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Abstract—Internet-based e-hailing services have become a1

major component of urban transportation systems in recent2

years. The spatio-temporal mismatch between supply (available3

vehicles) and demand (passenger requests) deteriorates e-hailing4

platforms’ performance. Hence, repositioning available vehicles5

can be productive. In this paper, we propose a real-time repo-6

sitioning method in ride-sourcing systems that considers both7

the responsiveness to immediate demand and the long-term8

(i.e., several hours) operational efficiency simultaneously. The9

proposed approach integrates the solutions of two procedures: i)10

a single-agent Markov Decision Process (MDP) model to evaluate11

the long-term influence of the repositioning on platform efficiency12

and ii) a binary linear program (BLP) to tackle the multi-13

driver repositioning problem in real-time taking into account the14

elapsed time of each not-responded order. Numerical experiments15

using real-world demand data with impatient passengers and16

contractors (i.e., drivers) demonstrate that the proposed method17

outperforms several repositioning benchmarks with regard to18

platform efficiency, e.g., reducing order cancellations, passengers’19

experience, e.g. reducing waiting times, and drivers’ gains,20

e.g., increasing occupied rates.21

Index Terms—Mobility On-Demand, Fleet Management, Ride-22

hailing, Relocation, Transportation Network Company (TNC).23

I. Introduction24

With the development of GPS-enabled technologies and the25

proliferation of smartphones, traditional taxi industries have26

witnessed radical changes. The emergence of mobile-based E-27

hailing services, such as Uber, Lyft, and Didi Chuxing, enabled28

taxi drivers (or self-scheduled contractors) to be systemically29

matched with passengers with no need for random cruising30

on the streets. It is reported that Uber served 5.22 billion trips31

worldwide in 2017, up from 140 million trips in 2014 [1]. DiDi32

also provided service for over 25 million trips each day in 201833

in 400 cities in China [2]. The scale and richness of digital data34

collected by these platforms offer unprecedented opportunities35

for various qualitative and extensive analysis including supply36

management [3], hot-spot identification [4], spatio-temporal37

demand estimation [5], autonomous taxis [6], labour incentives38

[7], dynamic pricing [8], and public safety [9].39

E-hailing platforms continuously receive passengers’ trip40

requests, geographical coordinates, and occupancy status of E-41

hailing vehicles (driven by contractors), and periodically dis-42

patch idle vehicles to serve unassigned orders. Also, platforms43

might reposition the vehicles that fail to receive a pick-up order44

to a different location for the prospect of less cruising time in45

the future. Assuming dispatching decisions are made by using46
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all known information, the operation of E-hailing platforms 47

can be summarized into four steps: 48

1) Collecting: The platform collects the information of 49

vacant vehicles, new orders, and unserved orders in each 50

planning horizon. 51

2) Dispatching: The platform makes dispatching decisions 52

by a centralized optimization approach at each decision 53

point. 54

3) Announcing: The platform notifies passengers and the 55

vehicles when they are matched. Afterwards, the vehicles 56

will follow the platform’s routing guide to serve the 57

passengers. 58

4) Repositioning: Gathering the occupancy information of 59

vehicles and the service information of orders, the plat- 60

form redistributes vacant vehicles to some locations for 61

upcoming or unserved orders. 62

From the perspective of vehicles, the E-hailing services can 63

be divided into three stages, as illustrated in Figure 1. (1) 64

Searching: Vacant vehicles cruise or park on the street until 65

they have been assigned to a passenger request. The position 66

they receive the dispatched order is called the dispatching 67

point. (2) Picking up: Assigned vehicles from their current 68

dispatching point head for the origin of the order to pick up 69

the passenger. The time from being assigned to pick up the 70

passenger is called deadheading time. (3) Serving: Occupied 71

vehicles take the passenger to the destination, and then they 72

will start searching again. Evidently, the efficiencies of these 73

three stages primarily affect the service quality for passengers, 74

vehicles, and the platform, including waiting times, individual 75

income, occupied rate, market share, service profit, social 76

welfare, and other externalities. Therefore, E-hailing platforms 77

employ a large number of operational strategies to improve the 78

efficiencies of these three stages. 79

Aiming to minimize pick-up times or maximize system 80

profit, a plethora of order dispatching algorithms have been 81

investigated. Generally, these dispatching techniques naturally 82

fall into the category of ride-matching problems [10], [11], 83

[12], [13], [14], [15], [16], [17], [2], [18], [19], [20], [21]. 84

Nonetheless, once vehicles are not matched in the dispatching 85

procedure, E-hailing systems face a critical question (or an 86

opportunity) in the Searching stage; where is the best location 87

for vacant vehicles to find a passenger at subsequent times? 88

In the traditional taxi service, taxi drivers usually rely on 89

their personal experience to find the next passenger, which 90

is myopic and selfishly near-optimal. Providing a comparison 91

with current taxi operation, Santi et al. [22] demonstrate 92

cumulative trip length can be cut by 40% or more by the 93
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implementation of repositioning and fleet management, Vaz-1

ifeh et al. [23] also show that effective repositioning methods2

can allow a 30% reduction in fleet size. Considering the3

time-varying effect of congestion, Ramezani et al. [24] model4

and control repositioning in large-scale networks taking into5

account the impact of network congestion and demonstrate6

an improvement in the taxi service performance (reducing7

travellers’ waiting times by 20%).8

!"#$%&'()

!"##$%&'()*+&,)%

*'%+'(),-.

-,./+&*0,%1'

/),%&

2#,1,%

-$.&,%+&,)%

!"$/'()

Fig. 1. Three stages in E-hailing services.

The majority of literature, e.g., [25], [26], [27], [28], [29]9

redistribute vacant vehicles from their current position to10

one or multiple pick-up locations with a high likelihood11

of being matched with a passenger at the immediate next12

step. A major drawback of these methods is overlooking13

the overall efficiency in the long-term (i.e., several hours).14

To tackle this issue, Markov Decision Process (MDP) has15

been adopted in passenger-seeking strategies in traditional taxi16

industries and repositioning strategies in E-hailing services.17

Considering the road segment and period of a vacant taxi,18

Zhou et al. [30] propose a network-based MDP model to19

recommend the next cruising direction for taxi drivers. The20

MDP-based model assumes the agent (single driver) knows21

how the environment shifts the state and the feedback rewards,22

and then finds the optimal policy based on the model to23

achieve the maximum cumulative reward. To estimate state24

transition probabilities of the MDP, Yu et al. [31] assume25

temporal Poisson arrivals of passengers and spatial Poisson26

distributions of vacant taxis in the network. The dynamic27

programming algorithm is introduced to solve the problem.28

In traditional taxi services, an idle taxi’s searching process29

ends only when the driver sees a passenger, and the passenger30

accepts the ride. Shou et al. [32] develop an MDP to model31

e-hailing drivers’ sequential decision-making in searching for32

the next passenger. However, all the above literature assumes33

each driver is an independent agent and ignores the impact of34

competition on each driver’s policy. To capture competition35

among multiple drivers, a multi-agent optimization method is36

required for repositioning in e-hailing systems.37

Different from the aforementioned model-based reinforce-38

ment learning (RL) studies, model-free reinforcement learning39

approaches are also studied in repositioning problems. For40

traditional taxi drivers, Verma et al. [33] develop a Monte41

Carlo learning recommendation system for advising drivers42

to find customers from the historical trajectory. Gao et al.43

[34] utilize the Q-learning algorithm to improve taxi operation 44

efficiencies and increase the opportunities for passengers to 45

find an available taxi. Considering the multi-agent interaction 46

and E-hailing application, Lin et al. [35] propose a multi- 47

agent deep reinforcement learning (MARL) model to design 48

an effective fleet management strategy for e-haling platforms. 49

However, there are three key issues associated with Model- 50

based and Model-free RL-based repositioning approaches: (i) 51

an uncertain number of agents: the number of drivers (agents) 52

changes based on time and their received income, which makes 53

the e-hailing environment more challenging than traditional 54

MARL environments. In the e-hailing system, the drivers 55

can make working decisions (working at their preferred time 56

shift and area) and have heterogeneous market-behavioural 57

patterns (being full-time or part-time) based on their earn- 58

ing and preference [36], [37]. (ii) Curse of dimensionality: 59

the joint action space considering hundreds of drivers and 60

hundreds of repositioning destinations may cause scalability 61

issues even using multi-agent deep learning frameworks [38], 62

[39]. (iii) Service priorities: the e-hailing systems are highly 63

time-varying and passenger-centric markets. Passengers are 64

naturally impatient to receive a matching response and be 65

picked up in a reasonable time. It is expected that once their 66

patience is exhausted, they will cancel the trip order. Thus, 67

service priorities among different trip requests and regions 68

should be considered in real-time repositioning. 69

To tackle the above challenges, the integrated repositioning 70

approach is developed to consider both the anticipated long- 71

run efficiency and the real-time information (service priori- 72

ties) in a centralized and coordinated way. By modelling the 73

repositioning as a sequential decision-making problem, the 74

single-agent MDP model is employed to generate the optimal 75

policies and evaluate the long-term influence of repositioning 76

policies on the platform efficiency using historical data. By 77

accounting for the unmatched passengers’ waiting times in 78

real-time (the elapsed time from their order time), the real- 79

time matching between multiple drivers and repositioning 80

destinations is formulated as an optimization problem and 81

solved using binary linear programming (BLP). In the final 82

stage of the integrated repositioning, the priority is set to 83

immediate requests. The vacant vehicles with a non-zero BLP 84

solution are firstly repositioned to destinations with higher 85

service priorities. Then, the idle vehicles with all-zero BLP 86

solutions will follow the MDP solution to optimize the long- 87

term operational efficiency of the platform. 88

The contributions of this paper are three-fold: (1) Based 89

on the historical demand data and taxi trajectories, we design 90

a single-agent MDP model to evaluate the anticipated long- 91

run benefits of the repositioning. (2) To reposition multiple 92

drivers in real-time, we formulate the problem as a binary 93

linear programming (BLP) to minimize the total waiting times 94

of unmatched trip orders. Afterwards, the solutions of the 95

MDP and the BLP are integrated with different priorities in the 96

final repositioning solution. (3) We examine the performance 97

of the proposed approach in a detailed E-hailing simulator 98

based on the Manhattan road network. The proposed method 99

outperforms several repositioning benchmarks (such as Park- 100

ing, Random Walk, MDP only, and real-time only methods) 101
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with regard to both platform efficiency and users’ (passengers’1

and drivers’) experience.2

The remainder of the paper is structured as follows. Section3

II models the repositioning problem as a single-agent MDP4

and details the process of defining states, actions, and state5

transitions and extracting MDP parameters from historical6

data. Section III introduces a binary linear programming (BLP)7

for modelling the multi-driver repositioning problem in real-8

time and integrates the solutions of MDP and BLP as the final9

repositioning solution. Section IV evaluates the performance of10

the proposed method by using the data from Manhattan, New11

York. Finally, Section V concludes the study and discusses12

potential extensions for future work.13

II. Single-agent Markov Decision Process14

The objective of repositioning is to improve the platform15

efficiency (e.g., serving more orders and reducing the number16

of order cancellations) and to enhance the experience for both17

passengers and vehicles (e.g., reducing the waiting times and18

the vacant duration). To develop the repositioning method, we19

assume the following assumptions: (i) Although both Picking20

up and Serving stages are implemented in the full-service cycle21

of vehicles in the network, the routing problem is reduced to22

the shortest path problem and is not studied explicitly in this23

paper. (ii) When vehicles are in the Searching stage, they will24

follow the repositioning instructions given by the platform.25

(iii) The platform continuously determines the repositioning26

instructions for unassigned vacant vehicles. Vacant vehicles27

during repositioning are not considered for a new repositioning28

instruction. (iv) While on the way driving to the repositioning29

destination, vacant vehicles are considered available by the30

platform to be matched with the upcoming orders en-route.31

(v) Passengers are assumed to be impatient, and their requests32

will be cancelled if not being responded to in a reasonable33

time frame (e.g., less than 1 minute).34

Without loss of generality, we employ hexagonal grids35

𝐻 = {ℎ1, ..., ℎ𝑖 , ..., ℎ𝑁 } to represent an area unit in the digital36

map. Also, 𝑇 = {𝑡1, ..., 𝑡 𝑗 , ..., 𝑡𝑀 } is introduced to indicate37

the repositioning decision step. Let Δ be the time interval38

between each two steps; i.e., Δ = 𝑡 𝑗 − 𝑡 𝑗−1, ∀ 𝑗 ∈ 2, ..., 𝑀 .39

By viewing each vacant vehicle as an agent, we model the40

searching movement as a Markov Decision Process (MDP)41

endowed with a set of spatial actions. At the same time, the42

whole network is considered in the environment. The key43

elements of the MDP formulation are listed below.44

State: The state of the vehicle (agent) is defined as a three-45

dimensional vector 𝑠 = (ℎ, 𝑡, 𝜇), where ℎ ∈ 𝐻 is the current46

hexagon as the location of the vehicle, 𝑡 ∈ 𝑇 is the current47

time step, and 𝜇 ∈ {0, 1, 2} is the operating stages of the48

vehicle, where 𝜇 = 0, 1, and 2 indicate Searching, Picking up,49

and Serving, respectively. States (ℎ, 𝑡, 𝜇), 𝜇 = 1 or 2,∀ℎ ∈ 𝐻,50

∀𝑡 ∈ 𝑇 , which denote that the vehicle has been assigned to51

an order but not yet finished the ride are not considered for52

repositioning.53

Action: For any vacant vehicles in States 𝑠 = (ℎ, 𝑡, 0), ∀ℎ ∈
𝐻, ∀𝑡 ∈ 𝑇 , their action sets are:

𝐴(𝑠) = {ℎ} ∪ 𝐴neighbor (ℎ) ∪ 𝐴global (𝑡) (1)

where 𝐴neighbor (ℎ) is the set of neighboring hexagons of ℎ 54

and 𝐴global (𝑡) indicates the set of top-k hexagons with the 55

most unserved orders in current step 𝑡 (see Figure 2). The 56

purpose of introducing 𝐴global (𝑡) is to enable vacant vehicles 57

in distant locations to be repositioned to prosperous regions 58

faster. The effect of considering global actions is tested where 59

a Local MDP repositioning method (𝐴(𝑠) = {ℎ}∪𝐴neighbor (ℎ)) 60

is introduced as a benchmark in Section IV. 61
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Fig. 2. Red arrows are neighboring action set 𝐴neighbor (ℎ) and blue arrows
represent global hot-spot set 𝐴global (𝑡 ) comprised of top3 hexagons with the
most unmatched orders at time step 𝑡 . The darker color denotes the more
unmatched orders.

Reward: Reward function evaluates the policy and quan- 62

tifies the goal of the repositioning. In this work, reward 63

function 𝑅(𝑠, 𝑎) is defined as the possibility that the vehicle 64

can be matched after executing Action 𝑎,∀𝑎 ∈ 𝐴(𝑠) in State 65

𝑠 = (ℎ, 𝑡, 0), ∀ℎ ∈ 𝐻, ∀𝑡 ∈ 𝑇 . 66

𝑅(𝑠, 𝑎) =


Δ
𝜏 (𝑠,𝑎) if vehicle receives a dispatch order

0 otherwise
(2)

where 𝜏(𝑠, 𝑎) is the shortest travel time from hexagon ℎ of 67

State 𝑠 to repositioning destination hexagon 𝑎, and Δ is the 68

interval between each two repositioning time steps. Intuitively, 69

reward function 𝑅(𝑠, 𝑎) is defined as the ratio of Δ over 𝜏(𝑠, 𝑎) 70

to account for the repositioning duration. 71

State Transition, 𝑃(𝑠, 𝑎, 𝑠′ ) is the transition probability that 72

State 𝑠′ will be reached when Action 𝑎, 𝑎 ∈ 𝐴(𝑠), is taken in 73

State 𝑠. To define the transition process, we need to specify 74

several parameters first. 75

(i) Matching probability, 𝑝match (ℎ, 𝑡), estimates the proba-
bility that a vacant vehicle can be matched (by the central
platform using global information) to an order when the
vehicle is searching in hexagon ℎ at time step 𝑡. To simplify,
we assume that 𝑝match (ℎ, 𝑡) is associated with the number of
unserved orders and the number of vacant vehicles in ℎ at time
step 𝑡 [40]:

𝑝match (ℎ, 𝑡) = 1 − 𝑒−𝜃 ·
𝐶order (ℎ,𝑡 )
𝐶vehicle (ℎ,𝑡 ) (3)

where 𝐶order (ℎ, 𝑡) and 𝐶vehicle (ℎ, 𝑡) denote the number of 76

unserved orders and vacant vehicles in hexagon ℎ at time step 77
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𝑡, respectively. In addition, 𝜃 is the parameter that describes1

how matching probability changes with demand-supply ratio2

𝐶order (ℎ, 𝑡)/𝐶vehicle (ℎ, 𝑡).3

(ii) Pick-up probability, 𝑝pickup (ℎ, 𝑡, ℎ
′ ), denotes the proba-4

bility that a vacant vehicle in ℎ at time step 𝑡 being matched5

with an order with origin at ℎ
′ . This parameter can be6

approximated as the ratio of the number of vehicles matched7

in ℎ at time step 𝑡 to pick up orders in ℎ
′ , denoted as8

𝐶pickup_vehicle (ℎ, 𝑡, ℎ
′ ), to the total number of matched vehicles9

𝐶matched_vehicle (ℎ, 𝑡) in ℎ at time step 𝑡.10

𝑝pickup (ℎ, 𝑡, ℎ
′ ) =

𝐶pickup_vehicle (ℎ, 𝑡, ℎ
′ )

𝐶matched_vehicle (ℎ, 𝑡)
. (4)

(iii) Destination probability, 𝑝dest (ℎ, 𝑡, ℎ
′ ), measures the11

likelihood of the destination of an order being in ℎ
′ when12

the order is picked up at ℎ at time step 𝑡. This parameter13

can be estimated as the ratio of the number of orders ending14

in ℎ
′ which originate from ℎ at time step 𝑡, denoted as15

𝐶dest_order (ℎ, 𝑡, ℎ
′ ), to the number of all orders 𝐶all_order (ℎ, 𝑡)16

in ℎ at time step 𝑡.17

𝑝dest (ℎ, 𝑡, ℎ
′ ) = 𝐶dest_order (ℎ, 𝑡, ℎ

′ )
𝐶all_order (ℎ, 𝑡)

. (5)

It is evident that the order dispatching algorithm18

(e.g., greedy matching, first come first served, instantaneous19

batch optimal) significantly affects the matching probability20

and pick-up probability in the system. However, destination21

probability is only an endogenous function of spatio-temporal22

distribution of the demand of the E-hailing system. All the23

above probabilities can be readily estimated from the historical24

data.25

Figure 3 illustrates the outline of the state transition process.26

Suppose there is a vacant vehicle with State 𝑠0 = (ℎ0, 𝑡0, 0)27

takes Action 𝑎 to ℎ1, then if the vehicle is successfully matched28

with an order from ℎ2 to ℎ3, its state transition will be 𝑠0 →29

𝑠1 → 𝑠2 → 𝑠3, and transition probability 𝑃(𝑠0, 𝑎, 𝑠3) is defined30

as (See Figure 3 for the definition of States and time instances):31

𝑃(𝑠0, 𝑎, 𝑠3) = 𝑝match (ℎ1, 𝑡1) · 𝑝pickup (ℎ1, 𝑡1, ℎ2) · 𝑝dest (ℎ2, 𝑡2, ℎ3).
(6)

If the vehicle is not matched with an order at ℎ1, it is in State32

𝑠4 and may be repositioned at the next decision step. In this33

case, the transition probability is:34

𝑃(𝑠0, 𝑎, 𝑠4) = 1 − 𝑝match (ℎ1, 𝑡1). (7)

In particular, note that once a vehicle executes Action 𝑎 in35

𝐴global (𝑡), it is assumed it takes the shortest path to hexagon36

𝑎. Under this scenario, the state transition process is rather37

sophisticated and complex since we need to consider each38

passing hexagon. For simplicity, the interactions in the inter-39

mediate hexagons are overlooked, and only the transitions in40

𝑎 are considered.41

State-Action Value, 𝑄(𝑠, 𝑎) is the expected reward that the42

vehicle can achieve being in State 𝑠 after performing Action43

𝑎, which in the Bellman formulation [41] is,44

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +
∑︁
𝑠
′
𝛾𝑃(𝑠, 𝑎, 𝑠′ )𝑉∗ (𝑠′ ) (8)
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Fig. 3. Two scenarios of state transition: (i) a vehicle started with State 𝑠0,
took Action 𝑎 = ℎ1 and found the order heading from ℎ2 to ℎ3, the state
transition would be 𝑠0 → 𝑠1 → 𝑠2 → 𝑠3, (ii) a vehicle started with State 𝑠0,
took Action 𝑎 = ℎ1 and failed to be matched, the transition process would be
𝑠0 → 𝑠4.

where 𝛾 is a discount factor, and is set as a constant slightly 45

smaller than 1 to ensure the existence of a finite optimal 46

expected payoff. 47

Optimal State Value, 𝑉∗ (𝑠) is the optimal expected reward 48

for the vehicle at State 𝑠, 49

𝑉∗ (𝑠) = max
𝑎∈𝐴(𝑠)

{𝑄(𝑠, 𝑎)}. (9)

To efficiently solve the proposed MDP and estimate 𝑉∗ (𝑠) and 50

𝑄(𝑠, 𝑎), dynamic programming approach is employed [42]. 51

Since values of 𝑉∗ (𝑠), 𝑠 = (ℎ, 𝑡𝑀 , 0), ∀ℎ ∈ 𝐻 at step 𝑡𝑀 are 52

assumed to be zero, we can therefore solve the optimal value of 53

𝑉∗ (𝑠) and 𝑄(𝑠, 𝑎) by the backwards iteration as in Algorithm 54

1. 55

After solving the proposed MDP by Algorithm 1, optimal 56

policy 𝜋∗ (𝑠) is the policy that maximizes the expected reward 57

of State 𝑠, which is 58

𝜋∗ (𝑠) = argmax𝑎∈𝐴(𝑠) {𝑄(𝑠, 𝑎)}. (10)

However, note that the deterministic policy derived from 59

Equation 10 is optimal (and effective) when there is only one 60

vacant vehicle following the repositioning policy. As a simple 61

instance, under single-agent MDP, all the vehicles with the 62

same state might be repositioned to the same hexagon with 63

the maximum Q-value. This ‘over-reaction’ phenomenon is 64

undesirable since it may cause the hexagon with the max- 65

imum Q-value to become over-supplied in the future while 66

leaving the other hexagons under-supplied. On the other hand, 67

the e-hailing system is highly time-varying and passenger- 68

centric, thus the real-time information should be considered 69

to determine the service priority. Therefore, given interactions 70

and competitions among multiple vacant vehicles available for 71

repositioning, careful design of real-time optimization and its 72

integration with the developed single-agent MDP is required. 73

This issue is discussed in the next section. 74
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Algorithm 1 Dynamic Programming Algorithm
Input: State 𝑆, Action 𝐴, Transition Probabilities 𝑃, Reward

𝑅

Output: 𝑉∗ (𝑠) and 𝑄(𝑠, 𝑎)
1: Initialize two tables 𝑉∗ (𝑠) and 𝑄(𝑠, 𝑎)
2: Let 𝑉∗ (𝑠) = 0 for arbitrary State 𝑠 = (ℎ, 𝑡𝑀 , 0),∀ℎ ∈ 𝐻
3: for 𝑡 from 𝑡𝑀−1 to 𝑡1 do
4: for ℎ from ℎ𝑁 to ℎ1 do
5: 𝑠← (ℎ, 𝑡, 0)
6: Compute 𝑉∗ (𝑠) and 𝑄(𝑠, 𝑎) by Equations 8 and 9
7: end for
8: end for
9: return 𝑉∗ (𝑠) and 𝑄(𝑠, 𝑎)

III. Real-time Multi-driver repositioning1

To address the multi-driver repositioning problem in real-2

time, we develop an optimization program that takes the3

demand and supply real-time information as inputs and de-4

termines the repositioning actions as the optimal matching5

between vacant vehicles and hexagons. The repositioning is6

triggered in the form of sending instructions to idle vehicles7

that (i) are with no repositioning command (e.g., vehicles that8

just drop off a passenger) or (ii) have arrived at a previously9

announced repositioned destination.10

Assume at time 𝑘 vacant vehicles are collected as set 𝐷𝑘 and11

unmatched orders in ℎ are collected as set 𝑂ℎ
𝑘
. The variable12

𝑊ℎ,𝑘 is introduced to quantify the service priority of hexagon13

ℎ at time 𝑘 as:14

𝑊ℎ,𝑘 = (
∑︁
𝑜∈𝑂ℎ

𝑘

𝑤2
𝑜,𝑘) · 𝜂ℎ,𝑘 ,∀ℎ ∈ 𝐻 (11)

15

𝜂ℎ,𝑘 =
max( |𝑂ℎ

𝑘
| − 𝐶dropoff_driver (ℎ, 𝑘, 𝑘 + 𝛿), 0)

|𝑂ℎ
𝑘
|

,∀ℎ ∈ 𝐻.

(12)
Equation 11 defines 𝑊ℎ,𝑘 as the sum of squares of orders’16

waiting times factored by 0 ≤ 𝜂ℎ,𝑘 ≤ 1, where 𝑤𝑜,𝑘 is the17

waiting time of unmatched order 𝑜 at time 𝑘 . Equation 1218

defines 𝜂ℎ,𝑘 to account for the number of drivers dropping off19

passengers in ℎ within a short time range of (𝑘, 𝑘+𝛿] (e.g. 𝛿 =20

30 [s]). It is assumed that those vehicles (becoming vacant in21

ℎ during (𝑘, 𝑘 + 𝛿]) can pick up unmatched orders in ℎ. Thus,22

those unmatched orders are not needed to be considered in the23

service priority of hexagon ℎ at time 𝑘 . Further, |𝑂ℎ
𝑘
| denotes24

the number of unmatched orders in ℎ at time 𝑘 . Overall, the25

service priority of hexagon ℎ at time 𝑘 , 𝑊ℎ,𝑘 , considers both26

the number of unmatched orders and their waiting times such27

that a higher value means more vacant vehicles are needed to28

be repositioned to hexagon ℎ at time 𝑘 .29

Furthermore, it should be noted that if all vacant vehicles are30

directed to reposition to the hexagon with the maximum 𝑊ℎ,𝑘 ,31

this will result in the same ‘over-reaction’ situation similar to32

the single-agent MDP. To address this issue, the answer rate33

function 𝐴(·) is introduced below34

𝐴(𝐶vehicle (ℎ, 𝑘)
𝐶order (ℎ, 𝑘)

) = 1 − 𝑒−𝛽
𝐶vehicle (ℎ,𝑘)
𝐶order (ℎ,𝑘) , (13)

where 𝐶order (ℎ, 𝑘) and 𝐶vehicle (ℎ, 𝑘) denote the number of 35

unserved orders and vacant vehicles in hexagon ℎ at time step 36

𝑘 , respectively. Note that 𝛽 is the parameter that reflects how 37

answer rate changes with respect to the supply-demand ratio 38

𝐶vehicle (ℎ, 𝑘)/𝐶order (ℎ, 𝑘). 39

Answer rate estimates the probability that an order can be 40

matched with a driver when the order is waiting in hexagon 41

ℎ at time step 𝑘 . Intuitively, suppose the supply-demand ratio 42

increases infinitely as more and more drivers are repositioned 43

to the target hexagon. In that case, the answer rate will 44

approach 1, indicating that all passenger orders are fulfilled. 45

Since the answer rate is a marginal diminishing function, the 46

number of repositioned drivers should stay below a threshold 47

to avoid an oversupplied situation. By setting an upper-bound 48

answer rate �̂�, the maximum number of vehicles to be sent to 49

hexagon ℎ at time 𝑘 is 50

𝑐ℎ,𝑘 = |𝑂ℎ
𝑘 | · 𝐴

−1 ( �̂�) (14)

where 𝐴−1 (·) is the inverse function of answer rate function 51

and 𝐴−1 ( �̂�) is the prescribed maximum supply-demand ratio. 52

The goal of the real-time multi-driver optimization program
is to minimize the total waiting times of all unmatched orders
so as to reduce the number of order cancellations. Let 𝑥𝑑,ℎ
be a binary decision variable that equals 1 if vacant vehicle
𝑑 is repositioned to hexagon ℎ, and 0 otherwise. Let 𝜆 be the
optimization interval for real-time repositioning component.
In general, 𝜆 can be selected to be shorter than Δ and be
equal to the order dispatching interval. At each decision point
𝑘 = 0, 𝜆, 2𝜆, ..., 𝐾𝜆, the real-time multi-driver repositioning
problem is formulated as the following Binary linear program
(BLP):

max
∑︁
ℎ∈𝐻

𝑊ℎ,𝑘

𝜏(p𝑑,𝑘 , cℎ)
· 𝑥𝑑,ℎ (15)

s.t.
∑︁
𝑑∈𝐷𝑘

𝑥𝑑,ℎ ≤ 𝑐ℎ,𝑘 ,∀ℎ ∈ 𝐻 (16)∑︁
ℎ∈𝐻

𝑥𝑑,ℎ ≤ 1,∀𝑑 ∈ 𝐷𝑘 . (17)

The above BLP problem in Equations 15-17 is a maximum- 53

weight many-to-one matching problem [43] between vacant 54

vehicles 𝐷𝑘 and hexagons 𝐻, in which the weight function 55

between driver 𝑑 and hexagon ℎ is the ratio of 𝑊ℎ,𝑘 over 56

𝜏(p𝑑,𝑘 , cℎ), where 𝜏(𝑝𝑑,𝑘 , cℎ) is the shortest travel time from 57

vehicle 𝑑’s current position, p𝑑,𝑘 , to the center of hexagon ℎ, 58

cℎ. Equation 15 presents the objective function of the real-time 59

repositioning. There are two main factors considered in the 60

objective function: (i) repositioning priority, a hexagon with 61

higher𝑊ℎ,𝑘 is more likely to be the destination of repositioned 62

vacant vehicles, and (ii) repositioning duration, a hexagon 63

with shorter travel time from the vacant vehicle, 𝜏(·, ·), will 64

have a higher priority to be the repositioning destination of 65

that vehicle. Equation 16 ensures the number of repositioned 66

vehicles to hexagon ℎ is less than or equal to the maximum 67

capacity 𝑐ℎ,𝑘 . The constraint in Equation 17 guarantees vehicle 68

𝑑 will be assigned to at most one repositioning instruction. 69

Note that the exact solution of BLP (15-17) can be compu- 70

tationally expensive because of the overwhelming number of 71
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vacant vehicles and hexagons. To tackle this, we transform the1

problem to a Minimum Cost Flow (MCF) problem [44]. A2

classical MCF solver [45] is used to solve the problem and3

achieve the optimal solution 𝑋*. Afterwards, the following4

integrated repositioning approach is introduced:5

• For every vehicle 𝑑 that has a non-zero solution from BLP6

optimization, it would follow the repositioning instruction7

from 𝑋*.8

• For every vehicle 𝑑 that is not assigned a repositioning9

instruction from BLP optimization, that is, 𝑥𝑑,ℎ = 0, ∀ℎ ∈10

𝐻, it would follow the repositioning instruction by MDP11

solution as in Equation 10.12

Accordingly, the integrated approach allocates priority to each13

immediate request. The idle vehicles with a non-zero BLP14

solution are firstly repositioned to destinations with higher15

service priorities. Then, the idle vehicles with an all-zero BLP16

solution will follow the MDP solution to optimize the long-17

term operational efficiency of the platform.18

IV. Numerical Experiments19

In this section, we examine the performance of the proposed20

repositioning method. All the experiments are conducted in21

a simulation environment in which Manhattan island is con-22

sidered. The objective of the experiments is to evaluate the23

effectiveness of the proposed method and several benchmark24

methods in terms of platform efficiency and passengers’ and25

drivers’ experience.26

A. Network and data27

As shown in Figure 4, we partition the Manhattan area28

into 672 similar hexagons with a diagonal length of approxi-29

mately 340 [m]. The road network comprises 6,533 nodes and30

10,206 directed links, including streets, highways, bridges, and31

tunnels. The shortest paths and the travel time among nodes32

are pre-calculated and stored in a look-up table. Although the33

proposed method is based on the spatial hexagonal abstraction,34

the experiments are done on the detailed road network, con-35

sidering the repositioning, picking up, and serving procedures36

at link and node levels.37

The data used are Manhattan taxi datasets in December 202038

collected from Yellow Cab’s website1. The trip order data in-39

clude order location (origin and destination) and order request40

time. Origins and destinations are mapped into the nodes of the41

road network. Trip orders with the origin or destination falling42

outside the spatial boundary are disregarded. The simulation is43

conducted for a 3 hours period between 07:00 AM and 10:0044

AM. 150 vacant vehicles are initially generated in the road45

network at 07:00 AM randomly. The number and location of46

new arriving vehicles are considered to be stochastic and time-47

varying to replicate an erratic feature of the real world. The48

new vacant vehicles’ arriving rate is sampled from uniform49

discrete distributions with ranges between 7 and 19, 1 and50

7, and 5 and 12 units per minute during 07:00 AM - 07:3051

AM, 07:30 AM - 08:30 AM, and 08:30 AM - 10:00 AM,52

respectively. Furthermore, vehicles are assumed to leave the53

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Fig. 4. There are two spatial abstractions of the Manhattan area: (a) the
hexagonal grid and (b) the road link and node. Red, blue green parts in the
figures represent lower, central and upper Manhattan, respectively.

network once they receive no matching for more than 30 [min] 54

or stochastically (e.g., ∼10%) after each drop-off. This is to 55

replicate drivers being part-time contractors and sensitive to 56

platform efficiency. 57

Each passenger is assigned a matching patience time 58

stochastically drawn from a truncated Gaussian distribution in 59

the range of 0.5 [min] to 1 [min] with a mean of 0.75 [min] and 60

a standard deviation of 0.15 [min]. Similarly, a pickup patience 61

time is assigned to each passenger stochastically drawn from 62

a truncated Gaussian distribution in the range of 3 [min] to 7 63

[min] with a mean of 5 [min] and a standard deviation of 2 64

[min]. An order will be cancelled if not being matched or 65

picked up within the matching and pickup patience times, 66

respectively. The platform determines the order dispatching 67

every ten seconds based on the optimization model elaborated 68

in Order Dispatching. The ‘dispatching radius’ is set to 2 [km] 69

to avoid the wild goose chase problem (i.e., long-distance 70

dispatching). All the vehicles are assumed to follow a fixed 71

driving speed of 20 [km/h]. Future research can address 72

the time-varying effect of congestion on the operation of 73

repositioning methods. 74

B. Benchmarks and performance metrics 75

The performance of the following benchmark repositioning 76

methods are evaluated. 77

1) Parking: The platform advises vacant vehicles to park at 78

their current location once they drop off the passengers. 79

2) Random Walk: The platform advises vacant vehicles to 80

head toward a hexagon randomly among their neighbor 81

hexagons. 82

3) Local MDP: The platform chooses the repositioning 83

action for vacant vehicles according to the optimal policy 84

in Equation 10 without the set of global actions. 85
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4) MDP Walk: The platform chooses the repositioning1

action for vacant vehicles according to the optimal policy2

in Equation 10.3

5) Real-time: The platform advises vacant vehicle 𝑑 at time4

𝑘 to reposition by solving the following optimization5

program.6

max
∑︁
ℎ∈𝐻

𝑥𝑑,ℎ ·
𝑊ℎ,𝑘

𝜏(p𝑑,𝑘 , cℎ)
(18)

s.t.
∑︁
ℎ∈𝐻

𝑥𝑑,ℎ ≤ 1. (19)

If 𝑊ℎ,𝑘 = 0, ∀ℎ ∈ 𝐻 at time 𝑘 , the vehicles follow Ran-7

dom Walk repositioning. This benchmark only utilizes8

real-time information and does not incorporate the MDP9

model.10

6) Real-time Multi-driver: The platform advises vacant ve-11

hicles to reposition according to the proposed method (in-12

tegration of MDP and real-time components), explained13

in Section III.14

Note that if any vacant vehicles are failed to be matched15

after arriving at its repositioning destination, they will be16

repositioned again by the same method.17

We select Random Walk (see Parameter Estimation) as18

the initial repositioning method in the simulator to generate19

10 weekdays (1st to 14th) training data. Subsequently, the20

matching, pick-up, destination probabilities and answer rate21

can be estimated from the training data. The single-agent MDP22

is solved by setting 𝛾 to 0.8 and the top three hot spots as23

global actions. Further, we introduce four new days (15th,24

16th, 21st, and 22nd of Dec.) as the test data. We adopt seven25

evaluation metrics:26

1) Avg. Response. The average number of orders that are27

successfully served per test day.28

2) Avg. Cancellation. The average number of orders that29

are canceled per test day.30

3) Avg. Response time. The average response time to31

orders from requesting (arriving in the network) to being32

matched.33

4) Avg. Pick-up time. The average pick-up time of orders34

from being responded to being picked up. It is worth35

mentioning this is equal to the average deadheading time36

for vehicles.37

5) Avg. Occupied rate. The average occupied rate per38

vehicle, defined as the ratio of the time spent on serving39

orders to the total operating time of the vehicle.40

6) Avg. Leaving vehicles. The average number of leaving41

vehicles per test day.42

7) Avg. Repositioning distance. The average distance of the43

repositioning instruction per vehicle.44

C. Results45

Table I summarizes the numerical results of the six repo-46

sitioning methods, where parameters Δ, 𝜆, 𝛿, and �̂� are47

fine-tuned based on multiple rounds of testing. The Real-48

time Multi-driver repositioning method results in the highest49

number of served passengers and the lowest number of order50

cancellations, 85.1% average response rate and 14.9% average 51

cancellation rate. These indicate a higher profit and customer 52

retention for the platform. More specifically, the proposed 53

method achieves the lowest cancellation rate in 77% of 672 54

hexagons in the network; see Figure 5 in which the cancella- 55

tion rates of all hexagons with each repositioning method is 56

depicted. A notable observation in Figure 5 is that with the 57

proposed repositioning method, the hexagons with relatively 58

higher cancellation rates are mostly located at the edge of 59

the network where connectivity is low. This is expected as 60

areas with more connectivity have a higher chance to be the 61

destination or on the route of repositioning vehicles. 62

The highest contractor (i.e., driver) retention is also achieved 63

by using the proposed real-time multi-driver repositioning; out 64

of 1576.3 individual drivers (averaged over the 4 test days), 65

762.5 of them exit the network during the 3 hours. That is 66

19% more retention rate with respect to the parking strategy. 67

In addition, the time drivers carry a passenger increases to 68

61.5% of their service period in the network. The proposed 69

repositioning method also leads to significant improvement 70

in passengers’ experience by achieving the lowest average 71

response and pickup times; an average overall wait time of 72

155.7 [s] compared to the 231.4 [s] wait time of the parking 73

method (33% and 9% improvements with respect to the 74

Parking and Real-time only methods, respectively). Another 75

observation is that though MDP Walk and Real-time methods 76

could achieve promising performance, they would lead to extra 77

repositioning mileage for each vehicle. The main reason is 78

that most vacant vehicles under the two policies are more 79

likely to go to the global hot spots. In contrast, the proposed 80

repositioning method would balance lower repositioning costs 81

and better system performance. 82

Results in Table I further highlight an insignificant im- 83

provement in the six evaluation metrics between Parking and 84

Random Walk methods, specifically taking into account that 85

Parking method does not require repositioning trips. This 86

suggests that random cruising might not be a more productive 87

repositioning method than parking because it will impose fuel 88

costs on the drivers and congestion externalities to the urban 89

network. It also should be noted that MDP walk method 90

that incorporates global actions, see Equation 1, can bring 91

improvements in all evaluation metrics compared to the Local 92

MDP method that represents a local myopic historical data- 93

based repositioning solution. 94

Figure 6 presents the average operational numbers of vehi- 95

cles and orders (on four testing days) per minute of the six 96

repositioning methods. In the right half of the figure, three 97

categories are waiting (blue), matched (pink), and cancelled 98

(teal blue) orders over the three testing hours. On the left side, 99

there are three categories idle (cyan), repositioned (light pink), 100

and occupied (orange) drivers over the three testing hours. 101

The supply and demand are not uniformly distributed during 102

the operational period, which creates the ’over-supply period’ 103

(07:00 AM to 07:30 AM with a negligible number of waiting 104

orders and a considerable number of idle and repositioned 105

vehicles) and the ’supply-shortage period’ (08:00 AM to 09:00 106

AM). Note that the number of parking drivers (cyan bars) in 107

Real-time Multi-driver is significantly more than in Real-time, 108
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Fig. 5. Comparison of the cancellation rate of the six repositioning methods. The darker color denotes the higher cancellation rate. (a-f) correspond to Parking,
Random Walk, Local MDP, MDP Walk, Real-time, and Real-time Multi-driver repositioning methods, respectively.
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Fig. 6. Average numbers of orders and vehicles per minute of six methods within four testing days. (a-f) correspond to Parking, Random Walk, Local MDP,
MDP Walk, Real-time, and Real-time Multi-driver repositioning methods, respectively.
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TABLE I
The results with different repositioning methods during 07:00 am -10:00 am. The numbers in the parentheses are average response rate and

average cancellation rate of the platform. 10 weekdays training data are used to training the Q functions in single-agent MDP, and four new
days are tested by different repositioning methods. (*: Δ = 1 [min]; **: Δ = 1 [min], 𝛿 = 30 [s]; ***: Δ = 1 [min], 𝜆 = 10 [s], 𝛿 = 30 [s], �̂� = 0.99).

Methods
Avg. Avg. Avg. Avg. Avg. Avg. Avg.

Response Cancellation Response Pick-up Occupied Leaving Repositioning

time (s) time (s) rate vehicles (veh) distance (km)

Parking 4792.5 (62.7%) 2844.2 (37.2%) 7.4 224.0 55.9% 940.0 0.0

Random Walk 4909.5 (64.2%) 2733.5 (35.8%) 6.1 220.0 56.0% 916.0 0.3

Local MDP 5385.0 (70.4%) 2259.5 (29.6%) 3.6 204.1 58.3% 886.0 0.2

MDP Walk (*) 5587.2 (73.1%) 2057.0 (26.9%) 3.0 194.4 59.1% 889.5 0.6

Real-time (**) 6236.5 (81.6%) 1408.0 (18.4%) 1.7 169.3 60.0% 784.0 0.7

Real-time Multi-driver (***) 6506.2 (85.1%) 1138.2 (14.9%) 0.8 154.9 61.5% 762.5 0.3

which is consistent with the observation of Avg. repositioning1

distance in Table I. Thus, it can be observed that the Real-2

time Multi-driver method consistently outperforms other repo-3

sitioning methods by achieving the most number of matched4

orders and the least number of waiting and cancelled orders.5

This shows considerable operation efficiency by implementing6

the proposed repositioning method. In summary, the proposed7

method brings remarkable improvements to both platform8

efficiency (serving more orders, reducing order cancellations,9

and maintaining sufficient fleet size) and users’ experience10

(reducing passengers’ waiting times and increasing drivers’11

occupied rate).12

V. Summary and Future Research13

This paper has proposed a novel method for the centralized14

e-hailing platform to reposition vacant vehicles to curb the15

network’s mismatch between supply and demand. The pro-16

posed method is designed to optimize long-term operational17

efficiency and immediate demand satisfaction simultaneously.18

A single-agent MDP model achieves the former to evaluate the19

long-term influence of the repositioning on platform efficiency.20

The MDP model is trained on 10-day simulation data and aims21

to derive the optimal repositioning policy. Considering the fact22

that passengers are impatient and will cancel their order if23

not being matched in a reasonable time, the real-time multi-24

driver repositioning is addressed by a binary linear program25

(BLP) to prioritize the repositioning destinations based on the26

passengers’ waiting times. The final repositioning method is27

the integration of the solutions of the MDP and real-time28

components. Through extensive numerical experiments based29

on field data of Manhattan, the proposed method improves30

both platform efficiency and users’ (passengers’ and drivers’)31

experience.32

Various extensions can be explored in the future. An al-33

ternative way to curb the supply and demand mismatch is34

dynamic fleet size management methods such as incentivizing35

when, where, and which vehicles join and exit the system.36

One possible way can be a joint spatial-temporal monetary37

incentive by offering a bonus to drivers who complete a38

repositioning instruction. There is also a strong motivation39

in the combined design of order dispatching and vehicle40

repositioning. For instance, the dispatching optimization can 41

prioritize trip orders based on their drop-off destination as po- 42

tential repositioning destinations. Another possible extension 43

lies in adopting multi-agent reinforcement learning (MARL) 44

and grouping drivers by their working behaviors and driving 45

patterns. To do so, the refined analyses that consider the 46

market-behavioural differences among various driver groups 47

[37] are required before modelling. 48
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Appendix 54

Order dispatching 55

For order dispatching, we assume that the e-hailing platform 56

attempts to minimize the total pick-up time or the waiting 57

times of passengers (deadheading of vehicles). At time 𝑘 , we 58

set 𝑈𝑜,𝑑 as the reciprocal of pick-up time between unmatched 59

order 𝑜 and driver 𝑑: 60

𝑈𝑜,𝑑 =
1

𝜏(𝑠𝑡𝑜, 𝑝𝑑,𝑘)
(20)

where 𝜏(𝑠𝑡𝑜, 𝑝𝑑,𝑘) denotes the travel time from order 𝑜’s 61

origin 𝑠𝑡𝑜 to driver 𝑑’s current position 𝑝𝑑,𝑘 . 62

Assume at time 𝑘 vacant vehicles are collected as set 𝐷𝑘 63

and unmatched orders are collected as set 𝑂𝑘 . The dispatching 64

problem can be formulated as the following Binary linear 65

program (BLP): 66

max
∑︁
𝑑∈𝐷𝑘

∑︁
𝑜∈𝑂𝑘

𝑦𝑜,𝑑 ·𝑈𝑜,𝑑 (21)

s.t.
∑︁
𝑜∈𝑂𝑘

𝑦𝑜,𝑑 ≤ 1;∀𝑑 ∈ 𝐷𝑘 (22)∑︁
𝑑∈𝐷𝑘

𝑦𝑜,𝑑 ≤ 1;∀𝑜 ∈ 𝑂𝑘 (23)

𝑦𝑜,𝑑 ∈ {0, 1};∀𝑜 ∈ 𝑂𝑘 ,∀𝑑 ∈ 𝐷𝑘 (24)
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where the first constraint guarantees that each driver will1

dispatch to at most one order or continue unmatched at this2

dispatching instance; the second constraint ensures that each3

order is assigned to at most one driver or is unserved until4

next decision round; and the third constraint sets the decision5

variables are binary.6

If we abstract unmatched drivers set 𝐷𝑘 and unmatched7

orders set 𝑂𝑘 as two sets of vertices, and valid matching8

pairs as the set of edges, the BLP program in Equations 21-249

can be represented as a bipartite graph matching problem. In10

general, the initial bipartite graph is a fully connected graph11

where every possible edge between drivers and orders exists.12

To reduce computational complexity, we further introduce13

a ‘dispatching radius’ [46] to eliminate edges whose pick-14

up distance exceeds the dispatching radius (e.g., 2 [km]).15

Consequently, we can find a more compact graph and employ16

the Kuhn-Munkres (KM) algorithm [47] to solve it.17

Parameter Estimation18

Parameters 𝜃 and 𝛽 in Equations 3 and 13 can be esti-19

mated respectively by fitting matching probability and answer20

rate using 10 weekdays training data. We have tested three21

repositioning methods, Parking, Random Walk, and Real-time,22

to estimate the parameters and calculate the R-squared and23

RMSE. The result of the estimation can be seen in Table II.24

As for the goodness-of-fit statistics, all three policies have an25

R-squared value higher than 0.74. It can be observed that the26

repositioning strategies may have only a modest effect on 𝜃27

and 𝛽.28

TABLE II
The estimated parameters from the training data

Policy 𝜃 𝑅2 𝑅𝑀𝑆𝐸

Parking 0.51 0.74 0.23

Random Walk 0.48 0.80 0.11

Real-time 0.44 0.77 0.19

Policy 𝛽 𝑅2 𝑅𝑀𝑆𝐸

Parking 0.82 0.86 0.09

Random Walk 0.89 0.96 0.06

Real-time 0.79 0.82 0.14
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