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Optimal Traffic Signal Control of Isolated
Oversaturated Intersections Using Predicted Demand

Reza Mohajerpoor, Chen Cai

Abstract—This paper tackles the optimal traffic signal con-
trol of isolated oversaturated intersections. An analytical signal
control algorithm is proposed to find the global optimal signal
timings with dynamic cycle lengths and phase splits to minimize
the vehicle delay throughout the oversaturation period at a
generic multi-phase junction. The traffic dynamics are modelled
based on the kinematic wave theory and the predicted traffic
flows. Moreover, spillback avoidance is incorporated during the
queue formation oversaturated regime by adopting a mixed delay
and probability of spillback objective function. Microsimula-
tion experiments demonstrate the optimality, practicality, and
robustness to system uncertainties of the proposed signal control
method. The results pinpoint over 63%, 55%, and 40% reduction
in total vehicle delay by implementing the proposed signal control
respectively compared to an optimal fixed-time, actuated, and
capacity-aware max pressure signal control methods.

Index Terms— Shockwave theory, fundamental diagram, con-
vex optimization, queue spillover, urban networks.

I. INTRODUCTION
A. Background and Motivation

ONTROL of signalized intersections can be categorized

into isolated [1], [2], arterial [3], [4], and network
levels [5], [6], [7]. The traffic signal control problem remains a
major challenge at all of these levels during the oversaturated
traffic conditions [4], [8]. The problem is exacerbated due to
the low storage capacity at the links that results in the queue
spillback events, which can spread and result in network grid-
lock. It has been shown in studies such as [9], [10], and [11]
that the performance of commercial software packages often
gets deteriorated in oversaturated traffic conditions. Therefore,
it is crucial to efficiently address traffic signal control of
oversaturated intersections in urban networks.

Recent methodological advancements in network Macro-
scopic Fundamental Diagram (MFD) offer an opportunity to
devise perimeter flow control strategies. Those traffic con-
gestion control schemes are network-level methods that are
implementable by coordinated and adaptive control of a group
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of traffic signals located on the boundary of the network sub-
regions [6], [12], [13]. Albeit their success in controlling the
congestion inside the regions, when implementing perimeter
control strategies, the intersections on the regions’ boundary
can get locally oversaturated congested as a bi-product [13],
[14]. Therefore, it is imperative to consider and handle the
accumulated residual queues at those intersections during the
gating activation in the shortest possible time [14].

Traffic oversaturation can be categorized into queue forma-
tion (QF) and queue discharging (QD) regimes. An inter-
section is oversaturated when the residual queues of one
or multiple major movements cannot be fully discharged
within the green time allocated to those movements. The QF
period refers to the beginning of the oversaturation period
where the residual queues grow over time. The QD period
follows the QF period where the demand has declined and
the accumulated residual queues can be discharged. Moreover,
a major movement of a phase is the critical movement of the
phase with highest demand over saturation flow ratio.

Provided the overview on the literature of traffic signal con-
trol in Section I-B, the control of oversaturated intersections
brings more challenges to traffic flow modelling, cycle-by-
cycle residual queue variations, link capacity limitations, and
uncertainties in the demand. In particular, most of the studies
have overlooked the QF oversaturated traffic regimes, where
demand is higher than the intersection’s capacity. This paper
proposes a Future demand based Adaptive Signal Control
(FASC) algorithm, as a proactive and pragmatic approach to
overcome this problem for a single intersection. The problem
is challenging, as the impact of residual queues accumulated
or discharged in each cycle passes on to the next cycles. The
proposed control and optimization algorithm can be extended
to multiple intersections along a major corridor, by accounting
for the offsets as additional control parameters, a subject for
future studies.

The FASC control strategy is proactive in instantly find-
ing the optimal cycle times and phase splits for the whole
duration of the queue formation and discharging traffic regimes
at the start of each period. The proposed algorithm com-
bines predictive and model-based strategies to achieve proac-
tiveness and optimality. Numerical experiments demonstrate
that FASC algorithm is computationally efficient and can
be implemented with limited input measurement data and
even interrupted online readings of traffic volumes. The low
computational complexity of the algorithm is due to avoiding
intractable microsimulation runs and iterative optimization
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operations. Therefore, the proposed signal control scheme
pertains strong practical perspectives that make it viable for
field implementations.

B. Related Works

A large body of the literature tackles undersaturated inter-
sections where the demand at the intersection is below its
capacity (see e.g. [15], [16]). Traditional online and offline
signal control packages employ traffic responsive heuris-
tic optimization algorithms that make them workable for
undersaturated traffic regimes [17], [18], [19], [20], [21].
Actuated-adaptive control schemes such as SCOOT [20] and
SCATS [21] are non-model-based, which make them appro-
priate for large-scale networks. On the other hand, strate-
gies such as PRODYN, TRANSYT [19], OPAC [18], and
SYNCHRO [17] are model-based and employ dynamic pro-
gramming or genetic algorithms in optimizing the cycle time
and phase splits that often implies immense computational
costs and obliges them to be applied to isolated or a few
intersections. To speed up the optimization process of the sig-
nal control strategies, [22] proposed an approximate dynamic
programming technique empowered by reinforcement learning
algorithms.

A group of studies on intersection traffic signal control
has concentrated on the distributed control of numerous
connected intersections in a network using queuing/LWR
theories or cell transmission models (CTM) (see e.g. [23],
[24], [25]). Among these contributions, the max-pressure
approach [26], [27], employs the queuing theory and attempts
to maximize the throughput, while taking the pressure from
the downstream queues into account. They showed the
network stability assuming unlimited link storage capaci-
ties. Gregoire et al. [28] proposed a normalization method
to account for finite link capacity (capacity-aware max-
pressure). Further, Li and Jabari [29] proposed a decentralized
max-pressure-based method that captures the spatial distri-
bution of vehicles along the links and potential spillback
conditions, which outperforms the standard and the capacity-
aware max-pressure methods specifically in case of higher
demands. The max-pressure method is employed in [30] to
stabilize the queues in signalized arterials. The majority of
the CTM-based distributed signal control frameworks either
(i) replace nonlinear fundamental flow-density relationships
by linear inequalities to lessen the computational complexity,
or (ii) apply nonlinear fundamental traffic relationships. The
former approach results in the flow holding back phenom-
ena due to inaccurate traffic flow modelling, and the latter
approach faces with highly complex optimization problems
that can only be solved for suboptimal solutions using heuristic
or meta-heuristic algorithms [24].

A number of model-based signal control studies that address
oversaturated traffic conditions employ the store-and-forward
queuing theory traffic model. Gazis [31] followed by [32]
designed bang-bang control algorithms to minimize the delay
at a two-phase intersection, adopting a queuing theory-based
continuous-time traffic flow model. They used a graphical
approach to find the optimum switching point between the
minimum and maximum green-time allocation to each phase
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in a way that the residual queues at both approaches dissolve
simultaneously. Using the Hamiltonian optimization paradigm,
Chang and Sun [33] proposed a discrete-time bang-bang signal
control framework by building a state-space model for the
queue size dynamics and minimizing a mixed total delay and
number of stops objective.

Another cohort of control policies have employed the
state-space models built from the queuing theory to design
advanced control algorithms for the QD oversaturated
periods [34], [35], [36], [37], [38]. [35] proposed the
traffic-responsive urban control (TUC) strategy that exploits
linear quadratic control techniques to regulate the fixed-cycle
phase splits at intersections in a network, while offsets are opti-
mized using a different methodology. Aboudolas et al. [34]
added a rolling horizon predictive feature to the TUC strategy
that leads to efficiency improvements. However, the queuing
theory is inaccurate in estimating the spatial queue lengths and
the delay at the intersection during oversaturated conditions
(see e.g. [16], [39]). In addition to that, the state-space control
policies in the form that have been presented in the literature
have disadvantages such as: (i) fixing the cycle time that
removes a degree of freedom in the decision variable space,
(i1) enforcing high computational burdens due to running the
optimization every infinitesimal time step, (iii) inability to
minimize the total delay at the intersection, and (iv) failing
to dictate the undersaturation and queue spillback avoidance
constraints.

An alternative traffic model can be derived governed by
the LWR theory [40] that enables simultaneous modelling
of spatial and temporal coordinates of the queues at the
intersection. The estimated total delay from this model is
accurate under deterministic traffic settings, as it agrees with
the seminal Webster’s deterministic delay formula [41]. The
LWR theory through modelling shockwaves enables an extra
layer to the intersection control to prevent spillbacks. Avoiding
the spillback occurrence must be dictated as an essential
criterion for any signal control paradigm. Spillback becomes
more troublesome for oversaturated intersections, particularly
in the QF regimes, as it can quickly spread throughout the
network like a disease [42]. Ramezani et al. [43] proposed
a feedback control algorithm to avoid queue spillovers by
identifying congested link pockets along the arterial and min-
imizing the inflow and maximizing the outflow of those links.
Ma et al. [44] proposed a multi-stage stochastic optimization
algorithm using shockwave theory-based models for the coor-
dinated adaptive control of a series of fixed-cycle intersections.

C. Paper Contributions

Given the predicted time-varying demand profiles, we first
propose an analytical traffic flow model based on the shock-
wave theory. This model captures the queue location dynamics
and the vehicle delay of each major movement per cycle,
over multiple cycles with time-varying duration, at a generic
multi-phase oversaturated intersection throughout the oversat-
uration period. Thereafter, the FASC algorithm is introduced,
which is a model-based discrete-time and proactive signal
control policy for oversaturated traffic regimes. The control
algorithm employs (i) the predicted arrival flow of each major
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movement at the intersection and (ii) the proposed traffic
flow model in a recursive scheme to instantly obtain the
optimal cycle times and phase splits over the whole queue
formation and discharging traffic regimes. The operational and
spillback avoidance constraints are modelled and enforced in
form of linear inequalities. Moreover, an iterative mechanism
is embedded into the FASC algorithm to adjust the duration
and green-time split of each cycle based on the predicted
time-varying demand. The aim of the signal control algorithm
is to minimize the total delay at the intersection, while a
mixed delay and probability of spillback objective function
is additionally introduced for the QF congestion period.

As such, the main contributions of the paper can be sum-
marized as follows: (i) the systematic analytical modelling
of the cycle-by-cycle queue location dynamics and delay
of major movements at a generic multi-phase signalized
intersection over multiple dynamic cycles. (ii) Proposing the
FASC algorithm as an efficient, adaptive, and N-stage dynamic
cycle-length signal controller that optimizes the vehicle delay
and minimizes the spillback occurrence probability at the
intersection. And (iii) conducting microsimulation experiments
to investigate the performance of the FASC algorithm under
different traffic conditions. The accuracy of the traffic flow
model is further validated via the microsimulation studies.
To add, the effectiveness of the proposed signal control scheme
is further compared against (i) optimal fixed-time, (ii) actuated,
and (iii) capacity-aware max-pressure (CMP) benchmark algo-
rithms in the microsimulation environment. The results show
63%, 55%, and 40% improvement in the total delay against
the fixed-time, actuated, and CMP signal control schemes by
using the FASC algorithm.

D. Structure of the Paper

The traffic flow model and signal optimization prob-
lem for the QD and QF periods are developed in
Sections II-A and II-B, respectively. The FASC method is
introduced in Section II-C. Microsimulation experiments are
presented in Section III. Finally, the paper is summarized and
a few future lines of research are outlined in Section IV.

II. SIGNAL CONTROL FOR OVERSATURATED
INTERSECTIONS

This section introduces the Future demand based Adaptive
Signal Control (FASC) method. The control algorithm is
model-based and tackles both queue formation (QF) and queue
discharging (QD) oversaturated periods. During the morning or
afternoon rush hours, an intersection’s cumulative queue sizes
grow during the QF period, and thereafter they dissipate during
the QD period. The key idea of the FASC algorithm is to use
the predicted demand at the intersection at the beginning of the
QF and QD periods, to instantly obtain the optimal signal tim-
ings of each phase (i.e. varying cycle times and phase splits).
The predicted demand can be time-varying and aggregated
(e.g. 5 minute intervals), resulting in a piece-wise constant
profile for each movement. This assumption is compelling due
to the slow-varying nature of traffic.

An intersection is comprised of two or higher number of
approaches (also known as an intersection’s leg that is used
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Fig. 1. (a) The effective green time, loss time and red time of the phases of
a 4-phase intersection. It is assumed that each cycle starts with the green
time in Phase 1 and the green time is sequentially allocated to the next
phases. (b) Shockwaves at an oversaturated intersection in the QD regime.
Bold lines demonstrate the shockwaves, and shaded areas, J, indicate the
stand-still portion of the time-space diagram that provides an estimation of
the total vehicle delay at the intersection. (c) The fundamental diagram of the
major movement of Phase p. Point J demonstrates the jam state, and Points
A and C represent the arrival and saturation states, respectively. These states
are highlighted in part (b) of the figure as well.

by the approaching traffic). Each approach is comprised of
one or multiple movements (a permitted direction of traffic,
e.g., straight, left turn, right turn, or a combined movement).
A phase (or signal phase) is a part of the cycle-time allocated
to any combination of non-conflicting movements receiving
the right-of-way simultaneously, and a cycle (or cycle time)
is the time needed for a complete sequence of signal phases.
In this paper, a generic isolated multi-approach intersection
with P phases is considered, where each phase serves one
major (or critical) movement. Without loss of generality,
we assume the green times are sequentially allocated based on
the phase numbers, i.e. Phase 1 movements receive the green
time at the beginning of the cycle and Phase P is the last phase
that receives the green time (see Fig. la). Furthermore, the
following assumptions are considered: [A1] constant saturation
flow rates and loss times; [A2] constant arrival flows of the
major movements during each cycle (the flow rates can vary
cycle-by-cycle); [A3] triangular fundamental diagrams; [A4]
predictable demand for each major movement throughout the
oversaturation period; [AS] allocating only a single green time
to each major movement in a cycle; and [A6] the major
movement of a phase does not change over time. Assumptions
[A1-A3] are commonly adopted in the literature and practice
(e.g. [15], [16], [33], [35], [39], [43]). Assumption [A4] can
be facilitated using advanced statistical machine learning and
deep learning algorithms (see e.g. [45], [46]). Assumptions
[AS] and [A6] are implied by the traffic flow modelling
proposed in the paper (see Fig. 1a). Assumption [AS] can be
satisfied with proper allocation of movements to phases. Note
that the FASC algorithm do nor alter phases (i.e., association
of movements to phases) or the sequence of phases in a
cycle.

Remark 1: Note that the predicted arrival flow rate of a
movement may fluctuate within a cycle. As such, a time-
weighted average demand for the cycle duration is calculated
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to determine the average arrival flow rates of the major
movements.

We associate Phase p in cycle k with three time slots:
(i) the effective red time 7, 1 (k) before the start of the effective
green time (k is the cycle number); (ii) the effective green
time g,(k); and (iii) the effective red time 7 (k) after the
green time. It is clear that for Phases 1 and P we have
71,1(k) = 0 and 7p (k) = lp. It can be shown that 7}, ; (k) =
SElgi) + 1, Fpak) = X0, 8 (K) +1j + 1y, and
Pp(k) = Z}D:l gj(k) —gp(k)+ L, where [, is the loss time of
Phase p, L is the total loss time at the intersection, and 7, (k)
is the effective red time of Phase p. Note that g,(k) includes
the portion of yellow time that is treated as green. To add,
loss time [, takes into account the driver’s reaction time and
deceleration/acceleration loss times of the approaches served
in Phase p.

The traffic flow model and constrained optimization prob-
lems for the QD and QF oversturated traffic conditions are
discussed in the following sections, followed by the FASC
algorithm (Section II-C). Note that the first and second stages
of the FASC algorithm are to treat the QF and QD periods,
respectively.

A. Signal Optimization for Queue Discharging (OD) Period

In the QD period, while residual queues persist the heavy
demand has declined in a way that the intersection fulfills the
necessary undersaturation traffic condition [31] demonstrated
as

=1 ey

P
z cmax -

where ¢, and g, are the arrival and saturation flows of
the major movement of Phase p, and ¢™* is the maximum
admissible cycle length at the intersection. It is assumed that
the time-varying arrival flows at the intersection are predicted.
Accordingly, the start of the QD period is when the predicted
demand qg satisfies Condition (1). Note that, the residual
queues accumulated through the queue formation (QF) period
need to be cleared during QD period and thus the intersection
is still oversaturated. The control algorithm aims to discharge
the residual queues in exactly N cycle-times. Accordingly,
an adaptive N-stage discrete signal optimization algorithm
to determine the optimal cycle lengths and phase splits is
established in this section. In light of that, the traffic flow
dynamics is built on the principles of the shockwave (LWR)
theory.

The derivation of the fundamental characteristics of the
traffic flow for an undersaturated signalized intersection using
the principles of the shockwave theory have been extensively
studied in the literature (e.g. [40], [47], [48], [49]). The LWR
theory accurately estimates the total delay at the intersection
when the traffic complies with Assumptions [A1-A4] [2], [16].
Fig. 1b demonstrates the traffic shockwaves of the major
movement served in Phase p € {l,..., P}, in accordance
with the fundamental diagram (FD) of the approach depicted
in Fig. 1c.

mlw
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It is assumed that every residual queue should be fully
discharged in the Nth cycle or prior to that, and the timing of
each phase in cycle k can be split into 7, 1 (k), 7p2(k), and
gp (k). To calculate the total vehicle delay per cycle it is crucial
to estimate the queue lengths J,;(k), i € {1, ..., 4}. The total
delay of Phase p in a cycle is the shaded area depicted in
Fig. 1b (representing the jam state of traffic) multiplied by the
jam density of the critical movement of the phase. From the
FD characteristics, the following equations are derived:

517’1(]() = p’4(k — 1), (2a)
Op2(k) = dp1(k) + Tp(k)rp,1(k), (2b)
5p3(K) = 852 (k) — g5 /K1, (0), (20)
Ip,a(k) = p3(k) + I'p(k)Fp,2(k), (2d)

wherein T,(k) 2 g3(K)q5/ (g — a3 ())kh™) is the speed
of shockwave between arrival and jam densities, and Kg,am is
the jam density of the major movement in Phase p and cycle
k. To add, the maximum queue length in Phase p and cycle
k reads as

xh (k) = max (8, 2(k), 5, 4(K)) . 3)

Total vehicle delay of the major movements at the intersec-
tion throughout the queue discharging period reads as

N P
DY =>">"D,k),

k=1 p=1

“)

where D) (k) is the total delay of the major movement of
Phase p in Cycle k that can be formulated as:

1 /KJamDp (k) = (3p,1(k) +0.5A8,,1(k)) 7p,1 (k)
+ (51,,3(/() + 0.5A5p,3(k)) fp,z(k), (5)
and Adp, (k) = [0p,i+1(k) —6p,i(K)], i = {1,3}.

The following constraints should be realized to: (i) discharge
the residual queues (i.e. J,3(k)) within N cycles without
pushing them to be cleared simultaneously (Conditions (6b)
and (6d)), (ii) prevent the queue sizes to grow in sub-
sequent cycles (Condition (6¢)), and (iii) employ the full
capacity of the intersection in clearing the congestion

implied by Condition (6a) (k = {l,...,N — 1} and
pell,...,P}):
dp3(k) = 0, (6a)
P
> 6p3k) >0, (6b)
p=1
0p,3(k) = dp3(k+ 1), (6¢)
0p3(N) =0. (6d)

To add, the minimum green time to account for pedestrians,
and the maximum operational cycle length requirements can
be implied by

gp(k) = g™ pefl,....P}, kefl,....N},  (Ta)
P
D epk)+ L <c™ ke(l,...,N}.

p=1

(7b)
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Furthermore, the following inequality governs the undersatu-
ration property at the intersection when ignoring the residual
queues (p € {1,..., P}, ke {l,...,N}) [16]:

1 P
U"hﬂ“‘)‘ﬁ) Zgj(k)+L
j=1

k ! n+2=P 0 s
+(ﬂp()+ﬁ)gp()+ﬁp—, (8)

g3(k)/ (q; - q;;(k)). The inequality
explains that the current cycle’s demand has to be addressed
within the cycle and thus no additional residual queues are

generated.
The spillback avoidance constraint is dictated as

xh(k) <ppA, ke{l,...,N}, pe{l,....,P}, (9

where f, > 1 is a weighting coefficient indicating the phase
priority for enforcing the constraint, such that greater S,
indicates a lower priority of spillback avoidance in Phase p.
The queue clearance point for the first and last phases are
xJ] (k) = 01,4(k) and xJP(k) = Jp(k). To formulate the
constraint in a more convenient style, we assert from (3) and
(9) that 9,2 < B,A, for p € {2,..., P}, and dp4 < f,A
for pe{l,...,P —1}.

Remark 2: Note that the delay of the minor movements
of each phase are excluded in (4), since (i) they have lower
priority to be optimized, and (ii) movement’s delay formula
(5) and Constraint (6)(a) may not necessarily hold for the
minor movements during a cycle. The latter implies excessive
complexities to the mathematical modelling of the objective
function. To reflect the importance of minor movements in
the delay optimization objective function, we weight the delay
of each major movement in (4) by a user-defined constant
Xp = 1, and define a modified delay objective function as
follows:

wherein 7,(k) =

N P
DO{“V = ZZXpr(k)-

k=1 p=1

(10)

Hyper-parameters y, are specified based on (i) the structure
of the intersection, (ii) the number of movements of the phase
and (iii) the level of congestion of the minor movements.

Remark 3: In the queue discharging period, £, can be fixed
at f, = 1 to avoid spillback at every movement, unless if
the residual queues are close to the end of the critical links,
and spillback at one or multiple movements are unavoidable.
However, in the QF period, as demonstrated in Section III
via microsimulation studies, it is often inevitable to observe
spillback at one or multiple movements due to the long time
heavy demand at the intersection and low storage capacity of
the links. Therefore, the role of £, parameters become more
crucial in protecting critical movements at the intersection, e.g.
the movements that serve the major corridor.

The derived delay objective function (10) can be written in
the quadratic form below

DOY(®Oy) = OLANON + BN Oy + Cn, (11)

where Oy = [G(1);...;G(N)], and Gk) =
[g1(k);...5gp(K)], kK € {1,...,N}, AN, BN, and Cn
are matrices defined in Appendix A-A. Constraints (6) are
linear in decision variables g,(k), and can be expressed in

the following closed linear forms (k € {1,..., N — 1} and
pell,...,P):

Hy Oy > b)) |, (12a)

Hy 0y > bl 5, (12b)

Hy 40y > b} 3, (12¢)

On = b (12d)

where le,sz, P10
bk 2 and b¥ b3 are scalar parameters that are elaborated in
Appendlx A B. Moreover, operational constraints (7) can be

formulated as

and H k 3 are 1 x NP matrices, and bk

oy > Oy, (13a)

HfOy > by ke{l,...,N}, (13b)

where @min [Gmin. e Gmin] e RNPx1 Gmin —
[gin; ...,g?}m] e R HE = [04—1)p, —1p, On—k)p ]

and by = L — ¢™®*, Undersaturation constraint (8) can also
be written in the following compact form:

HysOy =Dk s ke{l,...,N}, pefl,....P}. (14)

To add, the spillback avoidance constraints to imply d, 2 <
BpAp and 6,4 < fp A, read as:

Hy Oy > b o kefl, ...,
Hy,Oy > b, kefl,...,

N}, pef2,...,
NLpe(l,...,P

P}, (15a)
— 1},(15b)

where the details of (14), (15a), and (15b) are given in
Appendix A-B.

Using the developed analytical formulations and Assump-
tion [A4], the optimal green times at the intersection can be
obtained via solving the following optimization program:

minimize O k)),
(Jpinimize N(gp(k))

Subject to: (12), (13), (14), and (15)

gp(k),
(Oga)

where On(gp(k)) is the objective function (considering N
cycles), which is the total delay (11). Problem (Oyq) is
a quadratic non-convex program, as AN is often indefinite.
However, global optimal solutions can be sought for this class
of optimization problems using advanced numerical methods
(see e.g. [50], [S1D).

Remark 4: Note that the undersaturation constraint (8) and
the spillback avoidance constraint (9) can be in conflict
under special circumstances, such as short link length of one
movement. In such occasions, the undersaturation constraint
can be undermined since the intersection is already oversatu-
rated and constraints (6) ensure that the residual queues are
non-increasing.
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B. Signal Optimization for the Queue Formation (QF) Period

Queue formation regime represents the duration when the
overall arrival flow are higher than the intersection’s capacity
and the undersaturation condition does not hold. Therefore,
the residual queue lengths at one or multiple movements start
to increase. Let us assume this period lingers ¢ hours and
N cycles is devoted to this period. The FASC strategy treats
this problem with the objective of (i) minimizing the total
delay, or (ii) minimizing a mixed total delay and probability of
spillback function at the intersection within this period, as well
as preventing the spillback phenomenon at one or multiple
movements.

The queue length dynamics and cumulative total delay
of major movements at the intersection can be readily
estimated from our developed models (2) and (11), respec-
tively. It is clear that the undersaturation constraint and
Constraints (6b)-(6d) may not hold during this period. How-
ever, the non-negative residual queue length and spillback
avoidance constraints (i.e. (6a) and (9)) should still be satisfied.
Moreover, the following constraint indicates that the period

lasts for at least 7 unit of time:
Inp/ Oy > 17— NL. (16)

max

It is clear that N must be sufficiently large so that /N < ¢
Hence, the optimization problem reads:
minimize

(0] k)),
k={1,..,N}, p=(l,...,P} N(gp ()
Subject to: (13), (12a), (15), and (16)

gp(k)>
(Oqf)

where ON (g, (k)) represents the delay objective function (11).

Remark 5: Note that due to the stochastic nature of demand
profile, the undersaturation constraint might be valid for a few
cycles within the QF period. For instance, the intersection
may first experience 10 minutes of intensive arrival demand,
then 5 minutes of medium arrival flows, followed by another
duration of high demand. The whole duration that we expect
high intensity arrival flows is classified as the QF period and
optimization program (O, r) is applied to work out the optimal
signal timings. Comparing (Oy4) and (Oyy), the optimization
problems for the queue formation and discharging periods are
only different in their constraints. The non-negative queue
length, spillback avoidance, and operational constraints from
(Ogyq) are enforced and constraint (16) is added.

Although optimization problem (Og,r) accounts for spill-
back avoidance as a constraint, the objective function is
not sensitive to the probability of spillback. This could be
problematic during the queue formation period. In particular,
for an asymmetric intersection minimizing the vehicles delay
can be against balancing the queue lengths at reasonable levels,
which leads to the spillback of one or multiple movements.
Hence, the below modified objective function mixing the total
delay and the probability of spillback is defined:

DSY (On) = w1 DOY (O)

N P
€ €
o ( PR ),(17)
;; OCPAP _5P,2(k) apAp _5[;,4(]{)
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where €, > 0, @ € (0,1), 37,0 = 1, and &, > f3,
is a link length scaling coefficient. o, is defined to adjust
the sensitivity of the objective function DS%V (On) to the
probability of spillback at the major movement served in Phase
p. Given that the maximum queue length of each phase is
either 6, 2(k) or J,4(k), the second part of the objective
function DS%V (®y) reciprocally grows when the maximum
queue length approaches the scaled link length o, A, which
is the threshold of the acceptable queue length. The threshold,
which could be greater than the spillback avoidance constraint
threshold f,A,, can be appropriately adjusted to be larger
than the link length in a heavily congested intersection to find
an admissible solution for the signal optimization problem.
This guideline should be exercised in scenarios where spill-
back or near spillover conditions are unavoidable in minor
or prevailing road sections. The scenarios include: (i) long
congestion periods, (ii) significantly high demand, or (iii) the
existence of short links. Moreover, the spillback avoidance
constraint should be treated as advised in Remark 3.

Optimization problem (O ) with DS{Y (®y) as the objec-
tive is a mixed nonlinear program (MNLP) comprising a (non-
convex) quadratic function and a nonlinear convex function as
the objective. This problem is more intricate than choosing the
total delay as the objective, which is a non-convex quadratic
program. However, the global optimal solution can be sought
applying spatial branch-and-bound optimization algorithm as
demonstrated in [52] and [53]. Moreover, the local optimal
solution can be found using the sequential quadratic program-
ming (SQP) technique. The local optima can be close to the
global optima, provided that the feasibility region is adequately
tight.

A challenge confronting the implementation of an adaptive
(or dynamic) cycle length signal control strategy is estimating
the termination time of the QD period and the expected
arrival flow of each cycle. This in turn creates inaccuracies
in the estimation of the delay and constraint parameters in
the optimization problem (Og,q). To overcome this challenge,
a simple iterative algorithm, named Adaptive Flow Updating
(AFU) scheme, is proposed to recursively update the cycle
times and thus arrival flow rates of each cycle. The algorithm
initializes the cycle times at arbitrary values and accordingly
estimates the arrival flows based on the initial cycle times and
the predicted arrival flow profiles. Thereafter, depending on the
traffic regime (QF, QD, or undersaturated), it recursively solves
the optimization algorithm for optimal signal timings, and
updates the arrival flows accordingly. The algorithm terminates
when the sum of the absolute differences of the arrival flows
obtained from the current and the previous steps along the
rolling horizon is less than a sufficiently small threshold, which
indicates a steady-state condition.

C. The FASC Algorithm

In this section, the complete FASC algorithm is presented.
In summary, at the beginning of the QF congestion period,
the algorithm seeks the optimal number of cycles and signal
timing for the whole QF period based on the predicted demand
profile of each movement. After the QF period and at the start
of the QD period, the algorithm delves the optimal signal
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Arrival Flow Updating (AFU) Algorithm

FASC Algorithm

L. Initiate arrival flow rates qla7 (i) = 0 and cycle lengths c(i)
(Ge{l,---,N}, pe{l,---, P}
II. Based on the predicted demand profile and given
initial ¢(7), estimate the expected arrival flow rate per cycle
q;,new(l-)
while >0, 3 (g5 (i) — g3()| > ¢™ do
% g™ is the error threshold in the norm of the updated
arrival flow rate with respect to the flow rates of the
previous iteration.
if Queue formation (QF) period then
IIL. Calculate Ay, BN, CN. H;',’j (je{l,4,6,7)
IV. Solve program (O, )
else if Queue discharging (QD) period then
III. Calculate AN, BN, Cn, H;,j (Gefl,---,7
IV. Solve program (O,q)
end if
Output: O™ — c"ev(i)
V. g5 (i) < g™ ()
VL. Given ¢"V (i), estimate the new arrival flow rates
a,new ..
qp (@)
end while

timings to discharge the queues in the desirable number of
cycles. Therefore, in the current form of the FASC algorithm,
numerical optimizations are only run twice throughout the
congestion period, which is numerically highly efficient. The
pseudo-code of the algorithm is given below.

Number of cycles to discharge the queues in the QD traffic
regime (problem (Oyq)) or to accommodate the queues in the
QF period (problem (O, y)) is a hyper-parameter that needs to
be adjusted appropriately. This can be addressed by an iterative
scheme integrated into the FASC algorithm in each congestion
regime. However, our experiments emphasize that the smallest
admissible N normally results in the best performance of the
algorithm in terms of minimizing the objective function.

Remark 6: A simple variation of FASC control paradigm is
to update the signal timings every certain time interval 7", i.e.
repeating Steps III-VI in the QF period and Steps III-VII in the
QD period. In light of that, the demand prediction algorithm
updates the forecasted demand profiles based on the real-time
feedback from loop detectors, and thus Program (Og,q) (for QF
period) or Program (Oyy) (for QD period) is rerun at the end of
every t" time-interval to readjust the signal settings based on
the updated information for the rest of the congestion period.
By adopting this variation, the control algorithm becomes
a rolling horizon control paradigm with time-varying cycle
lengths. Studying the impacts of this modification on reducing
congestion and on computational complexities is a subject for
future research.

III. MICROSIMULATION EXPERIMENTS

The intersection of Victoria road and Terry street, a key
intersection on the Victoria corridor connecting CBD and
northern suburbs of Sydney metropolitan area, is considered
for microsimulation studies. The intersection is modelled and

L. Measure the initial queue lengths 6, 1 (1) (p € {1, -+, P})
II. Predict the arrival flow rates, q; (1), at the intersection
for sufficient number of time-steps ahead
% Arrival flow at each time-step (e.g. 5 minute intervals) rep-
resents the expected average demand during that time-step
if Queue formation (QF) period then
IIL. Define the objective function and set N
% objective function can be chosen from: (a) total delay,
and (b) mixed total delay and probability of spillback. N
is the set of nominal number of cycles to be allocated to
the QF period.
for N =N do
IV. Initiate c(i) = t/N,i € {l,---, N}
% t is the expected duration of QF period.
V. Apply the AFU algorithm
Output: @?\?t

end for
VI. Choose N°P! and thus G)%)otpl in the set of admissible
NeN

% Ceriteria of choosing the optimal N could be minimizing
the objective function, or its variability per cycle.
else if Queue discharging (QD) period then
III. Define N the set of nominal number of cycles to
discharge the residual queues
for N =N do
IV. Initiate ¢(i) = ™, i e {1,---, N}
V. Apply the AFU algorithm
QOutput: @?\?t
end for
VI. Choose N°P! and thus G)%)otpl in the set of admissible
NeN
% Criteria for choosing the optimal N could be minimizing
the objective function, or its variability per cycle.
end if

calibrated in Aimsun environment (see Fig. 2). The signalized
intersection comprises 3 approaches and 5 movements with
two major movements: (i) through movement of Link 42455
(Victoria road) and (ii) left turn of Link 29244 (Terry street).
The intersection is controlled with a two-phase plan as shown
in Fig. 2. There is one bus lane on the inbound direction of
Victoria road (see Fig. 2) that is shared with the left turning
vehicles. Therefore, Movements 1 and 2 have three and two
effective lanes, respectively. However, the second movement’s
link length (346 [m]) is dominated by a single lane, with the
last 60 meters assisted by a turn bay. Thus, it is considered as
a single-lane link for jam density estimation and a two-lane
link for saturation flow estimation. Only passenger vehicles are
considered in this study, thus the pedestrian movements and
phases are excluded. Traffic flow characteristics of the roads
measured via field experiments are shown in Table I. The tests
consider the morning rush period, 8:00 am to 9:45 am.

We first examine the accuracy of the proposed LWR
theory-based traffic flow model against the microsimulation
model with a time-varying demand similar to the field demand
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Fig. 2. Microsimulation model of the intersection of Victoria road and
Terry street in Sydney. The intersection has 3 approaches, 5 movements,
and 2 phases. Link 42455 contains a bus lane that is shared by the left-
turning vehicles. Movements 1 and 2 highlighted in the figure are the major
movements of Phases 1 and 2, respectively. Moreover, the movements in
each phase are exclusively depicted. Vehicles are shown by blue dots on the
roads, and the figure shows that Links 42455 and 29244 can become heavily
congested and experience queue spillover.

TABLE I

TRAFFIC FLOW CHARACTERISTICS AND OPERATIONAL PARAMETERS OF
THE MAJOR MOVEMENTS AT THE INTERSECTION IN THE
MICROSIMULATION STUDY

Movement | g§[veh/h] | s$[veh/km] njl [veh/km] g;“i" [s] | Lils] | di(0)[veh] | A;[m]
1 4500 75 540 10 42 9 708
2 3000 60 180 5 42 0 346

4000
——Movement 1
3500 ——Movement 2
3000 ——-Movement 3
— ——-Movement 4
< 2500
<
2 2000
‘“O. 1500
1000
500
0

Time [min]

Fig. 3. Arrival flow demand of each movement at the simulated intersection.
The flows are aggregated in 5-minute intervals. Movements 1 and 2 are the
critical movements of Phases 1 and 2. The intersection is in the QF period
in the first hour, and it is in the QD period thereafter. The two periods are
segregated via a dashed green line.

during the studied period. The demand is aggregated into
5-minute intervals as demonstrated in Fig. 3. The intersection
is in the queue-formation period in the first hour of simulation,
and thereafter the demand drops to the undersaturation traffic
regime. This demand is used for evaluation of the developed
traffic flow model for oversaturated periods, and 110% of the
demand is applied at the intersection for evaluating the FASC
algorithm’s performance.

A. Validation of the Traffic Flow Model

For evaluating the accuracy of the proposed traffic flow
model in estimating the delay and maximum queue length
at the intersection (see Section II-A), we set up a pre-timed
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Fig. 4. Maximum queue length (top figures) and total vehicle delay

(bottom figures) per cycle for Movements 1 and 2 at the simulated inter-
section, comparing the developed mathematical model and average results of
5 microsimulation replications with different random seeds. The QF period,
which is the first 30 cycles (120 [s]) of simulation are considered for this
experiment. The link length of each movement is highlighted by a dashed-dot
green line in the top figures, indicating that queue spillover is observed at
both movements, which is accurately captured by the proposed traffic model.
The additional queue length of a movement in microsimulations is estimated
via measuring the virtual queue lengths.

signal plan with fix cycle time of ¢ = 120 [s]. Taking the
average demand of each movement throughout the simulation,
the optimal fixed green time plus loss time of Phases 1 and
2 are obtained as 93 [s] and 27 [s], respectively. The arrival
flows were assumed to be stochastic and follow an exponential
distribution. To add, the yellow time at the intersection is set
at 3 seconds for each phase. However, the actual loss-time
of each movement is slightly higher to account for the
acceleration/deceleration of vehicles.

A microsimulation API were developed to measure the
accurate maximum queue length and total vehicle delay of
each movement per cycle. Total delay of a road section in each
cycle is estimated by measuring the delay of every vehicle that
exit the section, plus the delay accumulated by the vehicles
in the virtual queue. Virtual queue corresponds to vehicles
that are stacked outside the link and are awaiting to enter the
section due to the spillback phenomena.

The average maximum queue length and delay of each
major movement were attained from running the microsimula-
tion model for the first hour of the experiment (30 cycles). Five
different random replications are compared against the results
obtained from the developed model (Equations (2) and (5))
in Fig. 4. Note that the first hour of simulation corresponds
to the queue formation period. Moreover, the queue lengths
shown in figure 4 represent the maximum queue length plus
the virtual queue length, whenever the major movement is
suffering from spillback phenomena. The link length of each
major movement is depicted via a dashed green line. It is clear
that both movements experience the spillback phenomena and
the proposed model effectively capture it. The Mean Absolute
Errors (MAEs) for the maximum queue length and delay of
each movement are reported in Table II. The results emphasize
an acceptable accuracy of the mathematical models (11) and
(3) in estimating the delay and maximum queue length of
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TABLE 11 Phase 1: Movements 1 and 3 Phase 2: 2anda £ 4p10 —
2500 __ 200 & | ~~Fixed iming
MAE OF THE ESTIMATED MAXIMUM QUEUE LENGTH AND DELAY OF £ 2o E a0 2 | Auated ining) s
EACH MOVEMENT COMPARED AGAINST THE 8 g & |l=rasc
MICROSIMULATION STUDIES 2 B s, ;
81000 -8 1000 °
3 3 . 2,
Movement 1 Movement 2 % 500 < 50 [’N\N\I\ MA F
Maximum queue length [m] 109 48 z SN A o W £,
. . 0 10 20 30 40 50 10 20 30 40 500 o 20 40 60 80 100
VCthle delay [Vehmln] 30 16 Cycle number Cycle number Time [min]
Fig. 5. Total vehicle delay results from implementing the proposed FASC,

each movement, despite the stochasticity implied intrinsically
by the microsimulation environment (e.g. stochastic arrival and
departure flows, different acceleration and deceleration values,
and stop-and-go waves in the simulated traffic environment).

B. Signal Control Experiments and Results

Four signal control policies are implemented and compared
using a demand with 10% higher intensity than Fig. 3: (i) fixed,
(ii) actuated, (iii) capacity-aware max-pressure (CMP), and
(iv) the proposed FASC method. The fixed signal control uses
the fixed cycle time and green time splits as described in
Section III-A (93 [s] and 27 [s] for green plus loss times of
Phases 1 and 2, respectively). In the actuated signal control
algorithm the maximum green-time of each major movement
is equal to the green times of the fixed control scheme, and
the minimum green time of Phases 1 and 2 are 71 [s] and
17 [s], respectively.

The CMP algorithm [28] is an advanced max-pressure signal
control method [27] that accounts for the vehicle capacity
of road segments. The algorithm is primarily developed for
a network of intersections, but it can also be applied to an
isolated intersection. Hence, it is considered as a benchmark
method in our study. For an isolated intersection, the algorithm
updates the activated phase every time-step 7y (we assume
ts = 5 [sec] in this study), to maximize the normalized
pressure relief at the intersection. The normalized pressure of
phase p at time ¢ is defined as P, () = Zi€¢(p) (Ai(1)/Ci)q;,
where 4;(¢) is the number of vehicles of Movement i at time 7,
C; is the maximum number of vehicles that Movement i can
accommodate, and ¢ (p) is the set of movements that get the
right-of-way in Phase p.

Given that the implemented demand at the intersection is
10% more severe than the pictured demand in Fig. 3, the inter-
section is in the QF oversaturated traffic regime for the first
1-hour of the simulation (according to the condition outlined
in Inequality (1)). Note that the oversaturation condition does
not necessarily hold throughout the queue-formation period,
though it is the dominant condition for most of the 1-hr
period. Thereafter, by declining the demand at the intersection,
traffic switches to the QD oversaturated regime followed by
the undersaturated condition.

The proposed signal control strategy was implemented for
minimizing the total delay objective (10) at the intersec-
tion, first for the queue-formation and next for the queue-
discharging traffic regimes. Note that the FASC algorithm is
conducted only one time at the beginning of the QF (the
beginning of simulation) and one time at the beginning of
the QD (after 1 hour of simulation) periods. The FASC
algorithm only took 240 [ms] and 30 [ms] to find the optimal
signal timings for the QF and QD regimes, respectively. The

capacity-aware max pressure (CMP), the fixed-time and actuated signal control
methods. The results of microsimulation replications are depicted by dot
points, and the average results are shown by distinguished line styles with
the same colors as the corresponding dot points.

Movement 1 Movement 2
3000 3000
- - -Fixed timing
2500 2500 ——Actuated timing
CMP
2000 2000 —FASC

1000 1000

Maximum queue length [m]
Maximum queue length [m]
3

@
=}
S
@
=}
3

0 10 20 30 40 50 0 10 20 30 40 50
Cycle number Cycle number

Fig. 6. Maximum queue length results from implementing the proposed
FASC, CMP, the fixed-time and actuated signal control methods. The queue
lengths per cycle of Movements 1 and 2 are depicted and the link length
of each movement is highlighted by a dashed-dot green line. The results
of microsimulation replications are depicted by dot points, and the average
results are shown by distinguished line styles with the same colors as the
corresponding dot points.

maximum cycle length was fixed at ¢™* = 240 [s], and we
set y1 = y2 = 1. Due to the heavy demand during the QF
period, it is not possible to enforce the spillback avoidance at
both major movements (f; = f» = 1.0). Therefore, to enable
solving (Oy4r) and to give higher priority to the movements
of Phase 1 that serve the major corridor, we set f; = 1
and f» = 5. This implies that the maximum queue length of
Movement 1 should not exceed the link length, whereas the
admissible queue length of Movement 2 (which is the minor
road) can grow to up to 5 times of the link’s length.

The total delay and queue length results of microsimu-
lation experiments (comprising 5 replications) are shown in
Figs. 5 and 6, respectively. Cycle-by-cycle total vehicle delays
of movements of Phases 1 and 2, together with the cumulative
total delay at the intersection over time obtained from the
implemented control schemes are exhibited in Fig. 5. It can
be seen that by implementing the proposed control scheme
the total delay of vehicles in Phase 1 has been substan-
tially improved, while the delay in Phase 2 has grown. The
overall total vehicle delay at the intersection has reduced by
63%, 55%, and 40% with respect to the fixed, actuated, and
CMP control methods, respectively. Considering the maximum
queue lengths in Fig. 6, it is clear that the FASC algorithm
effectively suppresses the spillback in Movement 1, and main-
tains the maximum queue due to the demand of Movement 2
below 1730 [m] that is 5 times the link length. However, the
alternative fixed-time and actuated control schemes result in
heavy congestion in the major corridor, in a way that the back
of the queues have reached 2.5 kilometers from the stop-line
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at the end of the queue formation period. The max-pressure
algorithm has been more effective than the fixed-time and
actuated methods in protecting Movement 1 from spillback,
though not as effective as the FASC method, due to the high
pressure on Movement 2.

IV. SUMMARY AND FUTURE WORKS

The pivotal problem of adaptive traffic signal optimiza-
tion for an isolated multi-phase oversaturated intersection has
been explored covering both queue formation and discharging
regimes. Based on the traffic flow characteristics of the major
movements, the queue length and the total delay of the major
approaches at the intersection have been analytically modelled
for the whole oversaturation period, given that the demand
of each movement is predicted in a sufficiently large time
horizon. The LWR theory has been employed to capture
both temporal and spatial dynamics of the queues. Using
the developed analytical model, the FASC scheme has been
proposed to efficiently find the global optimal signal timings
with dynamic cycle lengths and phase splits at the intersection
throughout the oversaturation period. The algorithm only runs
twice, i.e. at the beginning of the QF and QD periods, to adjust
the cycle lengths (with time-varying duration) and phase splits
at the intersection. The proposed control method can also be
readily implemented in a rolling-horizon structure.

Comprehensive microsimulation experiments on a con-
gested intersection in Sydney have highlighted the superiority
of the FASC policy compared to the benchmark optimal fixed-
time, actuated, and capacity-aware max-pressure methods.

Multitude of directions can be envisaged for this research.
Formulating the optimization problem for multiple coordi-
nated intersections is a challenge, particularly for control
policies with adaptive cycle lengths. Another indispensable
direction is adapting the proposed algorithms to accommodate
public transport and connected and automated vehicles (CAVs)
by adding extra control layers such as lane management
policies [49]. More importantly, feedback control algorithms
should be developed to tackle bounded errors in demand
prediction that may deteriorate the potential performance of
any control schemes. In addition, the FASC algorithm can
be integrated into a hierarchical network perimeter control
method, as the intersection-level signal controller for the effi-
cient management of the cumulative traffic at the perimeter’s
intersections.

APPENDIX A
TRAFFIC FLOW MODEL PARAMETERS

A. Parameters of the Delay Model

This section first describes the quadratic form of the total
delay model (11) obtained from the shockwave theory. Matrix
AN = [AklkZ]NPxNP e SNPXNP i a symmetric matrix
that is established from block matrices Ay, € SP*P,
ki,k» € {1,..., N}. The block diagonal matrices Ay are

_ jam 7 ik Pkk
calculated form Ay, = zp | Xpkp AL, where ALY =

[Akk(z J)]P € SP*P. Indeed, AN*2(, j) indicates the

multiplier of the term g;(k1)g;(k2) in the delay model for
Phase p.
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In a greater detail, for k < N we have A’;k (i, j) = 0.5, (k),

fori, je{l,..., P}\p, A’;k(i,p) =0fori €{l,...,p},and
A’;k(i, p) = —O.Sq;/xi,am, fori e {p+1,..., P}. Moreover,
when k = N it can be shown that since d,3(N) = 0,

we have AgN(i,j) = 0.5T,(N) for i, j € {1,...
andANN(i j)=0ifi=porj=p.

When it comes to the off- dlagonal blocks, let us assume
ki < ko. Then, we have Ay, = Akz/q = Zp lAk‘kz where

Al = AT = [ARG, 0], e RPP. When ks <
X

N, fori,je{l,..., P}\ p we have A];,Ikz(i, j) =0.5T ,(k1);

k1k2(p ]) — 0. qu/K]am

AR py=0forallie(l,.

for i e {1,.

, P} \ p,

for j € {1,...,
., P}. To add, when k» = N
.,P}\ pand j < p, one gets AklN(l Jj) =

P} \ p; whereas

jam

0.5T(k1); fori = pand j < p, A k‘N(p ) =-0.5q5/xp
and for j > p and every i, one gets AklN(z, j)=0.

In addition, BN = [Brlypx1 with By = zp lxpic},amBk
k e {l,...,N}, and Bk = [Bk(z)] . Note that Bk(l) is

P
the multlpher of g;(k) that appears in the delay of Phase p,
D,. When k < N, fori e {1,..., P}\ p, we obtain Bk(z)—

. 1(1)+z§1 4 Fp<m>L+(N BTy L+T k) X7

and Bk(p) —(N— k)qp/icjamL Furthermore, for k = N we

get BN(z)—5p1(1)+ 1 Tpm)L +T,(N) X0 1,» for

i <p; BI])V(Z) =T (N)Zj pl] fori > p, and Bg(p) =0.
Finall, CN = X0 X b ) xpkh™Ch, where €k =

Spa(HL+XK 1T (m)L2+o.5r (k)L? for k < N, and for

k=N we get C) = (6,,1(1) + X0Z] Tp0mL) 02115 +

05T, (V) (021 1% + (), 1)

B. Parameters of the Modelled Constraints

Parameters of the linear constraints, demonstrated in
(12), are arithmetically recognized in the following. It is
assumed hereafter that ¥’ < {l,...,N} and j €

{1,..., P}. Hl]?"l = [H,f pl]lxNP e R"™NP where
g, = A p’l(j’)]lxp e RI*P_ and for k' < k
5 (k") j"#p,
il =1
k,p,1 .
P> p/KJam ]/ =p,
for k' =k
L&) j <p,
Tk .
", G =1 -aS/m™ ' = p,
0 i">p,

and for k' > k, I:I,f,,p,l(j/) = 0. Moreover,

bh | = —pl(l)—ZFp(m)L rp(k)ZI,.

j=1
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K _ [gk /
H)o= I:Hk/’p’z:llxNP’ where H p2 [ k/’l”z(] )]

and for k' <k

o ST #
" 3P g™ =,
for k' =k
SET) J < ps
Hf oG =1 -2 ¢ /x™ ' = p.
0 "> ps

and for kK’ > k, I:Ik/,p,z(j/) = (. Moreover,

P k-1

by =—=Pop (1) =D > Tr(m)L — Zr (k)Zl

r=1 m=1

kK _ Tk
Hys = I:Hk/’p’3:|1xNP
and for k' # {k, k + 1},

7k _ Tk -/
, ~vvhere Hy 3 = [H ,’p’3(] )]le
Hy () =0,

i< p,
Hrs = 75 .
and
~Tpk+1) j <p,
HE 3G = {asmi™  j = p,
0 j > p.
Moreover,

P p—1
b a=Tp(k) D 1+ Tpk+1) > 1.
j=p j=1
The undersaturation constraint parameters in (14) are

defined as follows: H* s = [ﬁ k ]
P xNP

k.5 |
[ﬁk/’l’ﬁ(j/)]lxp’ H;, p,S(j/) =0 for k' # k, and for k' =k,
L—npk)—1/(P—=1) j #p,

1 j =p.

Furthermore, b];;,s =—1—-nplk)y—1/(P -1))L —
Eventually, the spillback avoidance constraints (15a) and

: Kk _ [ gk
(15b) are elaborated in the sequel. Hp,6 = [Hk,’p’6 .

Tk —
, where Hk,,p,5 =

Hk/’p’s(j/) =

2-P
71l

H]f,’p 6= [I:I]f/’p’ﬁ(j’)]lxp; for all k' < k:
—Tpk’) j’ ,
Hk/’p’ﬁ(j/) = c Jam) J./ #
q,/kp ] =D,
for k' = k:
. Lk j' < p,
Hk/,p,6(]/) = r

0 J'=p,

and kp6(j/) 0 for k' > k. We also have b’;,ﬁ =

—PpAp+o, (1) + >k Fp(m)L+F (NP2 HE
k Sk ) .

[Hk,pﬂ]lpr Hy 7= /’p’7(] )]le’for k’gk.

p(k/) j/#pa
a5/ = p,
and H 7(]/) 0 for k' > k. To add, bp7 =
P1(1)+2m 1r (m)L

k ;
H, /’p’7(J/) =

—BpAp +
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