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A B S T R A C T

Ridesourcing service provided by transportation network companies (TNCs) has been shown by
various studies to deteriorate traffic conditions as they increase the number of unoccupied ve-
hicles on the road. Ridesharing is an alternate service where passengers with similar itineraries
may be pooled together in a combined trip, which could counteract some of the negative
externalities of ridesourcing. Passengers are generally compensated with a price discount for
their inconveniences experienced in shared trips. We therefore propose a dynamic discount
pricing strategy for the platform to incentivize ridesharing. This study explicitly considers the
passengers to be cost and service quality sensitive, impatient, and have a choice to decline
services offered by the platform. The strategy is integrated in the matching algorithm which
maximizes the platform’s profit with given batches of waiting passengers and idle vehicles, and
strategically offers shared trips to selected passengers with varying price discounts. We show
that the adoption of the dynamic discount pricing strategy creates substantial economic benefit
for the platform in both the short and long terms. The drivers are also shown to benefit from
the strategy as they spend more time serving passengers. The strategy reduces the fleet size
required to service the same number of passengers and is beneficial to all stakeholders.

1. Introduction

Transportation Network Companies (TNCs) such as Uber, Didi, and Lyft have emerged and grown explosively over the past
decade. Those TNCs offer e-hailing platforms to provide point-to-point on-demand mobility services. The ability for the platforms to
match passengers and drivers, and to implement dynamic pricing strategies provides them a competitive edge over the traditional
taxis in the ride-hailing market. Ridesourcing services provided by TNCs can be considered a direct substitute to that by the taxis,
where there is one destination per trip. However, it has been shown by various studies that ridesourcing has deteriorated traffic
conditions as it increases the number of unoccupied vehicles on the road (e.g. Schaller, 2017; Beojone and Geroliminis, 2021), which
subsequently lead to more pollution and congestion (Anair et al., 2020; Barrios et al., 2020; Ramezani and Nourinejad, 2018).

Ridesharing is another service also often provided by TNCs and is enabled by the real-time matching nature (Chen et al., 2021)
of these e-hailing platforms, where passengers with similar itineraries may be pooled together in a combined trip. Though less
popular among passengers (Xu et al., 2021; Brown, 2020), ridesharing could counteract some of the negative externalities of
ridesourcing, as it might increase the number of passengers on board and enable a smaller fleet to service the same number of
passenger requests (Alisoltani et al., 2021). The lower popularity of ridesharing can be attributed to the potentially longer waiting
time and detour (Wang et al., 2021), and the inconvenience of sharing with a stranger (Irannezhad and Mahadevan, 2022). Therefore,
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the passengers in shared trips are generally compensated with a price discount (Bahrami et al., 2022). Higher discount offered makes
ridesharing more appealing to passengers but irrevocably lowers the profit generated per trip and vice versa. Ergo, the price discount
is a crucial variable a platform has control over. In this paper, we formulate a dynamic ridesharing discount pricing strategy for a
profit maximizing TNC and the ramifications of such strategy are evaluated.

Pricing in the ridesourcing market is studied in the literature extensively with the equilibrium approach. Wang et al. (2016)
how the existence of equilibrium solutions for any pricing strategy, and identify a conflict between maximizing a platform’s profit
nd improving the social welfare. Surge pricing or dynamic pricing is commonly used by TNCs, where prices react to imbalances
etween demand and supply. Considering price variation across time, Zha et al. (2017) investigate the impact of surge pricing and
lso present a trade-off, where the platform and the drivers enjoy higher earnings, while the customers may be at a loss. Cachon
t al. (2017) compare several contractual forms that allow the platform to dynamically adjust the prices and/or wages. They find
hat surge pricing, where there is a constraint of fixed commission rates, achieves the near-optimal profit. Banerjee et al. (2015)
n the other hand, using a queueing-theory economic model, show dynamic pricing strategy cannot exceed the throughput and
evenue performance compared to the optimal static pricing policy. Comparing to adjusting prices temporally, spatial pricing is
nother dimension considered in the literature. For example, Zha et al. (2018) develop a discrete time geometric matching model
nd find platform and drivers are better off under revenue-maximizing spatial pricing. Guda and Subramanian (2019) also analyse
he effects of spatial pricing strategies, so drivers can be made to move from a zone with excess supply, while offering drivers
onuses to move can achieve even higher profitability for the platform.

Fewer studies have explored pricing strategies in non-equilibrium settings. Notably, Nourinejad and Ramezani (2020) use a
odel predictive control framework and demonstrate that by relaxing the assumption that price is always higher than wage at all

ime, platform profit under dynamic pricing can be further improved. They argue that in practice, the market conditions may not
emain untouched for sufficiently long periods to attain equilibrium. This paper takes the same stance. We consider a dynamic
on-equilibrium model formulating the interactions among market participants.

In this study, we consider the platform offers customized (dynamic) discounts to shared trips, which are individualized towards
assengers. Note that the strategy does not fall into the category of price discrimination for the following reasons, (i) it is a discount
olicy, and the original price structure of the service provided is not manipulated, (ii) the services provided to customers are not
he same considering passengers experience different amount of detour and wait time which fundamentally alters the quality of the
ervice, and (iii) the strategy does not take into consideration of the passengers’ personal attributes, but only the spatial orientation
f their origins and destinations.

The existing studies of ridesharing operations have diverse objectives, methodologies, and assumptions. Ke et al. (2020) develop
n equilibrium model for the ridesharing market. They analyse the impact on the platform’s profit and social welfare due to
ariations in trip fare and fleet size. They prove that the optimum solutions are located in the normal regime rather than the wild
oose chase regime. Zhang and Nie (2021) also use an equilibrium model and find the ridesharing market system always has an
quilibrium solution. They study the effects of pricing and regulations on platform profit and social welfare. Wei et al. (2020) model
multi-modal network with ridesharing services using a doubly dynamical approach. They find ridesharing reduces congestion if
congestion pricing scheme is implemented. Hosni et al. (2014) formulate a mixed integer program for the shared-taxi problem
ith the objective of profit maximization. They assume that each passenger specifies a pick-up and drop-off time window, as well
s a maximum ride time, which must be satisfied for them to be in a shared ride. Qian et al. (2017) develop an integer linear
rogramming problem and convert it into an equivalent graph problem for taxi group rides to maximize total saved travel miles.
hey assume that all passengers are willing to share their rides and they may be asked to meet at a designated location, and will
e dropped at a place which comprises the needs of all people on board. Alonso-Mora et al. (2017) also introduce an integer linear
rogram for the ridesharing problem to minimize the total sum of delays, and solve incrementally from a greedy assignment. Azadeh
t al. (2022) present a model where the platform offers an assortment of alternative services for the passengers to choose from upon
heir arrival. With the goal of profit maximization, they show that the model benefits the platform and the customers. Fielbaum
t al. (2021) investigate how to split the cost among passengers in shared trips. They consider the scenario as a non-cooperative
ame, and propose cost-sharing protocol that yields optimal solutions in three different equilibrium conditions. Jung et al. (2016)
evelop a hybrid-simulated annealing method for the shared-taxi dispatch algorithm for total passenger travel time minimization
nd system profit maximization, while maximum waiting time and detour assumptions are considered. The majority of the studies on
idesharing, in one form or another, assume all passengers are willing to share irrespective of service quality and/or price. However,
n practice, passengers have individualized preferences regarding ridesharing which is unknown to the platform. Therefore, even
f the platform matches a passenger in a shared trip, there is a probability for the passenger to reject such service (Wang et al.,
020). In this study, we consider such scenarios, where passengers choose among solo and shared trips and other modes (e.g. public
ransport), which could have significant repercussion on the platform’s profitability and social welfare.

This paper presents a dynamic model of the on-demand mobility market, where we consider a single platform in the market that
ffers both ridesourcing (solo trips) and ridesharing services and pays wages to a fleet of drivers. Furthermore, this study explicitly
onsiders the passengers to be cost and service quality sensitive, impatient, and have a choice to decline services offered by the
latform. We use utility choice models to predict the passenger’s decision. Inexorably, as a consequence for allowing passengers to
eject the service offered by the platform (solo or shared rides), we consider a third category of trips, which we name ‘forced solo
rips’. That is when a passenger accepts the shared trip, but their counterpart rejects, then they might end up in a solo trip but still
njoys the price discount (the platform is assumed to have to honour the offer no matter what).

We propose a dynamic discount pricing strategy for the platform that is integrated in the matching algorithm which maximizes
2
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Fig. 1. Schematic diagram of interactions among market participants: passengers, vehicles, and the platform.

ith varying price discount. The strategy also automatically reduces deadheadings and detour, as they incur extra wage costs paid
o the drivers, which therefore are discouraged non-explicitly by the strategy. The strategy is in the form of a non-linear mixed-
nteger optimization problem. We then transform the problem into two sequential sub-problems that can be solved with limited
omputational time, while we prove the transformation is equivalent. We compare the strategy with the case where the platform
ffers shared trips at a constant price discount for all passengers at all times. We also analyse spatial–temporal patterns of the
roposed discounting strategy.

The remainder of this paper is structured as follows. In Section 2, we present a dynamic model of the on-demand mobility market,
nd elaborate the interactions among all market participants. In Section 3, we formulate the matching problem and develop the
ynamic discount pricing strategy. In Section 4, we present and discuss the results. Finally in Section 5, we conclude the study and
raw potential future research directions.

. Dynamic model of on-demand mobility market

The dynamic model of the on-demand mobility market considers the interactions among market participants, including individual
assengers, vehicles, and the platform. A schematic diagram of their interactions is shown in Fig. 1. For each of the three groups
f participants, we dedicate a section explaining how their behaviours are modelled.

.1. The passengers

We assume passengers are impatient, cost sensitive, service quality sensitive, and heterogeneous in willingness to share.
3

assengers join the platform (without loss of generality in groups of one person) by requesting a ride indicating their origin and
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Table 1
Trip information shown to 𝑝𝑖 ∈  by the platform when they are matched.

Description Unit

Solo trip 𝑤s
𝑖 Waiting time s

𝑓 s
𝑖 Trip fare $

Shared trip

𝑤h
𝑖 Waiting time s

𝛿𝑖 Detour time s
𝑓 h
𝑖 Trip fare $

𝜃𝑖 Discount level –

destination. Let us denote the set of all unmatched passengers  =
{

𝑝1,… , 𝑝𝑛
}

, and an individual passenger 𝑝𝑖 ∈  . Once the request
is made, the platform will attempt to match 𝑝𝑖 to a suitable trip. If the platform fails to match 𝑝𝑖 in a timely manner, then their
matching patience, 𝑚̄𝑖, may be exceeded. Subsequently, they would cancel their request and leave the platform (i.e. travel by other
modes or choose not to travel); we note it as type I cancellation. If successfully matched, the service offered to 𝑝𝑖 could either be a
solo trip or a shared-trip at the will of the platform (with the overall objective of maximizing the platform profit, see Section 3). The
details of the trip would be presented to 𝑝𝑖 by the platform, which are listed in Table 1. However, given the information, 𝑝𝑖 may or
may not be pleased with the service offered by the platform, and therefore they could choose to reject the offer. For shared trips,
since there are discounts associated, we assume passengers would consider them as promotional offers and thus would not leave
the platform when rejecting. Instead, those who rejected shared trips would be back into the set of unmatched passengers, and the
platform would again attempt to match them but only in solo trips hereafter, as shown in Fig. 1. On the contrary, the passengers
would leave the platform if they are not satisfied with the solo trip offered; we note it as type II cancellation.

It is apparent that passenger 𝑝𝑖 may need to make two choices. (1) When offered a shared trip by the platform, they make a
choice between accepting it or they would rather be in a solo trip. (2) When matched in a solo trip, they make a choice between
accepting or leaving the platform for other modes of travel. We consider two binary choice models for these two scenarios. To
facilitate the choice modelling, we assume 𝑝𝑖 perceives the utilities of different modes of travel as follows:

Solo Trip∶ 𝑢s𝑖 = 𝛽s𝑖 − 𝛽 t𝑖𝑤
s
𝑖 − 𝛽f𝑖 𝑓

s
𝑖 (1a)

Shared Trip∶ 𝑢h𝑖 = 𝛽h𝑖 − 𝛽 t𝑖 (𝑤
h
𝑖 + 𝛿𝑖) − 𝛽f𝑖 [𝑓

s
𝑖 (1 − 𝜃𝑖)] (1b)

Other Modes∶ 𝑢o𝑖 = 𝛽o𝑖 (1c)

where 𝛽s𝑖 , 𝛽
h
𝑖 , and 𝛽o𝑖 are the utility constants for the three travel modes, and 𝛽 t𝑖 and 𝛽f𝑖 are the utility coefficient per unit time and

cost respectively for 𝑝𝑖. Note here that the shared trip fare, 𝑓 h
𝑖 , can be substituted with 𝑓 s

𝑖 (1 − 𝜃𝑖), as in Eq. (1b). The fare structures
are further elaborated in Section 2.3.2.

When presented with a shared trip, if the waiting time shown exceeds the waiting patience of the passenger for a shared trip,
i.e. 𝑤h

𝑖 > 𝑤̄h
𝑖 , the passenger declines straightway. Otherwise, the passenger considers the trade-off between the shared trip and a

solo trip, where the shared trip has a lower service quality with detour, potentially longer wait and discomfort but is compensated
with a price discount. However, when receiving a shared trip offer, the passenger does not have the exact information regarding
the solo trip they could otherwise be matched in. Therefore, to determine the utility of the solo trip, the waiting time of the solo
trip, 𝑤s

𝑖 , needs to be substituted with the passenger’s expected waiting time, 𝜖w𝑖 , and thus Eq. (1a) becomes:

𝑢̂s𝑖 = 𝛽s𝑖 − 𝛽 t𝑖 𝜖
w
𝑖 − 𝛽f𝑖 𝑓

s
𝑖 . (2)

Therefore, the probability of the passenger accepting the shared ride, Prh𝑖 , is as follows:

Prh𝑖 =
𝑒𝑢

h
𝑖

𝑒𝑢
h
𝑖 + 𝑒𝑢̂

s
𝑖
. (3)

Similarly, when presented with a solo trip, the passenger declines if the waiting patience for a solo trip is exceeded, i.e. 𝑤s
𝑖 > 𝑤̄s

𝑖 .
Otherwise, the passenger makes a binary choice between accepting the solo trip or other modes of travel, where the probability of
accepting the solo ride Prs𝑖 , is as follows:

Prs𝑖 =
𝑒𝑢

s
𝑖

𝑒𝑢
s
𝑖 + 𝑒𝑢

o
𝑖
. (4)

After accepting a trip, no more action is executed by passenger 𝑝𝑖. They wait to be picked up by their designated vehicle, their status
change from unmatched to matched, are removed from the set  , and will leave the platform once reaching their destination.

2.2. The vehicles

The drivers/vehicles are the supply side of the on-demand mobility market. Their characteristics such as entering to and exiting
from the market, ability to decline rides, incentivization for repositioning are considered by the literature. Since this study is focused
on passenger modelling and demand manipulation, we assume that vehicles will always accept the designated trips assigned by the
platform. The vehicles travel via shortest path (e.g. Dijkstra’s algorithm) to specific locations under the direction of the platform.
4
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The effects of congestion is not considered in this study; we assume that every link in the road network has a specific speed and
vehicles travel at those speeds. We also assume the vehicles have a maximum capacity of two passengers, and they will be stationary
when all passengers are dropped off. Therefore each vehicle could be in one of the four possible states:

• Idle: unoccupied and stationary,  =
{

𝑣1,… , 𝑣𝑣
}

;
• Dispatched: unoccupied but on the way to pick up passengers;
• Partially Occupied: occupied by one passenger;
• Fully Occupied: occupied by two passengers.

2.3. The platform

The platform has the information of unmatched passengers’ requests (origin and destination) and idle vehicles’ positions, and
will determine optimal matching between the two batches every 𝛥 seconds (note that partially occupied vehicles are not considered
for matching in this study). This section will first discuss the composition of a shared trip and outline the pricing schemes of the
platform. Then the matching procedure will be presented, while detailed matching algorithm will be elaborated in Section 3.

2.3.1. Shared trips
Let us consider any two unmatched passengers, 𝑝𝑖, 𝑝𝑗 ∈  , and any idle vehicle, 𝑣𝑘 ∈  . There are four possible arrangements of

a shared trip. We denote the position of 𝑣𝑘 as 𝑉𝑘, and the origins and destinations of the two passengers, as [𝑂𝑖, 𝑂𝑗 ] and [𝐷𝑖, 𝐷𝑗 ],
respectively. Consider 𝑝𝑖 is the first passenger, then the two possible sequences are First In First Out (FIFO) and Last In First Out
(LIFO), which are shown in Fig. 2 respectively. Similarly, there are another two sequences if 𝑝𝑗 is the first passenger.

Fig. 2. Shared trip pick-up & drop-off sequences.

Given the sequence, we can determine the waiting time and detour time for the passengers explicitly. We define the waiting
time as the time between matching notification and pick-up. We also define the detour time for the passengers as the difference
between actual on-board time and non-shared original on-board time. Furthermore, we denote the shortest path travel time from 𝑂
to 𝐷 as |𝑂𝐷|. Accordingly, the waiting time and detour time for the two passengers in the four possible sequences are summarized
in Table 2.

Table 2
Passenger waiting time and detour time for all sequences of shared trips.

FIFO LIFO

First passenger

𝑝𝑖

𝑤h
𝑖 = |𝑉𝑘𝑂𝑖| 𝑤h

𝑖 = |𝑉𝑘𝑂𝑖|

𝑤h
𝑗 = |𝑉𝑘𝑂𝑖| + |𝑂𝑖𝑂𝑗 | 𝑤h

𝑗 = |𝑉𝑘𝑂𝑖| + |𝑂𝑖𝑂𝑗 |

𝛿𝑖 = |𝑂𝑖𝑂𝑗 | + |𝑂𝑗𝐷𝑖| − |𝑂𝑖𝐷𝑖| 𝛿𝑖 = |𝑂𝑖𝑂𝑗 | + |𝑂𝑗𝐷𝑗 | + |𝐷𝑗𝐷𝑖| − |𝑂𝑖𝐷𝑖|

𝛿𝑗 = |𝑂𝑗𝐷𝑖| + |𝐷𝑖𝐷𝑗 | − |𝑂𝑗𝐷𝑗 | 𝛿𝑗 = 0

𝑝𝑗

𝑤h
𝑖 = |𝑉𝑘𝑂𝑗 | + |𝑂𝑗𝑂𝑖| 𝑤h

𝑖 = |𝑉𝑘𝑂𝑗 | + |𝑂𝑗𝑂𝑖|

𝑤h
𝑗 = |𝑉𝑘𝑂𝑗 | 𝑤h

𝑗 = |𝑉𝑘𝑂𝑗 |

𝛿𝑖 = |𝑂𝑖𝐷𝑗 | + |𝐷𝑗𝐷𝑖| − |𝑂𝑖𝐷𝑖| 𝛿𝑖 = 0
𝛿𝑗 = |𝑂𝑗𝑂𝑖| + |𝑂𝑖𝐷𝑗 | − |𝑂𝑗𝐷𝑗 | 𝛿𝑗 = |𝑂𝑗𝑂𝑖| + |𝑂𝑖𝐷𝑖| + |𝐷𝑖𝐷𝑗 | − |𝑂𝑗𝐷𝑗 |

2.3.2. Pricing and cost
For a solo trip, we assume that the fare structure consists of a fixed cost and a variable cost that depends on trip distance/duration

as:

𝑓 s
𝑖 = 𝛼1 + 𝛼2|𝑂𝑖𝐷𝑖|. (5)

For a shared trip, we assume that a passenger will receive a percentage based discount off the original solo trip fare:

𝑓 h = 𝑓 s(1 − 𝜃 ). (6)
5
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h

Since we assume that drivers always accept the designated trips by the platform, then it would be unreasonable for a driver to

ave an excessive deadheading. Therefore we assume that payments to the driver 𝑘, 𝑐sq𝑖𝑗𝑘 and 𝑐𝑖𝑘 for shared trips of given sequence and
solo trips respectively, are based on the travel time from their idle position to last drop-off position. E.g. for the cases in Figs. 2(a),
2(b), and a solo trip, their costs are shown in Eq. (7) respectively:

𝑐sq𝑖𝑗𝑘 =

{

𝛼3(|𝑉𝑘𝑂𝑖| + |𝑂𝑖𝑂𝑗 | + |𝑂𝑗𝐷𝑖| + |𝐷𝑖𝐷𝑗 |) if sq = FIFO
𝛼3(|𝑉𝑘𝑂𝑖| + |𝑂𝑖𝑂𝑗 | + |𝑂𝑗𝐷𝑗 | + |𝐷𝑗𝐷𝑖|) if sq = LIFO

(7a)

𝑐𝑖𝑘 = 𝛼3(|𝑉𝑘𝑂𝑖| + |𝑂𝑖𝐷𝑖|). (7b)

It can be observed that the term |𝑉𝑘𝑂𝑖|, which represents the time Vehicle k travels without any passengers, appears in all three
equations in Eq. (7). Therefore, under such wage structure, for a profit seeking platform, deadheading will be inherently reduced,
which inadvertently benefits the passengers and drivers.

We want to point out that, though currently most of the ride-sourcing drivers are not paid for the deadheading in real word
applications, we still decided to use this wage structure in the study with much consideration. Such wage structure is an ingenious
way to (partially and indirectly) kerb the wild goose chase (WGC) problem, where vehicles might be dispatched to passengers
considerably far away when demand and/or supply is low, which reduces the efficiency of the system for all stakeholders. To address
the WGC problem, one way is to introduce an artificial search radius (in distance or time) where the platform will not consider
matching a passenger outside of a particular vehicle’s search radius (Alonso-Mora et al., 2017). However, under the proposed wage
structure, picking up passengers far away would incur extra cost to the platform, therefore, it implicitly addresses the WGC problem
and could lead to a more efficient operation.

It follows that, the profit made by the platform on each trip, 𝜋sq
𝑖𝑗𝑘 and 𝜋𝑖𝑘 for shared and solo trips respectively, is the difference

between the trip fare and payment to the drivers:

𝜋sq
𝑖𝑗𝑘 = 𝑓 h

𝑖 + 𝑓 h
𝑗 − 𝑐sq𝑖𝑗𝑘 (8a)

𝜋𝑖𝑘 = 𝑓 s
𝑖 − 𝑐𝑖𝑘. (8b)

We emphasize here that 𝜃𝑖 in Eq. (6) is a decision variable. The higher 𝜃𝑖, the higher the probability for passenger 𝑝𝑖 to accept the
shared trip (Eq. (3)), but inexorably, the lower the profit made by the platform on the shared trip (Eq. (8a)), ceteris paribus. Therefore
offering the ‘optimal’ discount is a crucial decision making process for the platform, which is discussed in detail in Section 3.

2.3.3. Matching procedure
For a given set of unmatched passengers  =

{

𝑝1,… , 𝑝𝑛
}

,  is comprised of two disjoint subsets, 1 =
{

𝑝1,… , 𝑝𝑚
}

and
2 =

{

𝑝𝑚+1,… , 𝑝𝑛
}

, where 1 consists of all unmatched passengers who have not been matched previously and thus can be matched
in either shared or solo trips. Whereas 2 consists of all unmatched passengers who have previously rejected a shared trip offer whom
shall only be considered in solo trips by the platform. The platform matches 1 and 2 to the set of idle vehicles,  =

{

𝑣1,… , 𝑣𝑣
}

.
The matching algorithm produces the optimal matching (in the sense of maximizing the platform profit) which consists of a number
of shared and solo trips as well as the optimal price discount for each passenger in shared trips. In the optimal matching, any
passenger can only exist in at most one of the trips, and any vehicle can also only exist in at most one of the trips. For all passengers
who are matched, they will receive the corresponding trip information, which will lead to the choice modelling already discussed
in Section 2.1.

For all solo passengers who accepted, and passenger pairs that both accepted their rides, the platform will dispatch the designated
vehicles to pick up and complete their trips. However, a consequence of allowing passengers to reject is that there will be those who
accept the shared trips but their counterparts reject, which will force them to be in solo trips. We assume that under such scenario,
the platform will dispatch the original vehicle that was matched to the pair to pick up only the one passenger who accepted, while
still honouring the price discount offered to him/her, even if the platform makes a loss on the trip.

We considered a rematch algorithm where the platform may be able to mitigate a portion of such losses by considering a rematch
between the smaller set of passengers who accepted their rides, ̂ , and the idle vehicles,  . We found the performance of this
algorithm is not significant, and it can produce an adverse effect in certain scenarios. Therefore, we did not include this algorithm
in the main body of this study; nonetheless the relevant results are shown in Appendix C.

3. Dynamic discount method

3.1. Problem description

The platform establishes matching between a set of unmatched passengers,  =
{

𝑝1,… , 𝑝𝑛
}

, and a set of idle vehicles,
 =

{

𝑣1,… , 𝑣𝑣
}

every 𝛥 seconds. The dynamic discount pricing strategy is designed to determine (i) the profit maximizing matching
between the two sets that consists of solo and shared trips, and simultaneously (ii) the profit maximizing fare discount for every
passenger in shared trips. We assume that the platform:

• distinguishes 1 and 2, where 1 consists of all unmatched passengers who have not been matched previously, whom can
be matched in either shared or solo trips, and 2 consists of all unmatched passengers who have previously rejected a shared
6

trip offer whom shall only be considered in solo trips by the platform,
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• is aware of the origins and destinations of all passengers,
• is aware of the positions of all idle vehicles,
• is capable of determining the shortest path time between any two positions in the network,
• is aware of the population means of 𝛽s𝑖 , 𝛽

h
𝑖 , 𝛽o𝑖 , 𝛽 t𝑖 , 𝛽

f
𝑖 , 𝜖

w
𝑖 ,

• does not alter the fare structure of solo trips as well as salary paid to drivers, i.e. 𝛼1, 𝛼2, 𝛼3 are fixed,
• offers discount off the original solo trip fare to passengers in shared trips.

Section 3.2 proposes a modified maximum weighted bipartite matching to solve the problem. In Section 3.3, we transform
the modified maximum weighted bipartite matching problem into two sequential sub-problems that can be solved with limited
computational time. Then in Section 3.4, we prove the transformation is equivalent (i.e. does not marginalize the optimality).

3.2. Joint matching and dynamic discount optimization formulation

We establish the profit maximizing matching and discounts by solving a modified maximum weighted bipartite matching problem.
Consider the distinct two sets of unmatched passengers, 1 =

{

𝑝1,… , 𝑝𝑚
}

and 2 =
{

𝑝𝑚+1,… , 𝑝𝑛
}

. We first construct a set of all
possible ordered passenger pairs, , using 1.

𝑄 = {𝑝FIFO1,2 , 𝑝LIFO1,2 ,… , 𝑝FIFO1,𝑚 , 𝑝LIFO1,𝑚 , 𝑝FIFO2,1 , 𝑝LIFO2,1 , 𝑝FIFO2,3 , 𝑝LIFO2,3 ,… , 𝑝FIFO2,𝑚 , 𝑝LIFO2,𝑚 ,… , 𝑝FIFO𝑚,1 , 𝑝LIFO𝑚,1 ,… , 𝑝FIFO𝑚,𝑚−1, 𝑝
LIFO
𝑚,𝑚−1}

For consistency, we denote the set of all individual passengers, ̄ =
{

𝑝−1,1,… , 𝑝−𝑛,𝑛
}

. We let  = ̄ ∪ , then  is the set of
all potential passenger pairs and solo passengers. Let  be the set of edges connecting each element of  and  , where an edge
(𝑝sq𝑖,𝑗 , 𝑣𝑘) ∈  connects 𝑝sq𝑖,𝑗 ∈  and 𝑣𝑘 ∈  . The modified maximum weighted bipartite matching can then be formulated as follows:

max
𝑥sq𝑖𝑗𝑘 ,𝜃

sq
𝑖,𝑖𝑗𝑘 ,𝜃

sq
𝑗,𝑖𝑗𝑘

∑

(𝑝sq𝑖,𝑗 ,𝑣𝑘)∈

𝑔sq𝑖𝑗𝑘𝑥
sq
𝑖𝑗𝑘 (9a)

where ∶ 𝑔sq𝑖𝑗𝑘 =

{

𝐸[𝜋𝑖𝑘] if 𝑖 = 𝑗 or sq = – (solo trip)
𝐸[𝜋sq

𝑖𝑗𝑘] = 𝐹 (𝜃sq𝑖,𝑖𝑗𝑘, 𝜃
sq
𝑗,𝑖𝑗𝑘) if 𝑖 ≠ 𝑗 (shared trip)

(9b)

s.t.
∑

sq∈{FIFO,LIFO}

𝑛
∑

𝑗=1

𝑣
∑

𝑘=1
𝑥sq
𝑖𝑗𝑘

+
∑

sq∈{FIFO,LIFO}

𝑛
∑

𝑖=1

𝑣
∑

𝑘=1
𝑥sq
𝑖𝑗𝑘

+
𝑣
∑

𝑘=1
𝑥−
𝑖𝑗𝑘

≤ 1 ∀ 𝑖 = 𝑗 ∈  (9c)

∑

sq∈{FIFO,LIFO,−}

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥sq𝑖𝑗𝑘 ≤ 1 ∀𝑘 ; 𝑣𝑘 ∈  (9d)

𝑥sq𝑖𝑗𝑘 ∈ {0, 1} (9e)

𝜃sq𝑖,𝑖𝑗𝑘, 𝜃
sq
𝑗,𝑖𝑗𝑘 ∈ [0, 1] (9f)

In Eq. (9a), 𝑥sq𝑖𝑗𝑘 is a binary decision variable on the edge (𝑝sq𝑖,𝑗 , 𝑣𝑘) ∈  , with 𝑥sq𝑖𝑗𝑘 = 1 indicating that the solo passenger 𝑝𝑖 (if 𝑖 = 𝑗),
or the passenger pair 𝑝𝑖 and 𝑝𝑗 of given sequence sq (if 𝑖 ≠ 𝑗 or sq ≠ −) are matched to vehicle 𝑣𝑘. 𝑔sq𝑖𝑗𝑘 is the weight of the edge, as
shown in Eq. (9b); we let it be the expected profit made by the platform. Thus, for a shared trip, 𝑔sq𝑖𝑗𝑘 is a function of 𝜃sq𝑖,𝑖𝑗𝑘 and 𝜃sq𝑗,𝑖𝑗𝑘,
which are the discount rates offered to passengers 𝑖 and 𝑗 respectively for the given sequence when they are matched to vehicle 𝑘.
Contrary to most maximum weighted bipartite matching problems, where the weights of the edges are known, we formulate our
problem such that each edge weight of shared arrangements is dependent on a set of decision variables, 𝜃sq𝑖,𝑖𝑗𝑘 and 𝜃sq𝑗,𝑖𝑗𝑘. Note that the
discount level is between 0 and 1 (see Eq. (9f)), as we assume the platform cannot charge more for the shared trip than the original
price, and it cannot give money to customers in shared trips. We define 𝐸[𝜋𝑖𝑘] and 𝐸[𝜋sq

𝑖𝑗𝑘] explicitly in Appendix A. Eqs. (9c) and
(9d) are constraints that ensure each idle vehicle and unmatched passenger are matched at most once.

By solving this modified maximum weighted bipartite matching problem, the profit maximizing matching and the profit
maximizing individualized price discount can be determined simultaneously. However, solving this non-linear mixed-integer
optimization problem by brute force is inevitably computationally expensive. Therefore, in Section 3.3 we transform the problem into
two sequential sub-problems that can be solved with limited computational time. Then in Section 3.4 we prove the transformation
is equivalent.

3.3. Transformation of optimization formulation

Problem 1. First we determine the optimal fare discount for the two passengers in all possible shared trip combinations (including
different vehicles), which maximizes the expected profit of such combination, i.e.

(𝜃sq𝑖,𝑖𝑗𝑘
∗, 𝜃sq𝑗,𝑖𝑗𝑘

∗) = arg max
𝜃sq𝑖,𝑖𝑗𝑘 , 𝜃

sq
𝑗,𝑖𝑗𝑘

𝐸[𝜋sq
𝑖𝑗𝑘] ∀𝑖 ≠ 𝑗 ∈  ∀𝑘 ; 𝑣𝑘 ∈  (10a)

s.t. 𝜃sq𝑖,𝑖𝑗𝑘, 𝜃
sq
𝑗,𝑖𝑗𝑘 ∈ [0, 1] (10b)
7
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The optimization problem in Eq. (10) finds the maximum of the bi-variate function, 𝐹 (𝜃sq𝑖,𝑖𝑗𝑘, 𝜃
sq
𝑗,𝑖𝑗𝑘), within the domain of 𝜃sq𝑖,𝑖𝑗𝑘, 𝜃

sq
𝑗,𝑖𝑗𝑘 ∈

[0, 1], which needs to be solved for all shared trip combinations. Due to our definition of 𝐹 , which is the expected profit of the
arrangement, as shown in Eq. (13), the explicit solution to Eq. (10) is unattainable. Therefore, the problem needs to be solved
non-explicitly for all shared trip combinations, which can be computationally expensive. For efficiency, we solve each optimization
problem by adopting a grid search approach, where 𝑥 equally spaced points between 0 and 1 are taken for each of 𝜃sq𝑖,𝑖𝑗𝑘 and 𝜃sq𝑗,𝑖𝑗𝑘,
reating 𝑥2 possible discount combinations. The solution is then obtained by the combination that yields the highest expected profit.
n this study, we choose 𝑥 to be 21, that is the discount intervals are at 0.05. We believe this interval is adequate, as calculations
an be done efficiently (2.6 GHz Intel Core i7: solving for one arrangement/edge takes 0.00001 s; solving for one full instance with
60 empty vehicles and 400 ordered passenger pairs, i.e. 2,24,000 arrangements, takes 2.53 s), while the interval is sufficiently
mall, i.e. for a $10 trip, the possible discounts are 50 cents apart. Note that the size of 𝑥 can be altered to improve accuracy but at

the cost of efficiency, and vice versa; or that the objective function, 𝐹 , can be chosen differently such that an explicit solution can
be obtained.

Problem 2. After solving Problem 1, we use its results (i.e. 𝜃∗ and 𝐸∗[𝜋sq
𝑖𝑗𝑘]) to determine the edge weights. Therefore, Problem 2

an be formulated as a maximum weighted bipartite matching problem with known edge weights:

max
𝑥sq𝑖𝑗𝑘

∑

(𝑝sq𝑖,𝑗 ,𝑣𝑘)∈

𝑔sq𝑖𝑗𝑘
∗𝑥sq𝑖𝑗𝑘 (11a)

where ∶ 𝑔sq𝑖𝑗𝑘
∗ =

{

𝐸[𝜋𝑖𝑘] if 𝑖 = 𝑗 or sq = – (solo trip)
𝐸∗[𝜋sq

𝑖𝑗𝑘] = 𝐹 (𝜃sq𝑖,𝑖𝑗𝑘
∗, 𝜃sq𝑗,𝑖𝑗𝑘

∗) if 𝑖 ≠ 𝑗 (shared trip)
(11b)

s.t.
∑

sq∈{FIFO,LIFO}

𝑛
∑

𝑗=1

𝑣
∑

𝑘=1
𝑥sq
𝑖𝑗𝑘

+
∑

sq∈{FIFO,LIFO}

𝑛
∑

𝑖=1

𝑣
∑

𝑘=1
𝑥sq
𝑖𝑗𝑘

+
𝑣
∑

𝑘=1
𝑥−
𝑖𝑗𝑘

≤ 1 ∀ 𝑖 = 𝑗 ∈  (11c)

∑

sq∈{FIFO,LIFO,−}

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥sq𝑖𝑗𝑘 ≤ 1 ∀𝑘 ; 𝑣𝑘 ∈  (11d)

𝑥sq𝑖𝑗𝑘 ∈ {0, 1} (11e)

Problem 2 is an integer linear programming problem which can be solved by state-of-the-art algorithms efficiently (Lenstra,
983). Solving Problem 2, the decision variables, 𝑥sq𝑖𝑗𝑘 = 1 indicates that arrangement 𝑝sq𝑖,𝑗 and 𝑣𝑘 is in the profit maximization
atching. Furthermore, if 𝑖 ≠ 𝑗, then the arrangement is a shared trip, and the profit maximizing discounts for the two passengers

re 𝜃sq𝑖,𝑖𝑗𝑘
∗ and 𝜃sq𝑗,𝑖𝑗𝑘

∗ respectively.
The question that remains is that whether solving for optimal discount and optimal matching sequentially (transformed method),

s shown in this section, is equivalent to solving them simultaneously as formulated in Eq. (9). We shall prove their equivalence in
he following section.

.4. Proof of equivalency

If we assume that the maximization yielded by solving Problems 1 and 2 sequentially is not equivalent to Eq. (9), then there
ust exist at least one passenger pair (or solo passenger) that is matched when solving Eq. (9), whom will not be matched or receive
different level of discount when solved by the transformed methods.

Let us look at an arbitrary passenger pair of given sequence, say (𝑝sq𝑖,𝑗 , 𝑣𝑘) ∈  , whose decision variable, 𝑥sq𝑖𝑗𝑘, equals 1 in the solution
f Eq. (9), i.e. this arrangement is in the profit maximization matching, and the corresponding discount levels in the solution are
sq
𝑖,𝑖𝑗𝑘 and 𝜃sq𝑗,𝑖𝑗𝑘 respectively. Then we look at this particular edge in Eq. (10), the results 𝜃sq𝑖,𝑖𝑗𝑘

∗ and 𝜃sq𝑗,𝑖𝑗𝑘
∗ must be equivalent to 𝜃sq𝑖,𝑖𝑗𝑘

nd 𝜃sq𝑗,𝑖𝑗𝑘. This is because we cannot have 𝜃sq𝑖,𝑖𝑗𝑘 and 𝜃sq𝑗,𝑖𝑗𝑘 that yields a higher 𝐸[𝜋sq
𝑖𝑗𝑘] than 𝜃sq𝑖,𝑖𝑗𝑘

∗ and 𝜃sq𝑗,𝑖𝑗𝑘
∗, as by definition 𝜃sq𝑖,𝑖𝑗𝑘

∗

nd 𝜃sq𝑗,𝑖𝑗𝑘
∗ yields the maximum 𝐸[𝜋sq

𝑖𝑗𝑘]. We also cannot have 𝜃sq𝑖,𝑖𝑗𝑘 and 𝜃sq𝑗,𝑖𝑗𝑘 that yields a lower 𝐸[𝜋sq
𝑖𝑗𝑘] than 𝜃sq𝑖,𝑖𝑗𝑘

∗ and 𝜃sq𝑗,𝑖𝑗𝑘
∗, as we

an unilaterally change 𝜃sq𝑖,𝑖𝑗𝑘 and 𝜃sq𝑗,𝑖𝑗𝑘 to 𝜃sq𝑖,𝑖𝑗𝑘
∗ and 𝜃sq𝑗,𝑖𝑗𝑘

∗ in the solution of Eq. (9) and yield a higher maximum, which again by
efinition cannot happen.

The same logic can be applied to all passenger pairs matched when solving Eq. (9); their respective 𝜃∗s when solving Eq. (10),
ill not be different to 𝜃s in the solution of (9). Now if we consider the subset of all passenger pairs and solo passengers that are
atched in Eq. (9) and the subset of vehicles they are matched to. We solve Eq. (11) based on these two subsets, and the edge
eights which are just proved to be equivalent to that in the solution of Eq. (9). Then the results, i.e. which pair/solo passenger is
atched to which vehicle, must also be equivalent to the results obtained in Eq. (9). Since if a lower maximum is yielded in Eq. (11)

han in Eq. (9), then the definition of Eq. (11) is violated and vice versa.
Finally, consider solving Eq. (11) with the full set of passenger pairs, solo passengers and vehicles. The resulting maximum must

e greater or equal to the maximum when the problem is solved with the subsets. However, if a greater maximum is achieved,
hen this maximum value will also be higher than that obtained in Eq. (9). It would imply that the transformation yields better
ptimization than the original problem, which violates the definition of Eq. (9). Hence the solution of Eq. (11) is equivalent to all
sq
8

𝑖𝑗𝑘 in the solution of Eq. (9).
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Therefore, we have shown that for all passenger pairs (or solo passengers) matched when solving Eq. (9), they will also be
atched and receive the same level of discount when solved by using the transformed method. Hence, we show that solving
roblems 1 and 2 sequentially is equivalent to Eq. (9).

Note that we use a grid search approach to solve Eq. (10), therefore the results obtained is not the exact solution but an
pproximation. The transformed method is only equivalent if we allow the same level of discretization for the discounts in Eq. (9).
e also point out that the problem transformation is only possible due to the edge weights being independent of each other. In

ther words, what the platform offers to one passenger pair has no effect on the discounts offered to other passenger pairs. This
ssumption may not always hold, if for example, the platform has a quota on the amount of discount that can be offered to the
assengers.

. Numerical experiments

We test the proposed dynamic discount method in a simulator that considers the road network in Manhattan New York as a
irected graph. We use real passenger demand data from 7–11 am (4 h) on five different weekdays (3–6/Feb/2015 and 9/Feb/2015).
n Section 4.1, we detail the experiment setup. In Section 4.2, we present a benchmark strategy where the platform offers a constant
iscount level to all passengers matched in shared-trips and evaluate the effectiveness of the dynamic discount method by comparing
ts performance to the benchmark. In Section 4.3, we look more closely at the discount levels offered by the dynamic discount
trategy. Note that in Sections 4.2 and 4.3, we display the results obtained with one set of demand data (3/Feb/2015), since the
esults for all five days exhibit similar trends for both the benchmark and the dynamic discount strategy.

.1. Experiment setup

At the beginning of each simulation, vehicles are incrementally added at random locations on the road network. We consider a
leet of 4200 vehicles with an addition rate of 3 vehicles per second. It takes 1400 s for all vehicles to be added. We allow another
000 s afterwards as a warm-up period. Therefore, any measurements are taken after a total of 40 min.

We have introduced a number of parameters regarding passenger choice in Section 2.1. The parameters for each individual
assenger are drawn from bounded normal distributions. The population means (𝜇) (utility coefficients are based on the studies

by Habib (2019) and Lavieri and Bhat (2019)), standard deviations (𝜎), and lower and upper bounds (𝑎 and 𝑏) are shown in Table 3.
Note that the strategy only uses the population mean values in the choice model (e.g. 𝛽𝑡, 𝛽𝑓 , etc.), while each individual in the
experiments has a unique choice and patience characteristics (e.g. 𝛽 t𝑖 , 𝛽

f
𝑖 , etc.).

For the platform, we assume that it adopts a matching interval of 10 s, i.e. 𝛥 = 10𝑠. Furthermore, the default parameter values
for the pricing and cost structure (Section 2.3.2) are shown in Table 4. Under such setup, series of experiments were conducted to
produce the benchmark results (i.e. with fixed discounts) and to evaluate the effectiveness of the dynamic discount strategy.

Table 3
Passenger choice parameters: population mean, standard deviation, & lower and upper bounds.

Parameter Description Unit 𝜇 𝜎 𝑎 𝑏

𝑚̄𝑖 Matching patience of 𝑝𝑖 s 60 10 40 80
𝑤̄s

𝑖 Waiting patience for solo trip of 𝑝𝑖 s 480 30 420 540
𝑤̄h

𝑖 Waiting patience for shared trip of 𝑝𝑖 s 600 60 480 720
𝜖w𝑖 Expected waiting time of 𝑝𝑖 s 240 30 180 300
𝛽 t𝑖 Utility coefficient for total travel time of 𝑝𝑖 1/min 0.6 0.05 0.5 0.7
𝛽f𝑖 Utility coefficient for trip fare of 𝑝𝑖 1/$ 3.2 0.2 2.8 3.6
𝛽s𝑖 Utility constant for solo trip of 𝑝𝑖 – 0 0 – –
𝛽h𝑖 Utility constant for shared trip of 𝑝𝑖 – −0.8 0.1 −1 −0.6
𝛽o𝑖 Utility constant for other travel mode of 𝑝𝑖 – −60 10 −80 −40

Table 4
Parameter values for pricing and cost.

Parameter Description Unit Value

𝛼1 Fare base rate $ 2.55
𝛼2 Trip duration variable rate $/min 0.6
𝛼3 Per unit time driver salary $/min 0.48

4.2. Constant discount vs dynamic discount

We consider benchmark scenarios where the platform offers a constant discount level to all passengers matched in shared-trips.
hat is, for the given set of unmatched passengers and idle vehicles, instead of solving Eq. (10) and Eq. (11), we solve a version
f Eq. (11) only. We assume 𝜃sq𝑖,𝑖𝑗𝑘

∗ = 𝜃sq𝑗,𝑖𝑗𝑘
∗ = 𝜃, where 𝜃 remains constant through each simulation, and instead of using expected

rofit as edge weight, we use the actual profit in Eq. (11b). We conduct experiments for varying 𝜃 between the range from 0 to
.5 (i.e. 0 to 50% discount for sharing). It may be noted that under the benchmark setup, it is illogical for the platform to offer
assengers in shared trips a discount of 50% or above, since it is always more or equally profitable for the platform to just serve a
9

olo trip at full price to one of the passenger in a shared trip. Therefore, for all constant discount levels greater than and equal to
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Fig. 3. Results of constant discount scenarios (Blue) and the results of the dynamic discount pricing strategy (Red). The x axis corresponds to the varying
benchmark levels of the constant discount, 𝜃, which is not associated with the dynamic discount pricing strategy. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
10
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50%, i.e. 𝜃 ≥ 0.5, they are exactly the same scenario where the platform offers ridesourcing services only. We compare the results
f the benchmarks with the dynamic discount pricing strategy in Fig. 3.

Fig. 3(a) shows the total number of passengers that were notified with shared trips in each simulation at varying levels of 𝜃. It
an be observed that at low levels of discount, as the platform is more likely to find shared trips to be more profitable than solo
rips, more passengers will be matched in shared trips. As the discount level increases, shared trips become less profitable, and thus
ewer shared trips will be organized by the platform. When the discount level is at 50%, for the reasons given above, none of the
assengers are matched in shared trips by the platform. Correspondingly in Fig. 3(b), the average rate at which passengers accept
he offered shared trips are shown (no data point at 50% discount since there is 0 passengers offered a shared trip). It is intuitive
hat when the discount is low, though more passengers are matched in shared trips, only a small fraction will accept the shared trips
nd vice versa. Consequently, the total number of shared trips are shown in Fig. 3(c), where we see a distinct peak at 20% discount
evel; whereas much fewer shared trips are conducted at the two extreme ends of the discount range. Comparing to the dynamic
iscount pricing strategy, the number of passengers notified of shared trips is roughly equivalent to the benchmark scenario of 15%
iscount, however the level of acceptance is higher, which resulted in a 36.6% increase in the number of shared trips comparing to
he 15% discount benchmark.

The number of solo trips are shown in Fig. 3(d). The shape of the plot for the benchmarks is roughly inverse of that in Fig. 3(c),
s when more passenger are in shared trips, less solo trips are formed to service the remaining passengers. Forced solo trips occur
hen a passenger accepts the shared trip, but his/her counterpart rejects. Counter-intuitively, as shown in Fig. 3(e), the most number
f forced solo trips for the benchmarks does not occur at the lowest discount level, when there are the most passengers notified
ith shared trip as well as the highest shared trip rejection rate. This is because when the rejection rate is at such high level, there

s consequently a high likelihood of the two passengers in a planned shared trip both rejects, and thus neither would end up in a
orced solo trip. Under the dynamic discount pricing strategy, fewer solo trips are conducted comparing to any benchmark since
he strategy successfully promoted ridesharing. In addition, more passengers are being serviced in shared trips, while the number
f forced solo trips is moderate due to a relatively high shared trip acceptance rate, which is indicative that the strategy takes into
onsideration the passengers’ choices.

Figs. 3(f)–3(h) show the profits made by the platform for the three trip types, shared, solo, and forced solo trip respectively.
he profits are highly correlated with the number of successful trips conducted of each type, as can be observed in conjunction
ith Figs. 3(c)–3(e) . However, the profit of forced solo trips correlates to, but does not follow exactly the trend of the number of

orced solo trips. Several factors attribute to this observation. Firstly, the profitability of individual forced solo trips is negatively
orrelated with discount, and the variation in profitability is more drastic with changes in discount comparing to the other two
rip types. Therefore the maximum of forced solo trip profits occurs at a lower discount level where the trips are more profitable
omparing to when the maximum trips are conducted. Furthermore, it is possible for platform to make a loss on forced solo trips,
s we assume that the platform will honour the discount offer to the remaining passenger. Therefore, as the discount increases, the
latform will begin making a loss on each forced solo trip while the number of forced solo trips decreases, which results in a local
inimum in the profit at 25% discount.

Combining the profit for the three types of trips, we have the total profit made by the platform in Fig. 3(i). We observe that for
onstant discounts, the highest profit is yielded when the platform is offering no discount at all. It is also apparent that the dynamic
iscount pricing strategy outperforms the benchmarks, by 4.0% comparing to the 0% discount benchmark level This increase in
rofit is attributed by the increase in shared trips, as shown in 3(c) and 3(f), which also has societal benefits.

However, profit alone may not paint a complete picture. The number of cancellations is another indicator that a platform
hould pay attention to. If a customer cancels, they may defect to other platforms and thus leading to a long-term loss. Type I
ancellations, that is when a passenger is yet to receive a quote from the platform, are shown in Fig. 3(j). Type II cancellations,
hat is when a passenger is not satisfied with the service offered by the platform, are shown in Fig. 3(k). We distinguish the two
ypes of cancellations as it may occur to the platform that each type has distinct implications, and either may be addressed by the
latform differently. The total number of cancellations is shown in 3(l), which again shows the performance of the dynamic discount
ricing strategy surpasses most of the benchmarks. Looking at the benchmark results alone, it can be observed that there are less
ancellations when there are more successful shared trips, suggesting conducting shared trips potentially better utilize the fleet of
ehicles. However, coincidentally, more cancellations also occur when the platform is generating higher profit, which indicates that
he platform may have to make a trade off between short term gain and long term loss.

In Appendix B, we deduce that each cancellation is roughly equivalent to $4.6 of long-term loss (e.g. based on 10-year customer
rofit) for the platform. The adjusted total profit is shown in Fig. 3(m). For a profit maximizing platform, it is logical that it adopts
he 15% constant discount under the benchmark scenarios. Interestingly, considering long term gains requires the platform with
onstant discount for shared trips to increase the discount level from 0% to 15%. Under such circumstances, the dynamic discount
ricing strategy generates 10.1% more profit, reduces the number of cancellations by 5.8%, and improves the adjusted profit by
6.9%, while conducting 36.6% more shared trips.

Fig. 4 analyses the effects of the dynamic discount pricing strategy on those other than the platform, i.e. passengers and drivers.
e first look at the average passenger wait time in Fig. 4(a). It can be observed that the average waiting time is higher with more

hared trips conducted. This is intuitive since the second passenger in a shared trip would have to wait longer as the vehicle needs
o first pick up another passenger. As the discount pricing strategy produces more shared trips than the benchmarks, the average
assenger wait time is therefore higher than the benchmarks (8.8 extra seconds comparing to 15% discount benchmark level). This
easure seems to indicate the strategy reduces the passenger’s benefit, although the impact of an 8.8 s increase is rather negligible
11

onsidering the average waiting time of around 4 min. Furthermore, since the cancellations are reduced, it suggests that there are
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Fig. 4. Effects of the dynamic discount pricing strategy on passengers (average passenger waiting time) and drivers (weighted vehicle occupancy rate, vehicle
time travelled/spent per passenger).

passengers serviced who would not have gotten a ride before, and it can be argued that those passengers are better-off under this
strategy.

We then look at the weighted vehicle occupancy rate (WVOR) in Fig. 4(b), where the time a vehicle has two passengers on board
s weighted twice as when there is only one passenger. The WVOR measures not only vehicle occupancy but also vehicle loading.
he dynamic discount pricing strategy increases the WVOR by 5.6% (again, comparing to 15% discount benchmark level), which
uggest drivers spend more time with passenger on-board, rather than being idle or during pick-up.

Vehicle time travelled and spent per passenger are shown in Figs. 4(c) and 4(d) respectively. Vehicle time travelled per passenger
s the total time a vehicle spent during the Dispatched, Partially Occupied, and Fully Occupied states, divided by the total number
f passengers served. Whereas, vehicle time spent per passenger, in addition, includes the time the vehicle spent in Idle states. Both
ndicators measure how efficient vehicles serve the passengers. For example, if a vehicle can reduce the average time spent per
assenger all other things being equal, then the vehicle is able to service more passengers, which is beneficial to all stakeholders.
ehicle time travelled (which exclude idle time) per passenger may be more appropriate if the vehicle parks instead of cruises when

dle, since the time vehicles spend on parking does not incur fuel cost to the drivers, and does not cause congestion nor pollution.
urthermore, vehicle time travelled per passenger also provides a sense of the deadheading and detour time. For example, assuming
he average trip lengths for passengers serviced are the same, then logically the lower the vehicle time travelled per passenger,
he lower the deadheading and detour time, which again shows the efficiency of the system. We distinguish the two because we
o not truly know the behaviours of drivers when they drop off the passengers. Regardless, both measures show the dynamic
iscount strategy outperforms the benchmarks. The average vehicle time travelled/spent per passenger are reduced by 9.5 and
3.8 s respectively. Therefore Figs. 4(b)–4(d) show societal benefits of the strategy as drivers spend more time serving passengers
hile their efficiency at serving each passenger is also improved.

In summary, by comparing with the benchmark strategy, we show that the adoption of the dynamic discount pricing strategy
reates substantial economic benefit for the platform in both the short and long terms, improves the fleet efficiency, and generates
ositive externalities for the society.

.3. Properties of dynamic discounts

This section looks at the results produced by the dynamic discount strategy. Fig. 5 shows the distributions of the notified discount
12

evels by the platform, and the discount levels that are accepted by the passengers. We observe that the distribution of notified
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Fig. 5. Distributions of notified and accepted discounts.

Fig. 6. Average notified and accepted discounts at each matching instance over time. (Note that these two trend lines do not show huge volatility, they generally
stay between 8% and 20%.).

Fig. 7. Rate of new passenger requests and number of idle vehicles over time.

discounts is positively skewed, whereas the distribution of accepted discounts is roughly symmetrical. This can be explained as
the passengers would tend to reject lower discounts (especially if they are offered a 0% discount for shared trips) while accept
higher discounts. One may ponder why the strategy still offers discount at such low levels given that only a small fraction of the
passengers would accept them. We argue that since the strategy aims to maximize expected profit which includes the possibilities
of the passenger being in a solo trip or a forced solo trip after declining or accepting the offer, therefore offering passengers higher
discounts simply to achieve higher shared trip acceptance rate may not be optimum.

Fig. 6 shows the average notified and accepted discount at each matching instance (10 [s]) over time. We observe that the
accepted discount levels are generally higher than the notified discount levels in every matching instance, which is expected due to
passengers rejecting shared trips with lower discount. The average notified discount is 12.83% and the average accepted discount is
14.36%. However, under variations in the demand and supply levels as shown in Fig. 7, we cannot observe any long-term patterns
or trends of the discount levels that correspond to these changes in market condition. Therefore, it may suggest the strategy is highly
individualized and less correlated to macro-level conditions.
13
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Fig. 8. The origins of passengers who accept the shared trip under the dynamic discount strategy based on the discount level they received.

The spatial orientations of passenger origins of those who accepted shared trips are shown in Fig. 8 based on the discount
level they received. We point out two observations from these figures. Firstly, for all passengers that accepted the shared trip, they
are mainly orientated in the south-western side of Manhattan where this is more demand. Secondly, although the total number of
passengers that accepted different levels of discount varies (see also Fig. 5(b)), the locations the passenger clustering are independent
of the discount levels. In other words, we do not observe what one might expect, for example, passengers with lower levels of discount
being concentrated in one side of the city where there are lower demand, while passengers with higher levels of discount being
concentrated in the other side of the city with higher demand. It is logical that there are more likely to be compatible shared trips
in high demand areas, but the platform does not necessarily have to offer higher discount to those passengers to promote shared
trips. Since the more compatible the shared trip, the less likely the passengers will reject the shared trip due to smaller amount
of inconvenience, and thus the platform does not have to give more discount to compensate. We believe the levels of discount
received by the passengers are more dependent on their specific trip details (i.e. the compatibility of each individual pairs’ origins
and destinations, and order times), which may not be correlated with aggregated demand density.

The imbalance between supply and demand could also have an effect on the discount levels offered to the passengers. For each
level of discount offered to the passengers, we show their respective local demand density and supply density in Fig. 9. We define
a passenger’s local demand/supply density as the number of waiting passengers/idle vehicles within a 5-minute travelling distance
at the instance that the passenger is matched. We can observe that the demand densities have roughly the same distributions for
all levels of discount. This is consistent with our conjecture from the previous figure, that there is a low correlation between the
levels of discount received by the passengers and demand density. Interestingly, the figures show a variation in the supply density
14
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Fig. 9. Passengers’ local demand and supply densities distributions at the time they are matched in shared rides for each of discount levels offered.

distributions. With the exception of Fig. 9(a), we can observe that the average supply densities are lower and the distributions are
more right-skewed for increasing discount levels. This suggests that passengers who received higher discounts under the strategy
is more likely to be in areas of low supply. This is intuitive since a higher discount would imply the passenger is getting a higher
compensation likely due to the longer waiting time resulting from the low supply density.

However the average supply density is relatively low in Fig. 9(a), where we would expect it to be the highest if it is consistent
ith the pattern observed in the other figures. This is to suggest that there is a dis-proportionally high likelihood that a passenger
ould receive no discount at all even if he/she is in an area of low supply. We hypothesize this is because when a passenger is

n a (relatively very) low supply area, the quality of the shared trip for this passenger is likely to be poor, and the strategy would
redict there is a low likelihood for the shared trips to be successful even if a high discount is offered. Therefore, it may be better
ff to offer no discount at all instead of potentially making a loss on the trip.

Finally, we look at joint passenger discounts in Fig. 10. Since we used a grid search approach to solve for the optimal discount
Section 3.3), with a grid size of 21, there are 441 possible discount combinations offered to passenger pairs in shared trips. We
lot the number of passenger pairs that are offered each of those 441 possible discount combinations in Fig. 10, where passenger
is always the first passenger who boards the shared trip. We observe that the larger bubbles lie close to the line 𝑦 = 𝑥, which

suggests that the two passengers in one shared trip tend to receive similar levels of discount offered by the platform. There is still
a discrepancy between the discount levels offered to the two passengers, the average discount offered to the first passengers is
11.86%, and 13.98% for the second passengers. This discrepancy is intuitive as passenger 2 would always wait longer for pick up
than passenger 1, therefore they are compensated more by the dynamic discount strategy.
15
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Fig. 10. Joint passenger discount, the bubble size is the number of passenger pairs that are offered the discount levels specified by the x and y axes. Note that
assenger 1 is always the first passenger that boards the shared trip (but not always the first one to alight).

. Summary and future research

This paper has presented a dynamic model of the on-demand mobility market that considers the passengers to be cost and
ervice quality sensitive, impatient, and have a choice to decline services offered by the platform. A dynamic discount pricing
trategy personalized for every passenger is proposed for the profit-maximizing platform that promotes ridesharing. The strategy is
n the form of a non-linear mixed-integer optimization problem. We transform the problem into two sequential sub-problems that
an be solved with limited computational time, and we prove the transformation is equivalent. Numerical experiments show that
he adoption of the dynamic discount pricing strategy creates substantial economic benefit for the platform in both the short and
ong terms, and improves the fleet efficiency and thus generates positive externalities for the society.

The proposed method optimizes considering the current batch of demand and supply. A forward looking algorithm would be
dvantageous as a future research study. Especially for shared services, as the platform can potentially ‘hold’ a customer if a high
ikelihood for a potential pair is imminent within a few matching instances. Relaxing assumptions of this study, such as allowing
ontinuous en-route sharing (where those on a forced solo trip can still be considered to share with another passenger) and fleet
ize management, may increase the applicability of the strategy. This study focuses on the demand side of the ridesourcing market.
owever, the supply side of the market also requires attention, as supply can be heterogeneous (e.g. part time and full time
rivers) (Ramezani et al., 2022), and drivers do not always accept trips designated by the platform. Therefore, a future study
ould investigate the manipulation of wages dynamically and strategically to achieve a similar objective — promoting shared rides.
ow the strategy may adapt to government policies, such as a tax on deadheading or a subsidy for shared trips, and the subsequent
ffects on social welfare could also be studied.

Another research topic is to consider a ridesharing-promoting strategy that target groups of passengers rather than each individual
assenger. Hamedmoghadam et al. (2019) uncover latent collective mobility patterns with specific temporal and spatial properties
n different cities. Perhaps this knowledge can be taken advantage of when considering such strategy. We anticipate such strategy
ould produce vastly different results comparing with the strategy presented in this paper, as the main drivers of such strategy
ould be macro-level conditions rather than the characteristics of individual trips. Another research direction is to study marketing
r operating strategies that promote ridesharing such as selling a bundled shared trip packages to passengers at a discount. Promoting
idesharing to complement public transport is also an interesting topic to be addressed in future works.
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Appendix A. Expected profit

The expected profit for solo trips used in Eq. (9) is defined explicitly in Eq. (12):

𝐸[𝜋𝑖𝑘] = 𝐸[Prs𝑖 ] ⋅ 𝜋𝑖𝑘 (12a)

where 𝜋𝑖𝑘 is the deterministic profit of the solo trip as defined in Eq. (8b), and 𝐸[Prs𝑖 ] is the platform’s expected probability of
passenger i accepting the solo trip. Assuming the platform is aware of the population 𝛽𝑠, the individual 𝛽𝑖𝑠 are substituted in Eqs. (1a)
and (4), therefore, the expected probability is:

𝐸[Prs𝑖 ] =
𝑒(𝛽

s−𝛽t𝑤s
𝑖−𝛽

f 𝑓 s
𝑖 )

𝑒(𝛽s−𝛽t𝑤
s
𝑖−𝛽

f 𝑓 s
𝑖 ) + 𝑒𝛽o

(12b)

Similarly, the expected profit for shared trips is:

𝐸[𝜋sq
𝑖𝑗𝑘] = 𝐹 (𝜃sq𝑖,𝑖𝑗𝑘, 𝜃

sq
𝑗,𝑖𝑗𝑘) = 𝐸[Prh𝑖 ] ⋅ 𝐸[Prh𝑗 ] ⋅ 𝜋

sq
𝑖𝑗𝑘

+ 𝐸[Prh𝑖 ] ⋅ (1 − 𝐸[Prh𝑗 ]) ⋅ (𝜋̂𝑖𝑘 + 𝐸[𝜋𝑗 ])

+ (1 − 𝐸[Prh𝑖 ]) ⋅ 𝐸[Prh𝑗 ] ⋅ (𝜋̂𝑗𝑘 + 𝐸[𝜋𝑖])

+ (1 − 𝐸[Prh𝑖 ]) ⋅ (1 − 𝐸[Prh𝑗 ]) ⋅ (𝐸[𝜋𝑖] + 𝐸[𝜋𝑗 ])

(13a)

The four terms in Eq. (13a) correspond to the profit made by the platform in four possible cases where (1) both 𝑝𝑖 and 𝑝𝑗 accept
he shared ride, (2) 𝑝𝑖 accepts and 𝑝𝑗 rejects, (3) 𝑝𝑖 rejects and 𝑝𝑗 accepts, and (4) both 𝑝𝑖 and 𝑝𝑗 reject. 𝐸[Prh𝑖 ] is the platform’s

expected probability of passenger i accepting the shared trip, and (1 − 𝐸[Prh𝑖 ]) is the platform’s expected probability of passenger i
not opting for shared trip. Again, the individual 𝛽𝑖𝑠 and 𝜖w𝑖 are substituted by the population 𝛽𝑠 and 𝜖w respectively in Eqs. (1b),
(2), and (3) to determine the expected probability of the passengers accepting the shared trip:

𝐸[Prh𝑖 ] =
𝑒(𝛽

h−𝛽t (𝑤h
𝑖 +𝛿𝑖)−𝛽

f 𝑓 s
𝑖 (1−𝜃

sq
𝑖,𝑖𝑗𝑘))

𝑒(𝛽
h−𝛽t (𝑤h

𝑖 +𝛿𝑖)−𝛽
f 𝑓 s

𝑖 (1−𝜃
sq
𝑖,𝑖𝑗𝑘)) + 𝑒(𝛽s−𝛽t 𝜖w−𝛽f 𝑓

s
𝑖 )

(13b)

𝐸[Prh𝑗 ] =
𝑒(𝛽

h−𝛽t (𝑤h
𝑗+𝛿𝑗 )−𝛽

f 𝑓 s
𝑗 (1−𝜃

sq
𝑗,𝑖𝑗𝑘))

𝑒(𝛽
h−𝛽t (𝑤h

𝑗+𝛿𝑗 )−𝛽
f 𝑓 s

𝑗 (1−𝜃
sq
𝑗,𝑖𝑗𝑘)) + 𝑒(𝛽

s−𝛽t 𝜖w−𝛽f 𝑓 s
𝑗 )

(13c)

Furthermore, 𝜋sq
𝑖𝑗𝑘 is the profit made by the platform for the shared trips as defined in Eq. (8a). 𝜋̂𝑖𝑘 and 𝜋̂𝑗𝑘 are the profit made by

platform on the forced solo trips with 𝑝𝑖 and 𝑝𝑗 respectively if their counterpart rejects:

𝜋sq
𝑖𝑗𝑘 = 𝑓 s

𝑖 (1 − 𝜃sq𝑖,𝑖𝑗𝑘) + 𝑓 s
𝑗 (1 − 𝜃sq𝑗,𝑖𝑗𝑘) − 𝑐sq𝑖𝑗𝑘 (13d)

𝜋̂𝑖𝑘 = 𝑓 s
𝑖 (1 − 𝜃sq𝑖,𝑖𝑗𝑘) − 𝑐𝑖𝑘 (13e)

𝜋̂𝑗𝑘 = 𝑓 s
𝑗 (1 − 𝜃sq𝑗,𝑖𝑗𝑘) − 𝑐𝑗𝑘 (13f)

Additionally, if 𝑝𝑖 or 𝑝𝑗 rejects the shared trip, the platform could still potentially match them in a solo trip in the future, and thus,
we consider the expected future solo trip profit that could be earned. However at the time of the current matching instance, the
platform is unknown of the service that could be provided in the future. Therefore, we assume that the future salary cost is based on
the position of the driver they are currently matched to. We also assume the probability of a passenger being successfully assigned a
solo trip in the future after they rejected a shared trip is a calibrated constant parameter, 𝜉, which is between 0 and 1. We calibrated
this parameter to be 0.65 in our tests. Therefore, the expected future solo trip profits for 𝑝𝑖 and 𝑝𝑗 are:

𝐸[𝜋𝑖] = 𝜉(𝑓 s
𝑖 − 𝑐𝑖𝑘) (13g)

𝐸[𝜋𝑗 ] = 𝜉(𝑓 s
𝑗 − 𝑐𝑗𝑘) (13h)

It should be noted that the probabilities and the profits in each term of Eq. (13a) are highly depended on the discount term 𝜃
or the two passengers, which are the decision variables that the proposed discount method optimizes.

ppendix B. Cost of cancellation

For life time value of a customer, we assume that 10 years of future profit are considered. To obtain such value, we assume
he distribution of the passengers’ yearly usage (Alemi et al., 2019) of the service is shown in Fig. 11(a), where average profit per
ervice is $2.5 and the cash flows discounted to present value at 8% annually. Furthermore, we assume the probability of defection
17

fter a cancellation follows a Beta distribution with 𝛼 = 2 and 𝛽 = 150 as shown in Fig. 11(b).
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Fig. 11. Passenger probability of yearly usage and probability of defection after cancellation.

We assume the life time value of passenger i, 𝐿𝑖, and the probability of defection after a cancellation Pr𝑑𝑖 for the same passenger
are independent. Then the average cost of cancellation, 𝐶, is determined to be $4.6 as follows:

𝐶 = 𝐸[𝐿𝑖 × Pr𝑑𝑖 ] = 𝐸[𝐿𝑖]𝐸[Pr𝑑𝑖 ] (14a)

where:

𝐸[𝐿𝑖] = [2.5 × (0.5 × 8 + 0.3 × 20 + 0.1 × 70 + 0.017 × 170 + 0.003 × 300)] × [
1 − (1 + 8%)−10

8%
] = $349 (14b)

𝐸[Pr𝑑𝑖 ] =
2

2 + 150
= 1.32% (14c)

ppendix C. Rematch algorithm

A consequence of allowing passengers to reject is that there will be those who accept the shared trips but their counterpart
ejects, which will force them to be in solo trips. We assume that under such scenario, the platform still honours the price discount
ffered to them, even if the platform makes a loss on the trip. However, after knowing the decision of the passengers, the platform
ay be able to mitigate a portion of such losses by immediately considering a rematch between the smaller set of passengers who

ccepted their rides, ̂ , and the idle vehicles,  .
Since passengers who accepted and the idle vehicles are considered for rematch, we denote ̂1 and ̂2 as those who accepted

shared trips and solo trips respectively. Evidently, ̂1 can be considered in both solo and shared trips whereas ̂2 can be considered
only in solo trips. It is ensured in rematch that the service provided to the passengers will be no worse than their originally offered
service. That is, the waiting times and detour times of passengers shall be less or equal to their originally offered trips. (Note that
simply honouring the original matching will be a solution that satisfies these constraints, but there could exist a new solution that
not only satisfies the constraints but also increases the profit made on this current batch.) Additionally, the passengers pay the trip
fare indicated by the initial matching regardless of how they are matched this time. Rematch produces the finalized arrangement,
and the platform dispatches vehicles to their designated trips. We found the performance of this algorithm is not significant, and it
can produce an adverse effect in certain scenarios. The cancellations, profit, and adjusted profit for benchmarks scenarios with and
without rematch algorithm are shown in Fig. 12. The same performance measurement are compared for the strategy with/without
rematch, and are shown in Table 5.

Fig. 12. Performance measures: total number of cancellations, profit, and adjusted profit, for the benchmarks scenarios with and without the rematch algorithm.
18
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Table 5
Performance measures: total number of cancellations, profit, and adjusted profit, for
the proposed dynamic discounting strategy with and without the rematch algorithm.

Performance measurement With rematch Without rematch

Total cancellations 9941 9802
Profit ($) 132361.9 132310.9
Adjusted profit ($) 92597.9 93102.9

We observe that the benchmark scenarios generally have slightly poor performances with the rematch algorithm comparing to
ithout rematch. The decline in performance is more noticeable when the constant discounts are at the two ends of the spectrum.
e suspect that it is due to the myopic nature of the algorithm; rematch may improve the performances of a single instance, however

t may have deteriorated the matching efficiencies for the future non-explicitly. The strategy with rematch only produces marginally
etter profit comparing to without rematch, while the total cancellations are increased and adjusted profit is reduced. Although the
iscrepancies are not as significant as observed for the benchmark scenarios. Due to these observations, we decided to exclude the
ematch algorithm from the main body of this study.
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