. O is the set of

all the feasible path flows without consideration of battery capacity constraints, i.e. O = (f|f sat-

isfies Eqs (1), (2) and (3)). μ acts as a role to convert the battery capacity constraints (9) into

the objective function (12). Moreover, L(μ) is a concave function with respect to non-negative

Lagrangian parameter mrs
k .

Following the same procedure in the proof of Proposition 1, it can be demonstrated that

any local minimum of above concave function L(μ) fulfills the conventional SUE conditions

(see Eq 6 in Meng, Lam [22]) in terms of the generalized path travel cost function. The well-

defined generalized path travel time function is

~crs
k ¼ crs

k þ mrs
k ðalrsk þ bcrs

k � DÞ; 8ðr; sÞ; k 2 Krs ð15Þ

where mrs
k ðalrsk þ bcrs

k � DÞ is called the battery out-of-energy cost incurred when the battery

energy needed to travel through a given path exceeds the battery capacity of the BEV. The

Stochastic traffic assignment of electric vehicles with battery capacity constraints
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generalized path travel cost and it should satisfy the following conditions:

mrs
k ¼ 0; if alrsk þ b�crs

k � D

mrs
k � 0; if alrsk þ b�crs

k > D
ð16Þ

(

Hence, travel time experienced by a driver on a path consists of two parts: normal travel

cost and additional cost incurred when energy needed exceeds the battery capacity. The accu-

mulation of the battery out-of-energy cost on a link a is defined as:
X

r

X

s

X

k

mrs
k ðalrsk þ b�crs

k � DÞdrs
ak ¼

X

r

X

s

X

k

l
rs
k d

rs
ak ¼

X

a

φad
rs
ak ð17Þ

where φa accounts all the paths going through it. According to the generalized path travel cost, the gener-

alized SUE conditions that take battery capacity constraints into consideration can be defined as follows.

f rs
k ¼ qrs � Prs

k ð�c
rsðf Þ þ mrs

k ðalrsk þ b�crs
k � DÞÞ;8ðr; sÞ; k 2 Krs ð18Þ

f rs
k ðD � alrsk � b�crs

k Þ � 0; 8ðr; sÞ; k 2 Krs ð19Þ

mrs
k � 0; 8ðr; sÞ; k 2 Krs ð20Þ

mrs
k � f

rs
k ðD � alrsk � b�crs

k Þ ¼ 0;8ðr; sÞ; k 2 Krs ð21Þ

The generalized link travel time functions can be defined as:

~taðvaÞ ¼ �taðvaÞ þ φa; a 2 A ð22Þ

For any given μ�0, let v(μ) be the link flow pattern induced from a local minimum of the

minimization problem shown in right-hand side of (14). Following the similar proof in Meng,

Lam [22], v(μ) is a unique SUE link flow pattern for networks with the modified path travel

time functions and Lagrangian dual formulation (13) is a continuously differentiable concave

maximization model. The uniqueness of the optimal link flow solution implies that the gradi-

ent of L(μ) is:

rLðμÞ ¼ ð� � � ; f rs
k ðμÞðalrsk þ b�crs

k � DÞ; � � �Þ
jKrsj

ð23Þ

Applying the Karush-Kuhn-Tucker (KKT) conditions to (13) can lead to proposition 3 that

Proposition 3. Assume that μ� is an optimal solution of the LD maximization model (13).

v(μ�) is the SUE link flow pattern with battery capacity constraint.

Hence, the LD formulation (13) can be efficiently solved by a global convergent GP method

with iterative solution updating scheme:

μðnþ1Þ ¼ PRjAj
þ

½μðnÞ þ anrLðμðnÞÞ� ð24Þ

where n is the number of iterations; PRjAj
þ

½μðnÞ þ anrLðμðnÞÞ� is the projection of vector μ(n) + αnrL(μ(n))

onto the |A|-dimensional non-negative orthant, i.e., RjAjþ ; and the projection operation PRjAj
þ

½�� is defined by

PR
þ
½y� ¼ arg min

x2Rþ

X

a2A

ðxa � yaÞ
2
: ð25Þ

Furthermore, {αn} is step size sequence and given at any point μ(n) 2Q, where Q is the feasi-

ble set, denoted by

μðnÞðanÞ ¼ PQ½μ
ðnÞ þ anrLðμðnÞÞ�; an � 0 ð26Þ
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The unique projection of the vector [μ(n) + αnrL(μ(n))] on Q where αn� 0 is a nonnegative

scalar parameter. Since the feasible set of μ is the whole nonnegative orthant, the Lagrangian

multiplier updating formula shown in (24) can be rewritten in the following way:

m
ij
l
ðnþ1Þ ¼ maxf0;mij

l
ðnÞ þ anf

rs
k ðμ

ðnÞÞðalrs
k þ b�crs

k � DÞg; 8ði; jÞ; l 2 Kij ð27Þ

It has been proved that without the requirement of the Lipschitz condition, every limit

point of the sequence {μ(n)} generated by the GP algorithm is a stationary point, as well as a

solution point. For step size, a predetermined step size which has simple structure and is com-

monly used by [Meng and Liu [20], Meng, Lam [22]] is applied in this model instead of the

generalized Armijo rule, which belongs to the inexact line search strategies and is for con-

strained minimization problems. The reason lies in that at each step, the gradient information

of the objective function and objective function evaluations are required to determine an

appropriate step size to improve the solution when using Armijo rule.

Proposition 3 confirms that solving the SUE link flow pattern with battery capacity con-

straint can be obtained by solving LD maximization model (13). Although the LD function

L(μ) does not possess an explicit expression, its gradient for any μ�0 can be evaluated by

implementing a conventional SUE traffic assignment procedure without consideration of bat-

tery capacity constraint. Difficulties in calculating the LD function value and applying Armijo

rule render us to employ a GP method with a predetermined step size sequence for solving the

continuously differentiable maximization problem (13), which is stated as follows.

Stage 0: Feasibility Check. For each O-D pair, find the minimum energy consumption path

according to link length and free flow travel time. If the path energy consumed is greater than the

BEV battery capacity and the corresponding travel demand is positive, then there is no feasible

path between this OD pair without causing additional energy out-of-battery cost. Record this OD

pair and infeasible vehicle type to Set A. If Set A is empty, go to the next step; if not, stop.

Stage 1. Initialization. Set va(0) = 0, �ta ¼ ta½vað0Þ�, iteration counter n = 1 and define the

path set Krs = ;

1. Solve the acyclic K shortest path problem in terms of path energy cost by Yen’s algorithm

[40] to generate an initial path set �krsðnÞ;Krs ¼
�krsðnÞ [ Krs and initialize its correspond-

ing multiplier m
rsð1Þ
k ¼ 0;8k 2 K

2. Perform stochastic network loading to assign the travel demand to the paths generated

based on �tað0Þ,
X

f rs
�krsð1Þ
ð1Þ ¼ qrs. Logit loading results in K paths while probit loading

generates one shortest path between each O-D pair.

3. Assign path flows to links vaðnÞ ¼
X

rs

X

k2Krs

f rs
k ðnÞd

rs
ak

Stage 2. Column Generation. Increment iteration counter n = n+1

4. Update link travel time �taðnÞ ¼ ½vaðn � 1Þ� based on �taðvaÞ ¼

Zva

0

taðxÞdx

va
; va > 0

tað0Þ; va ¼ 0

8
>>>>><

>>>>>:

and

link energy consumption eaðnÞ ¼ ala þ b�taðn � 1Þ; 8a

5. Solve the K minimum path energy cost problem to generate new paths �krsðnÞ and initial-

ize the corresponding Lagrangian multiplier m
rsðnÞ
k of the newly generated paths.
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8.1. Update path set KrsðnÞ ¼ �krsðnÞ [ Krsðn � 1Þ, if �krsðnÞ=2Krsðn � 1Þ; otherwise use current

path set Krs(n) in stochastic network loading procedure.

Stage 3. Equilibration. Compute the generalized path travel cost CrsðnÞ
k ¼ �crs

k þ mrs
k ðb�crs

k þ

alrsk � DÞ 8k 2 Krs(n)

6. Perform stochastic network loading procedure (logit or probit) to generate new path

flow patterns f rs
k ðμ

ðnÞÞ in terms of the current path set Krs(n)

7. Obtain the set of link flows according to link/path incidence relationship

VaðμðnÞÞ ¼
X

r

X

s

X

k

f rs
k d

rs
a;k; 8a 2 A

8. Average flow. Let va(μ(n)) = [(n−1)va(μ(n−1))+Va(μ(n))]/n, 8a 2 A

9. Check stopping criterions of both flow change rate and Lagrangian multiplier change

rate. (Flow change rate can be referred to page 301 for probit loading and page 327 for

logit loading respectively in Sheffi [39].) If the following criterion hold, then terminate.

maxfjmrsðnÞ
k � max½0;mrs

k
ðnÞ þ anf

rs
k ðμ

ðnÞÞðalrsk þ bcrs
k � DÞ�jg � ε; 8mrs

k

10. Otherwise, update Lagrangian multipliers according to the following equation:

m
rsðnþ1Þ

k ¼ maxf0;mrsðnÞ
k þ anf

rs
k ðm

rsðnÞ
k Þðalrsk þ bcrs

k � DÞg

Note that {αn} is a predetermined step size sequen ce satisfying the three conditions:

0 < an < 1 and lim
n!1

an ¼ 0;
X1

n¼1

an ¼ þ1;
X1

n¼1

a2

n <1

Numerical examples

This section presents 2 numerical case studies to assess the performance and properties of the

proposed method.

The first example, which is also adopted by Nie, Zhang [41] and Meng and Liu [20], consists

of 9 nodes, 18 links, and 4 O-D pairs: (1,3), (1,4), (2,3), and (2,4), as shown in Fig 1. The free-

flow travel time is used as a proxy for the link length for each link. Travel time on each link is

defined by the following BPR (Bureau of Public Road) type function

taðvaÞ ¼ t0

a 1þ 0:15�
va

Ha

� �4
 !

; a 2 A ð28Þ

where t0
a is the free flow travel time and Ha is link a capacity. OD demands, free-flow travel

time and link capacity are the same as that in Meng, Lam [22].

Fig 1. Small network schematic with 2 origins, 2 destinations, 9 nodes, and 18 links.

https://doi.org/10.1371/journal.pone.0194354.g001
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We use this example to evaluate the performance of proposed algorithms for solving both

logit-based and probit-based SUE TAP with battery capacity constraints (further details are pro-

vided in S1 Matlab Code). The generated paths and their corresponding Lagrangian multipliers

at the equilibrium under MNL are shown in Table 1. EV range limit is set to 4, and K, α, β are 6,

0.174 and 0.116 respectively. The convergence criterion of both flow change rate and Lagrangian

multiplier change rate is 0.01. The step size sequence {αn} and the initial multiplier m
ð0Þ

k are 1/n
and 0, respectively. The non-zero multipliers indicate that the energy consumptions of traveling

on these paths exceed the BEV battery capacity at the equilibrium, while zero multipliers (e.g.

for paths 1-5-7-3 and 1-6-5-7-3) denote paths within the battery capacity, which will not trigger

the out-of-energy cost. The number of paths generated in the column generation procedure is

related to the value of K. Fig 2 shows the convergence performance of the solution method

under MNL loading, where the equilibrium is reached after 130 iterations. Note that, in Fig 2

y-axis is in logarithm unit. The Euclidean distance equals to max
m
jm

rsðnþ1Þ

k � m
rsðnÞ
k j.

Furthermore, we perform a thorough sensitivity analysis with respect to travel demand, bat-

tery capacity and the logit parameter. The high demand is double of the medium demand in

the first numerical example. Table 2 demonstrates that after a certain level of battery capacity

(e.g. battery capacity equals to 6 and 7), there is no influence on the equilibrium link flows,

whereas in extreme cases (e.g. battery capacity = 2) where battery capacity is too small to travel

through any path between an O-D pair, every corresponding Lagrangian multiplier would be

positive and each EV user would experience the battery out-of-energy cost. In addition, higher

travel demand may impose congestion on the network and thereby increase the energy con-

sumption rate for the same path comparing to the original demand because of the increasing

path travel time. Table 2 shows that the equilibrium link flow pattern is affected by travel

demand and battery capacity. For example, link flows of 9, 11, 12, and 13 in the fifth and eighth

column have much difference with each other because the network becomes congested and

link travel time goes up when travel demand is high and increasing path travel time results in

more energy consumption and more paths infeasible on which BEV will run out of energy and

incorporate additional out-of-battery cost.

Table 1. Path sets and corresponding optimal Lagrangian multipliers for MNL.

O-D pair Path generated and its Lagrangian multiplier

(1,3) [1,5,7,3]

0

[1,6,5,7,3]

0

[1,5,7,8,3]

0.63

[1,6,8,7,3]

4.23

[1,5,9,7,3]

5.24

[1,6,9,7,3]

5.24

[1,6,8,3]

4.61

(1,4) [1,5,7,4]

0

[1,5,7,8,4]

0

[1,6,8,4]

7.07

[1,6,5,7,4]

8.34

[1,6,5,7,8,4]

10.83

[1,6,8,7,4]

10.79

[]

/

(2,3) [2,5,7,3]

0

[2,5,7,8,3]

0

[2,6,5,7,3]

10

[2,5,9,7,3]

9.95

[2,6,8,7,3]

12.92

[2,6,8,3]

12.45

[]

/

(2,4) [2,5,7,4]

0

[2,5,7,8,4]

0

[2,6,8,4]

18.54

[2,5,9,7,4]

17.17

[2,6,5,7,4]

17.13

[2,5,9,7,8,4]

14.79

[]

/

https://doi.org/10.1371/journal.pone.0194354.t001

Fig 2. Convergence performance of MNL loading for the small-sized case study.

https://doi.org/10.1371/journal.pone.0194354.g002
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Table 3 shows path usage status, revealing the number of total generated paths and the pro-

portion of feasible paths without additional out-of-battery cost corresponding to the scenarios

in Table 2. When the battery capacity is extremely small and travel demand is medium, e.g.

medium demand, capacity = 2, all the generated paths exceed range limit and every path user

would experience a battery out-of-energy cost. However, while the battery capacity increase to

4, comparing two scenarios of different demand, all paths in the highly congested network are

still out of range limit, because the energy consumption increase sharply as the path travel

time increases. For the medium demand case, there are at least 2 paths within the range limit

for each O-D pair.

For MNP, K is set to be 1 because the all-or-nothing assignment is applied in MNP loading

and only the shortest path is used to load the demand. Sample size of drawing perceived travel

time in Monte Carlo simulation is 200. Fig 3 shows the convergence performance under MNP

loading where there is a fast trend during the first 10 iterations while equilibrium is reached at

iteration 100. The equilibrium path sets and their corresponding Lagrangian multipliers are

listed in Table 4. It is observed that the number of paths generated is affected by travel demand

as well. Comparing to MNL, fewer paths are used between each O-D pair because the all-or-

Table 2. Equilibrium link flow for different scenarios of the travel demand and battery capacity under MNL network loading.

Link No. Link capacity Medium demand High demand

capacity = 2 capacity = 4 capacity = 6 capacity = 7 capacity = 4 capacity = 6

1 40 21.36 23.85 14.46 14.06 14.38 20.39

2 30 8.64 6.15 15.54 15.94 45.62 39.61

3 50 68.44 68.31 52.20 47.71 39.22 66.20

4 80 1.56 1.69 17.80 22.29 100.78 73.80

5 30 0.00 0.00 0.00 4.40 14.14 2.97

6 60 92.62 94.58 71.22 61.67 21.55 81.34

7 30 3.00 1.47 11.27 14.35 40.18 6.47

8 30 5.81 3.89 15.83 18.65 22.27 4.18

9 90 2.46 3.53 16.47 19.38 92.92 102.82

10 30 1.92 0.42 1.04 4.60 45.36 9.37

11 30 39.03 35.65 30.11 27.71 35.82 10.39

12 30 60.00 37.49 31.70 30.17 2.21 0.00

13 30 0.62 24.43 26.81 29.32 44.48 83.50

14 30 0.97 4.35 9.89 12.29 44.18 69.61

15 30 0.00 22.51 28.30 29.83 117.79 120.00

16 30 2.11 1.10 5.08 6.58 11.47 1.14

17 40 4.92 1.89 12.31 18.95 49.49 11.40

18 30 0.00 0.00 0.00 0.00 36.04 4.44

https://doi.org/10.1371/journal.pone.0194354.t002

Table 3. Path status under different travel demand and battery capacity for MNL.

O-D pair The number of paths within range limit V.S. total paths generated

Medium demand High demand

capacity = 2 capacity = 4 capacity = 6 capacity = 7 capacity = 4 capacity = 6

(1,3) 0/7 1/7 7/7 8/8 0/19 3/12

(1,4) 0/10 0/6 5/6 8/8 0/24 3/16

(2,3) 0/6 1/6 4/6 7/10 0/21 2/15

(2,4) 0/10 1/6 2/6 7/8 0/24 1/16

https://doi.org/10.1371/journal.pone.0194354.t003

Stochastic traffic assignment of electric vehicles with battery capacity constraints

PLOS ONE | https://doi.org/10.1371/journal.pone.0194354 March 15, 2018 12 / 18

https://doi.org/10.1371/journal.pone.0194354.t002
https://doi.org/10.1371/journal.pone.0194354.t003
https://doi.org/10.1371/journal.pone.0194354


nothing assignment is used in probit loading step to assign the travel demand to the shortest

path. When the demand is low and the network is not congested, only several paths would be

calculated in column generation step as the shortest path are stored in path sets. A sensitivity

analysis is conducted with respect to probit parameter in Table 5. As we can see, the effect of

changing probit parameter values is not that obvious in terms of the link flow volume. In

MNL, different K values in K-shortest path algorithm used for column generation step would

lead to different path size. It is well known that MNL model suffers from independence of

irrelevant alternative (IIA) property [39], which is the reason why larger K value is used in

MNL model.

For the second case study, a variation of the Sioux Falls network (see Fig 4) is adopted

which has been chosen as a benchmark network in numerous traffic assignment studies

[Suwansirikul, Friesz [42]]. One particular reason for presenting the Sioux Falls network

example here is to highlight the effect of parameter setting on computational cost. This net-

work consists of 24 nodes, 76 links, and 576 O-D pairs. For computational experiments, the

number of iterations (ITR) and the total computational cost (TCC) were compared for MNL

and MNP under different battery capacities (BC), stochastic parameter values, and K values.

The weight value of link energy consumption function, namely α, β, and convergence criteria

used here are the same as the first example.

Table 6 and Table 7 list the computational cost with different parameters under logit and

probit-based loading. Assuming the travel cost coefficient of the logit model, referred to as

logit parameter, is 0.2, it can be seen from Table 6 that K value has a great impact on computa-

tional cost. By looking into ITR before convergence and comparing the first two scenarios, big-

ger K value would decrease the ITR needed while increasing the TCC. Clearly, most

computational cost is spent on calculating the K shortest paths at column generation and logit

loading steps for each iteration. Therefore, a more efficient K-shortest path algorithm would

improve TCC. According to these two tables, it can also be observed that smaller battery capac-

ity, bigger stochastic parameters and larger battery capacity, lead to slow convergence speed.

Intuitively, the larger the BC is, the more paths can be selected in the path set. More time is

Fig 3. Convergence performance under MNP loading for the small-sized case study.

https://doi.org/10.1371/journal.pone.0194354.g003

Table 4. Path sets for MNP and its Lagrangian multiplier.

O-D pair Medium demand High demand

(1,3) [1,5,7,3]

0

[]

/

[1,5,7,3]

0

[1,6,8,3]

0

[]

/

(1,4) [1,5,7,4]

0

[1,5,7,8,4]

0.35

[1,5,7,4]

0

[1,6,8,4]

0

[]

/

(2,3) [2,5,7,3]

0

[]

0

[2,5,7,3]

0

[2,6,8,3]

0

[]

/

(2,4) [2,5,7,4]

0

[2,5,7,8,4]

0.26

[2,5,7,4]

0

[2,6,8,4]

0

[2,5,7,8,4]

2.63

https://doi.org/10.1371/journal.pone.0194354.t004
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needed to generate the paths, calculate the path choice probability, and assign the flows. When

BC is large enough and travel demand is fixed, BEV can actually travel to every destination

with no concern about running out of energy, thus making it a conventional SUE with no

additional battery capacity constraints. In reality, BEV may not fully charged under some cir-

cumstances, e.g. power grid failure, multiple trips. Therefore, multi-class users with different

battery capacities can be further taken into consideration without changing the problem’s

structure.

Moreover, the bigger value of the stochastic parameter, the larger is the random perception

error on both travel time and energy cost. From the results, it is found that it took less time

and less iterations for probit-based network loading to converge than that of logit-based net-

work loading. This result is because the all-or-nothing assignment is used in probit-based load-

ing. Only the shortest path is generated between each O-D pair at each iteration. When BC is

relatively large, all the paths energy consumption would be within the capacity level and

Lagrangian multipliers are equal to zero.

Conclusions

This paper works on the stochastic traffic assignment models with battery capacity constraints,

where new path-constrained stochastic user equilibrium (SUE) traffic assignment problem is

formulated, solved and numerically analyzed. The method considers a flow-depend energy

consumption assumption for battery electric vehicles (BEV), which is a generalization of flow-

independent driving distance constraint. The BEV’s range limit is determined based on both

its travel distance and travel time that is a function of traffic congestion. Flow-dependent con-

straint inevitably calls for fundamental changes to the existing network flow modeling tools for

properly capturing traffic patterns and evaluating traffic assignment results. It is proved that

the solution method framework, LD-GP-stochastic network loading, could be applied not only

in link-based problems but also in path-based problems. In this path-based SUE problem, the

Table 5. Equilibrium link flow for different scenarios of the travel demand and probit parameter under MNP network loading.

Link No. Medium demand High demand

Parameter = 0.2 Parameter = 1.2 Parameter = 0.2 Parameter = 1.2

1 30.00 29.80 29.84 30.53

2 0.00 0.20 30.16 29.47

3 70.00 70.00 111.77 108.60

4 0.00 0.00 28.23 31.40

5 0.00 0.00 0.00 0.00

6 100.00 99.80 141.61 139.12

7 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00

9 0.00 0.20 58.39 60.88

10 0.00 0.00 0.00 0.00

11 40.00 40.00 72.58 71.05

12 45.74 49.11 61.94 63.16

13 14.26 10.69 7.10 4.91

14 0.00 0.00 7.42 8.95

15 14.26 10.89 58.06 56.84

16 0.00 0.00 0.00 0.00

17 0.00 0.00 0.00 0.00

18 0.00 0.00 0.00 0.00

https://doi.org/10.1371/journal.pone.0194354.t005
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column generation procedure is applied to the path choice set generation which turns out to

works well with GP and stochastic network loading and provides basic insights of solving

path-constrained SUE problem to avoid path enumeration. The application of the algorithms

in the small network justifies the applicability of the solution procedures to general network

with path-based constraints. The numerical analysis results show the impact of battery capac-

ity, travel demand and stochastic parameters on network equilibrium flow and computational

cost.

Fig 4. Sioux falls network with 24 nodes and 76 links.

https://doi.org/10.1371/journal.pone.0194354.g004

Table 6. Computational cost with different parameter settings for MNL.

K = 3,logit parameter = 0.2 K = 6,logit parameter = 0.2

BC 0.05 0.2 0.6 1 0.05 0.2 0.6 1

ITR 36 26 8 4 28 21 11 6

TCC(s) 136.21 102.06 27.98 12.62 285.61 209.10 106.75 54.21

K = 6,logit parameter = 0.4 K = 6,logit parameter = 1

BC 0.05 0.2 0.6 1 0.05 0.2 0.6 1

ITR 20 13 5 3 12 6 3 2

TCC(s) 204.58 131.88 44.81 23.10 124.51 56.61 23.09 13.59

https://doi.org/10.1371/journal.pone.0194354.t006
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As a pure mathematical modeling tool to characterize BEVs’ travel behavior in the network

with some ideal socioeconomic assumptions, we expect that the modeling technique and solu-

tion methods demonstrated in this work would potentially trigger the interest of investigating

other types of stochastic traffic assignment problems with path-based constraints in logit-type

or weibit route choice models. The model itself can also be applied for more accurate quantifi-

cation of network flows, travel demand and battery capacity levels. As a modeling platform for

more practical and realistic model, the proposed model should be enhanced to accommodate

mixed traffic flows of different types of vehicles such as BEVs, hybrid vehicles and conven-

tional gasoline vehicles as well as the availability of charging infrastructure. Our future study

will investigate the possibility of incorporating charging time, range anxiety level and value of

time in model extensions. Based on the SUE models proposed in this paper, we will also inves-

tigate how to optimally locate charging stations in the network in terms of different objectives.
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