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A B S T R A C T

In a competitive e-hailing market, each participating platform can only utilize a portion of
the total demand (passengers) and supply (drivers), in which this fragmentation leads to
market inefficiencies. Therefore in this study, we propose a decentralized dynamic cooperation
mechanism, inspired by capacity-sharing strategies, between two platforms to mitigate market
fragmentation. With the proposed mechanism, the platforms can offer to (i) refer their passen-
gers and (ii) temporarily (for a single trip) lease idle vehicles to the other platform, at varying
optimized prices. In its essence, whenever a platform is under-supplied while the other platform
is over-supplied in a localized area, the proposed mechanism could help the platforms bridge
their supply and demand. The proposed mechanism is constructed as an optimization problem
incorporated in the batch-matching algorithm. We test the proposed cooperation mechanism in
a disaggregated dynamic model. We consider multiple scenarios, which include symmetrical and
asymmetrical duopolies. The performance of the proposed cooperation mechanism is compared
to equivalent non-cooperative duopolies and equivalent monopolies. We show that the proposed
cooperation mechanism leads to simultaneous improvements in all performance indicators for
all stakeholders (passenger pickup time, passenger cancellations, driver income, and platform
profitability) compared to equivalent non-cooperative duopolies. Additionally, the proposed
cooperation mechanism is shown to be especially effective as the asymmetry between the
duopoly increases.

1. Introduction

In the e-hailing market, Transport Network Companies (TNCs) provide digital platforms to passengers who need a ride and drivers
who want to provide service. The passengers make trip requests in real-time, and the platforms need to match them to available
drivers on demand. This real-time matching nature means the platforms may benefit from network effects (Wu et al., 2020) on
both the demand (passengers) and supply (drivers) sides, as more optimal matches can be established with more active passengers
and/or vehicles. However, when there are more than one platform in the e-hailing market, passengers and drivers may opt to use
one platform over the others. Hence, each platform can only utilize a portion of the total demand and supply. In other words,
the market is fragmented. A fragmented market dilutes the network effect (Zhang et al., 2019) which can be otherwise enjoyed
by a single platform that has access to all the resources. Additionally, it may worsen the spatial and temporal imbalance between
supply and demand. Therefore, for a given (exogenous) potential passenger demand and driver supply in the e-hailing market, the
operational efficiency would be reduced with the increasing number of platforms. Consequently, it may lead to increased passenger
pickup time, more passenger cancellations, reduced platform profitability, and lowered driver income. In this study, we propose a
dynamic cooperation mechanism between two platforms to mitigate these inefficiencies.
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A number of studies have investigated the inefficiencies due to the fragmentation in the multi-platform e-hailing market. Séjourné
t al. (2018) considered the case where the demand is exogenously split between multiple platforms. They defined the price of
ragmentation as the increase in supply rebalancing cost incurred by the platforms, compared to the cost of a single platform serving
he aggregate demand. They found that the additional cost due to fragmentation either vanishes or grows unbounded depending
n the nature of the exogenous demand. Similarly, Kondor et al. (2022) measured the cost of market fragmentation or the cost
f non-coordination as the additional number of vehicles needed when the platforms only have partial shares of the demand.
hey showed that each additional operator in the market can increase the total number of vehicles needed by up to 67%. Zhou
t al. (2022a) on the other hand took a different approach. They considered the Nash equilibrium solutions of the competitive
ide-sourcing market, where no platform can improve its profitability by unilaterally changing its strategy. They found that as the
umber of platforms increases, the key market measures (such as consumer surplus, platform profits, and social welfare) displayed
iverse trends of changes. These trends are depended on whether the on-demand matching between passengers and drivers exhibits
ncreasing, constant, or decreasing returns to scale.

A monopoly is exempt from the inefficiencies due to fragmentation, however, it may not be a desired alternative to a multi-
latform e-hailing market. Based on standard economic models, a single monopoly creates a deadweight loss which indicates the
arket is inefficient (Harberger, 1954). Moreover, a monopoly can also engage in price discrimination to extract consumer surplus.
herefore, it is more desirable to design a mechanism that could address the inefficiencies of fragmentation in the multi-platform
-hailing market. Bao et al. (2022) and Zhou et al. (2022b) considered a third-party integrator, while (Cohen and Zhang, 2022)
onsidered introducing a new joint service between competitors. All of these strategies were reported to improve social welfare.
nspired by the capacity-sharing strategy (e.g., Li and Zhang, 2015), we propose a novel ‘referral’ cooperation mechanism between

two competitive platforms in the e-hailing market.
Under capacity-sharing strategies, companies with insufficient capacity may borrow (and may pay for) excess capacity from

other companies. Capacity-sharing strategies are common in many industries. Some examples of capacity-sharing strategies include:
code-sharing in the airline industry (Hu et al., 2013), inventory trade in the retail industry (Çömez et al., 2012), capacity reservation
between shipping forwarders (Guo and Wu, 2018), utilization of dedicated bus lanes for ride-hailing services (Fayed et al., 2023),
etc. Capacity-sharing strategies are popular as they are effective in addressing a mismatch between supply and demand. Notably, the
spatial and temporal imbalance between supply and demand is commonly recognized in the e-hailing market (Zha et al., 2018; Zhu
et al., 2021; Chen et al., 2021b; Li et al., 2021; Beojone and Geroliminis, 2023b; Zhu et al., 2023; Valadkhani and Ramezani, 2023).
Hence, we introduce the capacity-sharing strategy to the e-hailing market. In its essence, whenever a platform is under-supplied
while the other platform is over-supplied in a localized area, the mechanism should help the platforms to bridge their supply and
demand.

More specifically, the mechanism is formulated in a ‘referral’ approach. With the proposed cooperation mechanism, the platforms
have the option to refer their passengers to the other platform (i.e. offering excess capacity). When a platform intends to refer a
passenger, it asks and pays (less than what is originally charged from the passenger to be profitable) the other platform to service
the passenger. The platforms are driven by their objectives of profit maximization. Therefore, the platform may choose to exercise
the option and refer a passenger if it is economically optimal, for example when there are no nearby idle vehicles. Furthermore,
the receiving platform can choose not to accept the referral if it is not profitable. Similarly, suppose a platform finds one of its idle
vehicles to be far away from any of the passenger requests. In that case, the platform can offer to temporarily (for a single trip)
lease this idle vehicle to the other platform. This proposed cooperation mechanism requires minimal changes to the existing platform
operations, and the passengers and drivers need not be aware of the mechanism. In practice, firms may have different objectives.
For example, at one extreme, a firm may wish to eliminate its competition, and a corresponding strategy may be to engage in price
wars, which defeat the purpose of a cooperation strategy. In this study, we wish to avoid speculating on each platform’s intentions,
and we assume the platforms are purely short-term profit driven. Additionally, the proposed cooperation mechanism allows both
companies to optimize for themselves, rather than a central integrator that dictates how they should cooperate. Therefore, it should
encourage cooperation even when there is a dominant firm. Correspondingly, this proposed cooperation mechanism treats both
platforms fairly regardless of the size and dominance of each platform. It only requires the participating platforms to act rationally
to maximize their own short-term profit, and not engage in activities with the goal of sabotaging the other party.

We utilize a disaggregated dynamic model to test the performance of the dynamic cooperation mechanism. We consider multiple
scenarios, which include symmetrical and asymmetrical duopolies. In this study, we assume platforms in asymmetrical duopolies
are differentiated by their respective operational fleet sizes and potential passenger demands, ceteris paribus. Whereas platforms
in symmetrical duopolies have identical operational fleet sizes and potential passenger demands. The performance of the proposed
cooperation mechanism is compared to equivalent standard duopolies and equivalent monopolies. In the disaggregated dynamic
model, we assume the passengers choose one of the platforms based on given probabilities upon entering the market. They are also
assumed to be impatient and service quality sensitive, i.e. they may cancel and leave the platform if they are not matched by the
platform in a timely manner (Xu et al., 2022), or if they are not satisfied with the match established by the platform (Wang et al.,
2019). We consider the passengers to be heterogeneous who have different levels of patience and values of time. The passengers also
have varying origins and destinations, along with different times for when they enter the market. We use real passenger demand
data (New York City yellow taxi trip record) for these trip characteristics. The platforms are considered to adopt batch matching
algorithms, where the waiting passengers and the idle vehicles are accumulated and matched by the platforms periodically over
time. The cooperation mechanism is integrated with the platforms’ matching algorithm. During each platform’s matching instance,
the algorithm maximizes the expected profit of the current batch, considering the cost of cancellation as well as the cost due to
2

deadheading. The output of algorithm simultaneously decides (i) which of its own passengers and vehicles should be matched, (ii)
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which of its own passengers and vehicles should be offered for referral and lease to the other platform, and at what price, and (iii)
which of the referred passengers and leasable vehicles from the other platform should be accepted and utilized.

The remainder of the paper is structured as follows. In Section 2, we present the disaggregated dynamic model of the e-hailing
arket, and elaborate on the interactions among all market participants. In Section 3, we formulate the cooperation mechanism. In

ection 4, we present and discuss the results. Finally, in Section 5, we conclude and summarize the study.

. Dynamic model of the e-hailing market

.1. The passengers

In the proposed disaggregated dynamic model, we consider the passengers to be heterogeneous. When there is more than one
latform in the market, we assume that each passenger uses only one platform based on given probabilities without multi-homing.
he passengers join the platform through their mobile applications and specify their origins and destinations. Immediately after,
he platform would attempt to match the passenger (see Sections 2.4 and 3), and indicate to the passengers that matching is in
rogress. The passengers would wait to be matched. Consider the case of a duopoly, we denote the set of all passengers waiting
o be matched who joined platform 1 and 2 as 1 =

{

𝑝1,1,… , 𝑝𝑚,1
}

and 2 =
{

𝑝1,2,… , 𝑝𝑛,2
}

, respectively. An individual waiting
passenger in platform 1 is denoted as 𝑝𝑖,1 ∈ 1, and an individual waiting passenger in platform 2 is denoted as 𝑝𝑗,2 ∈ 2.

The passengers are impatient when they are waiting to be matched. If they are not matched by the platform within a certain
time frame, they will cancel their orders and use other modes of travel such as public transport (Type I cancellation). Consider
passenger 𝑝𝑖,1, we denote his/her match waiting patience as 𝑚̄𝑖,1. The passengers are also sensitive to service quality and cost. When
the platform matches a passenger, 𝑝𝑖,1, to a vehicle, 𝑣𝑎,1, the passenger will be notified and presented with the trip details on their
mobile application. The trip details include the exact waiting time to be picked up, 𝑤𝑎,1

𝑖,1 , and fare price, 𝑓𝑖,1. The passenger then
has the option to cancel the trip if they are not satisfied with the service offered by the platform (Type II cancellation). In practice,
some platforms impose penalties on passengers who cancel their trips after being matched. In this study, we assume there is no such
penalty for passengers associated with this cancellation. We use utility-based choice modeling to predict the passenger’s behavior
in accepting the offered trip by the platform. We assume that the passenger perceives the utility of the trip offered and all other
modes of travel as follows:

Trip offered∶ 𝑢s𝑖,1 = 𝛽s𝑖,1 − 𝛽w𝑖,1𝑤
𝑎,1
𝑖,1 − 𝛽f𝑖,1(𝑓𝑖,1 − 𝑓 f

𝑖,1) + 𝜖s𝑖,1 (1)

Other modes∶ 𝑢o𝑖,1 = 𝑢o + 𝜖o𝑖,1, (2)

where 𝛽s𝑖,1 and 𝑢o are the utility constants of the two options, while 𝛽w𝑖,1 and 𝛽f𝑖,1 are the per unit time and per unit price utility
coefficients for passenger 𝑝𝑖,1, respectively. 𝜖s𝑖,1 and 𝜖o𝑖,1 are random error terms for the two choices, which each is assumed to be
identically and independently distributed with a Gumbel distribution. In this study, we do not consider pricing strategies (which
have been thoroughly investigated by the literature, e.g. Wang et al. (2016)), whereas we considered a defined price structure and
fixed pricing parameters (over time for a platform in an experiment) for trip fares (See Section 2.3). Without loss of generality, we
assume there is a ‘fair’ price (𝑓 f

𝑖,1) for each passenger based on their trip length, and they may gain or lose utility depending on the
actual price asked by the platform. Then the probability of the passenger accepting the trip offered by the platform, Prs𝑖,1, can be
calculated:

Prs𝑖,1 =
𝑒𝜃𝑢

s
𝑖,1

𝑒𝜃𝑢
s
𝑖,1 + 𝑒𝜃𝑢

o
𝑖,1
, (3)

where 𝜃 is the scale factor, which is assumed to be 1 in this study. After accepting the trip, the passenger will be stationary at their
origin to wait for the dispatched vehicle for pick up, and they will leave the platform once they have arrived at their destination.

2.2. The vehicles

Numerous studies focused on the nuances of drivers’ choices in the e-hailing market (e.g., Ramezani et al., 2022; Fielbaum and
Tirachini, 2021; Jian et al., 2016). However, in this paper, we adopt a more straightforward approach to model drivers’ behavior.
In this study, we assume that the platforms have full control of their fleet of vehicles. That is, the drivers will always accept the
trips designated by the platforms, and they follow the routes directed by the platform, which is the shortest-time path between any
two locations. The vehicles are also assumed to be stationary (see Gao et al. (2022), also the alternative, vehicle repositioning, has
been studied extensively, e.g. Syed et al. (2021)) after the completion of each trip as the drivers wait to be matched with the next
passenger by the platform. Therefore, the three states that a vehicle could be in are: idle, matched (dispatched but unoccupied),
and occupied. The idle vehicles are considered for matching by the platform. We denote a single idle vehicle from the set of all idle
vehicles working in platforms 1 and 2 as 𝑣𝑎,1 ∈ 1 =

{

𝑣1,1,… , 𝑣𝑘,1
}

and 𝑣𝑏,2 ∈ 2 =
{

𝑣1,2,… , 𝑣𝑙,2
}

, respectively. Once a vehicle is
matched, and the corresponding passenger accepts the trip, then the vehicle is dispatched to pick up the passenger. As the vehicle
arrives at the location of the passenger, the vehicle becomes occupied and heads for the passenger’s destination. Drivers are paid
based on the time they spend in the matched and occupied states, we detail their wage structure in Section 2.3.
3
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2.3. The platforms

The platforms are aware of the origins and destinations of their own waiting passengers, as well as the locations of their idle
ehicles. Let us consider a waiting passenger 𝑝𝑖,1 ∈ 1, and an idle vehicle 𝑣𝑎,1 ∈ 1. We denote the origin and destination of 𝑝𝑖,1, and
he position of 𝑣𝑎,1 as 𝑂𝑖,1, 𝐷𝑖,1, and 𝑉𝑎,1, respectively. Furthermore, the travel time of the shortest path between any two locations,
uch as from 𝑂𝑖,1 to 𝐷𝑖,1, is denoted as |𝑂𝑖,1𝐷𝑖,1|.

We assume the fare structure for both platforms consists of a fixed base price (𝜆1) and a trip duration-dependent variable price
the price per unit time is 𝜆2). Note that these two parameters will remain constant for a platform during the span of an experiment,
hough it might be different for each platform under different experiment settings. Using platform 1 as an example, it is shown as
ollows:

𝑓𝑖,1 = 𝜆1,1 + 𝜆2,1|𝑂𝑖,1𝐷𝑖,1|. (4)

ote that for the ‘fare’ price introduced in Eq. (1), we denote the ‘fare’ price parameters as 𝜆f1 and 𝜆f2 respectively.
In this study, we assume that drivers are paid for any time they spend en-route, which includes the states they spent matched

and occupied (see for instance Jiao and Ramezani, 2022). We assume the payment per unit time driver spent matched and occupied
are 𝜆3 and 𝜆4, respectively. Therefore, if Platform 1 dispatches 𝑣𝑎,1 to pick up 𝑝𝑖,1 given that the passenger has accepted the trip,
hen the wage to be paid, 𝑐𝑎,1𝑖,1 , and the profit made by Platform 1, 𝜋𝑎,1

𝑖,1 , can be determined respectively as follows:

𝑐𝑎,1𝑖,1 = 𝜆3,1|𝑉𝑎,1𝑂𝑖,1| + 𝜆4,1|𝑂𝑖,1𝐷𝑖,1| (5)

𝜋𝑎,1
𝑖,1 = 𝑓𝑖,1 − 𝑐𝑎,1𝑖,1 . (6)

There are two reasons for the adoption of this wage structure. Firstly, since we assume the platforms have full control of their
leet and the drivers always accept the designated trips, then it would be unfair to dispatch a vehicle to a far away passenger without
aying for the empty miles traveled. Secondly, since the empty miles have to be paid for (i.e., penalized), it would be illogical to
ispatch vehicles to passengers that are far away. Therefore, if a platform aims to maximize profit, this wage structure non-explicitly
owers the pickup time and curbs the wild goose chase (WGC) problem.

.4. Matching algorithms

We assume that the platforms utilize a batch matching algorithm, which is used in practice by platforms such as Didi, and
onsidered by a number of studies (e.g. Chen et al., 2021a; Yang and Ramezani, 2022; Tafreshian and Masoud, 2020; Alisoltani et al.,
022; Qin et al., 2021). With a batch matching algorithm, the idle vehicles and waiting passengers are accumulated and matched by
ach of the platforms every 𝛥 seconds. There are many ways a platform can match the passengers and the vehicles depending on the
latform’s objectives. This Section demonstrates a standard myopic profit-maximizing algorithm. The actual matching algorithms
sed in this study will be introduced later in Section 3, however, the standard myopic profit-maximizing algorithm here is the
oundation upon which the latter algorithms are built. Consider the given sets 1 and 1 for platform 1. Let 1 be the set of edges
onnecting each element of 1 and 1, where an edge (𝑝𝑖,1, 𝑣𝑎,1) ∈ 1 connects 𝑝𝑖,1 ∈ 1 and 𝑣𝑎,1 ∈ 1. The standard myopic
rofit-maximizing matching algorithm can be formulated as follows:

max
𝑥𝑎,1𝑖,1

∑

(𝑝𝑖,1 ,𝑣𝑎,1)∈1

𝜋𝑎,1
𝑖,1 𝑥

𝑎,1
𝑖,1 (7)

s.t.
𝑘
∑

𝑎=1
𝑥𝑎,1𝑖,1 ≤ 1 ∀ 𝑝𝑖,1 ∈ 1 (8)

𝑚
∑

𝑖=1
𝑥𝑎,1𝑖,1 ≤ 1 ∀ 𝑣𝑎,1 ∈ 1 (9)

𝑥𝑎,1𝑖,1 ∈ {0, 1} ∀ 𝑝𝑖,1 ∈ 1, 𝑣𝑎,1 ∈ 1 (10)

In Eq. (7), 𝑥𝑎,1𝑖,1 is the binary decision variable, with 𝑥𝑎,1𝑖,1 = 1 indicating that designating 𝑣𝑎,1 to pick up 𝑝𝑖,1 is in the optimal
olution. Eqs. (8) and (9) are constraints that ensure each passenger and each vehicle is matched at most once. After each execution
f the algorithm, the platform then notifies the corresponding matched passengers of the trip details (Section 2.1). It is after the
assengers’ acceptance, that the vehicles shall be dispatched to deliver the service.

. The cooperation mechanism: Passenger and vehicle referral

.1. Formulation

To address the inefficiencies due to market fragmentation, we propose a referral cooperation mechanism inspired by the capacity-
haring strategies. Note that for brevity, the mechanism is formulated from the perspective of platform 1 in this section, though
latform 2 follows the same procedures.
4
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The mechanism is integrated with the disaggregated dynamic model and works as follows. After platform 1 receives a trip request
rom passenger 𝑝𝑖,1, then the platform has the option to refer this passenger to platform 2. The platform may intend to exercise this
ption to maximize profit, for example, if there are no close-by vehicles to 𝑝𝑖,1, then it might be more beneficial to let platform 2

provide the service. Platform 1 would still charge the passenger their trip fare 𝑓𝑖,1, then upon successful passenger referral, it would
make a payment, 𝑓 r

𝑖,1, to platform 2 to service this passenger, thus making a profit of 𝜋r
𝑖,1 = 𝑓𝑖,1 −𝑓 r

𝑖,1. From platform 2’s perspective,
e denote the passenger offered for referral as 𝑝𝑖,1̂, and the price associated as 𝑓 r

𝑖,1̂
(note 𝑓 r

𝑖,1̂
= 𝑓 r

𝑖,1). Platform 2 would determine if
it is economically optimum to service this passenger. If indeed it is and vehicle 𝑣𝑏,2 is dispatched, then platform 2 makes a profit of
𝜋𝑏,2
𝑖,1̂

= 𝑓 r
𝑖,1̂

− 𝑐𝑏,2
𝑖,1̂

.
The decisions for the referrals (both the referrer’s offer and the recipient’s acceptance/rejection) are determined during the

respective platform’s matching. We assume the two platforms’ matching instances are staggered. That is, after platform 1’s initial
matching and referral, the decision from platform 2 regarding the referrals would be made before platform 1’s next matching
instance, and vice versa. Therefore, if platform 2 declines (accepts) to service 𝑝𝑖,1̂, then platform 1 will (will not) include 𝑝𝑖,1 in
the next matching instance.

A similar operation can be applied to the drivers. Platform 1 has the option to offer any of its vehicles for lease (short-term for
only one ride) to platform 2, and vice versa. Using a vehicle from platform 1, 𝑣𝑎,1, as an example, when platform 2 receives the
lease offer, we denote the vehicle as 𝑣𝑎̂,1̂. If platform 2 wishes to utilize this vehicle to service one of its passengers, 𝑝𝑗,2, then it not
only has to pay for the driver’s en-route wages 𝑐𝑎̂,1̂𝑗,2 , but also an extra leasing fee, 𝑐r

𝑎̂,1̂
, set by platform 1. Therefore, upon a successful

lease, platform 1 makes a profit of 𝜋r
𝑎,1 = 𝑐r𝑎,1 (again, 𝑐r𝑎,1 = 𝑐r

𝑎̂,1̂
), whereas platform 2 would make a profit of 𝜋𝑎̂,1̂

𝑗,2 = 𝑓𝑗,2 − 𝑐𝑎̂,1̂𝑗,2 − 𝑐r
𝑎̂,1̂

.
The leased vehicle is returned to platform 1 once the passenger is dropped off. Similarly, if platform 2 decides not to use the vehicle,
then platform 1 will be informed prior to its next matching instance.

Formally, we consider the following sets. The waiting passengers from platform 1, 𝑝𝑖,1 ∈ 1 =
{

𝑝1,1,… , 𝑝𝑚,1
}

; the waiting
passengers that platform 1 has referred to platform 2, 𝑝𝑖,1̂ ∈ 1̂ =

{

𝑝1,1̂,… , 𝑝𝑚̂,1̂
}

; the referral prices associated with each of

the referred passengers, 𝑓 r
𝑖,1̂

∈ 1̂ =
{

𝑓 r
1,1̂

,… , 𝑓 r
𝑚̂,1̂

}

; the idle vehicles from platform 1, 𝑣𝑎,1 ∈ 1 =
{

𝑣1,1,… , 𝑣𝑘,1
}

; the idle

vehicles platform 1 offered to lease to platform 2, 𝑣𝑎̂,1̂ ∈ 1̂ =
{

𝑣1,1̂,… , 𝑣𝑘̂,1̂
}

, and the lease prices associated with these vehicles,

𝑐r
𝑎̂,1̂

∈ 1̂ =
{

𝑐r
1,1̂
,… , 𝑐r

𝑘̂,1̂

}

. Note that at any time, 𝑃1 ∩ 𝑃1̂ = ∅ and 𝑉1 ∩ 𝑉1̂ = ∅, that is a passenger (vehicle) cannot simultaneously be
considered for matching by both platforms. Similarly we have the followings sets for platform 2: 𝑝𝑗,2 ∈ 2 =

{

𝑝1,2,… , 𝑝𝑛,2
}

, 𝑝𝑗,2̂ ∈

2̂ =
{

𝑝1,2̂,… , 𝑝𝑛̂,2̂
}

, 𝑓 r
𝑗,2̂

∈ 2̂ =
{

𝑓 r
1,2̂

,… , 𝑓 r
𝑛̂,2̂

}

, 𝑣𝑏,2 ∈ 2 =
{

𝑣1,2,… , 𝑣𝑙,2
}

, 𝑣𝑏̂,2̂ ∈ 2̂ =
{

𝑣1,2̂,… , 𝑣𝑙,2̂
}

, and 𝑐r
𝑏̂,2̂

∈ 2̂ =
{

𝑐r
1,2̂

,… , 𝑐r
𝑙,2̂

}

.
The cooperation mechanism is incorporated in the matching algorithm, from the perspective of platform 1, it can be formulated

as follows. Let 1 be the set of edges connecting each element from 1 and 1, ̄1 be the set of edges connecting each element from
2̂ and 1, and ̃1 be the set of edges connecting each element from 1 and 2̂. The profit maximizing matching and the cooperation
mechanism are simultaneously determined through the following optimization (the bipartite graph is visualized in Fig. 1):

max
𝑥𝑎,1𝑖,1 ,𝑥

𝑎,1
𝑗,2̂

,𝑥𝑏̂,2̂𝑖,1 ,𝑥
r
𝑖,1 ,𝑥

r
𝑎,1 ,𝑓

r
𝑖,1 ,𝑐

r
𝑎,1

∑

1

𝜋𝑎,1
𝑖,1 𝑥

𝑎,1
𝑖,1 +

∑

̄1

𝜋𝑎,1
𝑗,2̂

𝑥𝑎,1
𝑗,2̂

+
∑

̃1

𝜋𝑏̂,2̂
𝑖,1 𝑥

𝑏̂,2̂
𝑖,1 +

𝑚
∑

𝑖=1
𝐸[𝜋r

𝑖,1]𝑥
r
𝑖,1 +

𝑘
∑

𝑎=1
𝐸[𝜋r

𝑎,1]𝑥
r
𝑎,1 (11)

s.t.
𝑘
∑

𝑎=1
𝑥𝑎,1𝑖,1 +

𝑙
∑

𝑏̂=1

𝑥𝑏̂,2̂𝑖,1 + 𝑥r𝑖,1 = 1 ∀ 𝑝𝑖,1 ∈ 1 (12)

𝑘
∑

𝑎=1
𝑥𝑎,1
𝑗,2̂

≤ 1 ∀ 𝑝𝑗,2̂ ∈ 2̂ (13)

𝑚
∑

𝑖=1
𝑥𝑎,1𝑖,1 +

𝑛̂
∑

𝑗=1

𝑥𝑎,1
𝑗,2̂

+ 𝑥r𝑎,1 = 1 ∀ 𝑣𝑎,1 ∈ 1 (14)

𝑚
∑

𝑖=1
𝑥𝑏̂,2̂𝑖,1 ≤ 1 ∀ 𝑣𝑏̂,2̂ ∈ 2̂ (15)

𝑥𝑎,1𝑖,1 , 𝑥
𝑎,1
𝑗,2̂

, 𝑥𝑏̂,2̂𝑖,1 , 𝑥
r
𝑖,1, 𝑥

r
𝑎,1 ∈ {0, 1} (16)

Eq. (11) maximizes the expected profit to be generated from the current matching instance. The first term ∑

1 𝜋
𝑎,1
𝑖,1 𝑥

𝑎,1
𝑖,1 represents

the total profit to be made from the matches between platform 1’s own passengers and vehicles. The terms ∑

̄1 𝜋
𝑎,1
𝑗,2̂

𝑥𝑎,1
𝑗,2̂

and
∑

̃1 𝜋
𝑏̂,2̂
𝑖,1 𝑥

𝑏̂,2̂
𝑖,1 represent the total profit to be made by platform 1 from matching its own vehicles to platform 2’s referred passengers,

and matching its own passengers to platform 2’s leasable vehicles, respectively. While ∑𝑚
𝑖=1 𝐸[𝜋r

𝑖,1]𝑥
r
𝑖,1 and ∑𝑘

𝑎=1 𝐸[𝜋r
𝑎,1]𝑥

r
𝑎,1 are the

expected profit to be made by platform 1 by offering to refer its passengers and lease its vehicles, respectively.
Eq. (12) is the constraint that ensures each of platform 1’s own passengers will be matched to at most one vehicle, and if they

are not matched then they will be referred to platform 2. Note that the option for not referring nor matching an own passenger,
i.e., ‘holding’ this passenger now to match them in the future, is not considered, since the option to refer can always generate a
5

higher expected profit than to ‘hold’. This conjecture is further explained in Section 3.3. Eq. (13) is the constraint that dictates each
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Fig. 1. Visualization of the bipartite graph for the matching optimization problem integrating the referral cooperation mechanism. The graph is from the
perspective of platform 1, where the referred passengers and leasable vehicles are offered by platform 2.

of the referred passengers will be matched to at most one vehicle. Eqs. (14) and (15) are similar constraints for the vehicles. Finally,
Eq. (16) is the binary constraint for the decision variables.

After solving the optimization, the binary decision variables 𝑥𝑎,1𝑖,1 , 𝑥𝑎,1
𝑗,2̂

, and 𝑥𝑏̂,2̂𝑖,1 indicate the matches between platform 1’s own
idle vehicles and its own passengers, platform 1’s own idle vehicles and referred passengers from platform 2, and platform 1’s own
passengers and leasable vehicles from platform 2, respectively. The matched passengers are informed of their trip details and they
shall make their decisions to accept or decline (based on the Eqs. (1)–(3)). The designated vehicles will then be dispatched to service
those accepted passengers.

Consider the referred passengers from platform 2 in set 2̂, for those who are not matched by platform 1, they will be returned
to platform 2 and rejoin the set 2. Similarly, vehicles offered for lease in 2̂ either get successfully leased and become en-route to
pick up designated passengers, or they are returned to the platform 2 and rejoin the set 2. Thus, both 2̂ and 2̂ become empty
sets after platform 1’s matching.

The binary decision variables 𝑥r𝑖,1 and 𝑥r𝑎,1, indicate which of platform 1’s own passengers and vehicles shall be offered for referral
and lease, respectively to platform 2. While the decision variables 𝑓 r

𝑖,1 and 𝑐r𝑎,1 determine the referral and lease prices associated.
These decision variables, 𝑥r𝑖,1, 𝑥

r
𝑎,1, 𝑓

r
𝑖,1, and 𝑐r𝑎,1, allow the sets 1̂, 1̂, 1̂, and 1̂ to be constructed for platform 2 to perform the

same optimization in its following matching instance. In Section 3.2, we introduce the idea of ‘holding’ a passenger or vehicle.
That is, the platform purposefully does not match certain passengers or vehicles in the current instance, and instead ‘holds’ them
for future rounds of matching. In Sections 3.3 and 3.4, we extend this idea to formulate the expressions for the expected profit of
offering referrals and leases, 𝐸[𝜋r

𝑖,1] and 𝐸[𝜋r
𝑎,1], as functions of 𝑓 r

𝑖,1 and 𝑐r𝑎,1.

3.2. Expected ‘holding’ profit

Consider a standard batch matching algorithm, where waiting passengers are periodically matched to idle vehicles. It is not
guaranteed that every single waiting passenger will be matched to a vehicle, for example when there are more waiting passengers
than idle vehicles in the batch. However, even when there are sufficient idle vehicles in the batch, it still may not be preferable to
match all the waiting passengers (Ramezani and Valadkhani, 2023). The reason being that it may lead to inefficient matching or
WGC problem, where vehicles are dispatched to pick up far-away passengers, which would deteriorate the overall efficiency and
lead to fewer available vehicles in the future (Ouyang and Yang, 2023). Conversely, it is also true that it may not be preferable to
match all the idle vehicles when there is a surplus of waiting passengers. Under the fare and wage structure considered in this study,
where the profit earned depends on the deadhead and could be negative, we consider an expected profit approach to systematically
determine which passengers or vehicles should not be matched, and instead ‘hold’ them for future rounds of matching.

Let us define the value of a passenger as the expected profit to be earned from them. It is clear that the value of a passenger
remains even if they are not matched in the current instance, as it is still possible to match them in the future. Though the passenger’s
residual value, that is the expected profit to be earned from them, given they are not matched in the current instance, may diminish
given that there will be an increase in the likelihood of cancellation. If the platform considers the long-term cost of cancellation,
the residual value may even become negative. However, when it is anticipated that the residual value is greater than the profit
of any of the current matches, then the passenger should be ‘held’ for future rounds of matching instead of being matched now.
In other words, it is plausible and rational for the platform to generate a higher expected profit by intentionally not matching a
passenger. Such a scenario is likely due to the available idle vehicles being relatively far away from the passengers in the present
6
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which reduces profitability. Note that, this approach may not be directly applicable if the wage of the driver is a percentage based
on the fare, since the residual value of a passenger will always be lower than the profit generated by matching them now. Though
an artificial penalty could be imposed on the deadhead to utilize the method.

The approach requires the residual value of the passengers or the expected profit of ‘holding’ the passengers to be determined.
onsider passenger 𝑝𝑖,1 (with origin 𝑂𝑖,1 and destination 𝐷𝑖,1), we formulate the expected ‘holding’ profit of him/her, 𝐸∗[𝜋h

𝑖,1], as
follows:

𝐸∗[𝜋h
𝑖,1] = 𝐸[Prm𝑖,1] ⋅ (𝑓𝑖,1 − 𝐸[𝑐𝑖,1]) − (1 − 𝐸[Prm𝑖,1]) ⋅ 𝑐c, (17)

where 𝐸[Prm𝑖,1] is the expected probability that the passenger will eventually be matched and serviced. 𝑐c is the long-term cost of
cancellation. 𝐸[𝑐𝑖,1] is the expected cost of servicing the passenger which is dependent on the expected pickup time of the passenger:

𝐸[𝑐𝑖,1] = 𝜆3𝐸[𝑤𝑖,1] + 𝜆4|𝑂𝑖,1𝐷𝑖,1|. (18)

We estimate the two expected values, 𝐸[Prm𝑖,1] and 𝐸[𝑤𝑖,1]. A platform that has more information on the passengers may obtain a
better estimation of 𝐸[Prm𝑖,1]. For example, if a platform keeps track of a passenger’s user history, it may be able to improve the
estimation of their patience level, their potential decisions on possible matches, etc. Consequently, the platform can better estimate
the probability that the passenger will eventually be matched and serviced, considering Type I and Type II cancellations. In this
study, 𝐸[Prm𝑖,1] is estimated as the 10-minute moving average number of passenger acceptance divided by the 10-minute moving
average number of passenger demand. It implies that the platform does not hold any information of passengers on an individual
level, and 𝐸[Prm𝑖,1] is only dependent on the immediate past performance of the platform; consequently all passengers in the same
batch shall have the same value of 𝐸[Prm𝑖,1]. There are also many ways of estimating 𝐸[𝑤𝑖,1]. For example, 𝐸[𝑤𝑖,1] can be dependent
on each passenger’s location; if they are in an area with a higher density of vehicles, they may have a lower expected pickup time.
In this study, for the sake of computation efficiency, 𝐸[𝑤𝑖,1] is also estimated as the 10-minute moving average of measured pickup
times.

Similarly, not matching a vehicle at the current matching instance still generates an expected profit. When formulating the
expected profit for ‘holding’ a vehicle, there are a few points of consideration. Firstly, the income for the platform does not come
directly from the vehicles but from passengers, therefore it is only when a vehicle is utilized to service a passenger, the income
is realized. Additionally, we do not need to worry about vehicles leaving the platform, such as passenger cancellations, as it is
assumed that the vehicles will always remain in the market. We consider a vehicle, 𝑣𝑎,1, is matched and dispatched now, then it
will be utilized from now, 𝑡0, to 𝑡0 + 𝛥𝑡1, to service passenger, 𝑝𝑖,1, and generate a profit of 𝜋𝑎,1

𝑖,1 . However, if the same vehicle is
dispatched to the same passenger generating the same profit but at a later time 𝑡0 + 𝛥𝑡2 (𝛥𝑡2 < 𝛥𝑡1), then the vehicle is not fully
utilized in the time period 𝑡0 to 𝑡0 + 𝛥𝑡1. Hence we assume that the equivalent expected profit of matching the vehicle in the future
is 𝛥𝑡1−𝛥𝑡2

𝛥𝑡1
𝜋𝑎,1
𝑖,1 . We thus formulate the expected profit of ‘holding’ the vehicle, 𝐸∗[𝜋h

𝑎,1], as follows:

𝐸∗[𝜋h
𝑎,1] = 𝐸[𝜋𝑎,1]𝐸[Prm𝑎,1]

𝑇
∑

𝑠=1

𝑇 − 𝑠
𝑇

(1 − 𝐸[Prm𝑎,1])
𝑠−1, (19)

where 𝐸[𝜋𝑎,1] is the profit that the vehicle is expected to earn for the platform, 𝐸[Prm𝑎,1] is the expected probability that the vehicle
will be matched in each of the following matching instances, and 𝑇 is the number of matching instances in the average time a
ehicle is utilized to service one passenger. We estimate 𝐸[𝜋𝑎,1] by measuring the 10-minute moving average of profits earned by
he vehicles; while 𝐸[Prm𝑎,1] is estimated as the probability a vehicle is matched in the previous matching instance.

Finally, as the expected ‘holding’ profits for passengers and vehicles are established, it is important to realize that each trip is
omprised of one passenger and one vehicle, and the matching algorithm needs to factor it in. As an example, consider a passenger
nd a vehicle each have an expected ‘holding’ profit of $1, and the platform can also generate $1 profit by matching them. Then
he choices of ‘holding’ them or matching them should be indifferent to the platform. If the passenger and the vehicle have different
xpected ‘holding’ profits, then we assume the indifferent matching profit is the average of the two values. Therefore, the expected
holding’ profits of the passenger and the vehicle perceived by the platform, 𝐸[𝜋h

𝑖,1] and 𝐸[𝜋h
𝑎,1], are

𝐸[𝜋h
𝑖,1] = 0.5𝐸∗[𝜋h

𝑖,1] (20)

𝐸[𝜋h
𝑎,1] = 0.5𝐸∗[𝜋h

𝑎,1]. (21)

3.3. Expected passenger referral profit

Logically, if a platform is expected to generate a higher referral profit than any of the possible matches to a passenger or to
‘hold’ the passenger, then there is no reason to service this passenger itself. This is reflected in the optimization in Eqs. (11)–(16).
Therefore, in order for the platform to decide whether to refer a passenger, as well as the associated referral prices, it is necessary
to determine the expected profits to be generated for those actions. From the perspective of platform 1 as the referrer, we formulate
the expected profit for referring passenger 𝑝𝑖,1 to platform 2, 𝐸[𝜋r

𝑖,1], as follows:

𝐸[𝜋r ] = 𝐸[Prr ] ⋅ 𝜋r + (1 − 𝐸[Prr ]) ⋅ 𝐸[𝜋h ]. (22)
7
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Fig. 2. (a) The expected probability of the other platform accepting the passenger referral (𝐸[Prr𝑖,1]) as a function of the referral price (𝑓 r
𝑖,1). 𝐸∗[Prr𝑖,1] is the

highest possible expected probability the referral would be accepted. (b) The expected probability of the other platform accepting the vehicle lease (𝐸[Prr𝑎,1]) as
a function of the lease price (𝑐r𝑎,1). 𝐸

∗[Prr𝑎,1] is the highest possible expected probability the lease would be accepted.

In Eq. (22), 𝐸[Prr𝑖,1] is the expected probability of platform 2 accepting the referral. Given the acceptance, 𝜋r
𝑖,1 is the referral profit to

be generated where 𝜋r
𝑖,1 = 𝑓𝑖,1−𝑓 r

𝑖,1. If the referral is not accepted, then passenger 𝑝𝑖,1 is reconsidered in platform 1, and the passenger
will still be possible to be matched. Hence, the residual value of the passenger remains even if the referral is not successful. This
residual value is equivalent to the perceived expected profit of ‘holding’ this passenger now to match them in the future, 𝐸[𝜋h

𝑖,1].
Since 𝑓 r

𝑖,1 is a decision variable, without any optimization, it is straightforward to show that if 𝑓 r
𝑖,1 is selected such that

𝜋r
𝑖,1 = 𝐸[𝜋h

𝑖,1], then 𝐸[𝜋r
𝑖,1] = 𝐸[𝜋h

𝑖,1]. Therefore, we show that optimizing 𝑓 r
𝑖,1 will generate an expected referral profit at least equal to

the perceived expected profit of ‘holding’ the passenger. Ergo, the option to refer is always as good as the option to ‘hold’ a passenger
if not superior. Consequently, the optimization problem in Eqs. (11)–(16) does not consider the option to ‘hold’. It therefore implies,
when comparing to a non-cooperating duopoly, whenever a passenger has to be ‘hold’ for future matching, whether due to it being
non-profitable, or there are simply not enough vehicles, the cooperation mechanism that allows the option to refer this passenger
can always be expected to generate an equal or higher profit.

To complete the formulation of Eq. (22), we need to obtain the expected probability of platform 2 accepting the referral, 𝐸[Prr𝑖,1],
which is a function of 𝑓 r

𝑖,1. The lower the 𝑓 r
𝑖,1, which is the fee paid to platform 2 to service the passenger, the less likely platform

2 would accept the referral and vice versa. The two critical values of 𝑓 r
𝑖,1 are 𝑓 r

𝑖,1 = 𝜆4|𝑂𝑖,1𝐷𝑖,1| and 𝑓 r
𝑖,1 = 𝑓𝑖,1. For 𝑓 r

𝑖,1 ≤ 𝜆4|𝑂𝑖,1𝐷𝑖,1|,
𝐸[Prr𝑖,1] = 0, since 𝜆4|𝑂𝑖,1𝐷𝑖,1| is the minimum possible wage that has to be paid to the driver. For 𝑓 r

𝑖,1 ≥ 𝑓𝑖,1, platform 1 would make
a non-positive profit if the referral is accepted, hence there is no reason for platform 1 to offer a fee higher than the amount charged
to the passenger. We assume that between the range 𝜆4|𝑂𝑖,1𝐷𝑖,1| ≤ 𝑓 r

𝑖,1 ≤ 𝑓𝑖,1, 𝐸[Prr𝑖,1] follows a transformed exponential function:

𝐸[Prr𝑖,1] =
(𝑒𝑓

r
𝑖,1−𝛽1 ) − 1
𝛽2

, (23)

where 𝛽1 = 𝜆4|𝑂𝑖,1𝐷𝑖,1| and 𝛽2 depends on the limiting value of 𝐸[Prr𝑖,1] (see Fig. 2(a)). We denote the limiting value of 𝐸[Prr𝑖,1]
as 𝐸∗[Prr𝑖,1], which is the highest possible expected probability that platform 2 will accept the referral. It occurs when platform 1
offers to pay the full fare to platform 2 and is not making a referral profit. When platform 1 offers to pay the full fare, the referred
passenger is indifferent to platform 2’s own passengers from platform 2’s perspective. Therefore, we assume 𝐸∗[Prr𝑖,1] is estimated
using 10-minute average matchings divided by the average number of waiting passengers. However, the 𝑓 r

𝑖,1 that maximizes Eq. (22)

is independent of 𝛽2, as we take the derivative
d(𝐸[𝜋r𝑖,1])

d(𝑓 r
𝑖,1)

= 0, which yields:

𝑓 r
𝑖,1 = 𝑊 (𝑒𝛽1−𝑓𝑖,1+𝐸[𝜋h𝑖,1]+1) + 𝑓𝑖,1 − 𝐸[𝜋h

𝑖,1] − 1, (24)

where 𝑊 (.) is the product log function. Therefore, by solving Eq. (24), the optimal price of referral, 𝑓 r∗
𝑖,1, can be determined.

Consequently, by solving Eq. (22) at such price, the maximum expected profit of referral, 𝐸∗[𝜋r
𝑖,1], can be obtained.

3.4. Expected vehicle lease profit

Similarly, when the platform offers to lease vehicle 𝑣𝑎,1, an expected profit, 𝐸[𝜋r
𝑎,1] is to be generated, which is formulated as

follows:

𝐸[𝜋r ] = 𝐸[Prr ] ⋅ 𝜋r + (1 − 𝐸[Prr ]) ⋅ 𝐸[𝜋h ]. (25)
8
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Table 1
Dynamic model passenger choice parameters. 𝜇, 𝜎, 𝑎, and 𝑏 are the mean, standard deviation, lower bound, and upper bound, respectively
for the bounded normal distributions.
Parameter Description Unit 𝜇 𝜎 𝑎 𝑏

𝑚̄ Passenger matching patience s 60 10 40 80
𝑢o Utility constant for other travel modes – −6 0.5 −7 −5
𝛽s Utility constant for ridesourcing trip – 0 0 – –
𝛽w Utility coefficient for pickup time 1/min 1 0 – –
𝛽f Utility coefficient for trip fare 1/$ 3.2 0.2 2.8 3.6
𝜆f1 Fair fixed base price $ 2.55 0 – –
𝜆f4 Fair trip duration variable price $/min 0.6 0 – –

𝐸[Prr𝑎,1] is the probability of platform 2 accepting the lease offer, which is dependent on the lease price 𝑐r𝑎,1. Recall that 𝑐r𝑎,1 = 𝜋r
𝑎,1.

Similar to the previous section, it is straightforward to show that an optimized 𝑐r𝑎,1 will generate an expected lease profit at least
equal to the perceived expected profit of ‘holding’ the vehicle. Additionally, the higher the 𝑐r𝑎,1, the less likely platform 2 would
accept the offer. We assume that if 𝑐r𝑎,1 exceeds the profit utilizing a vehicle is expected to earn, 𝐸[𝜋𝑎,1], then platform 1 will expect
platform 2 to not accept the lease. Furthermore, 𝑐r𝑎,1 should be non-negative for platform 1 to generate a lease profit. Hence, for
r
𝑎,1 > 𝐸[𝜋𝑎,1], 𝐸[Prr𝑎,1] = 0, and for 0 ≤ 𝑐r𝑎,1 ≤ 𝐸[𝜋𝑎,1], we assume 𝐸[Prr𝑎,1] to have the following functional form as is visualized in
ig. 2(b):

𝐸[Prr𝑎,1] =
(𝑒𝛽3−𝑐

r
𝑎,1 ) − 1
𝛽4

, (26)

where 𝛽3 = 𝐸[𝜋𝑎,1], and 𝛽4 is dependent on the calibrated highest expected probability that platform 2 will accept a vehicle lease,
∗[Prr𝑎,1], which occurs when there is no associated cost. Again, when platform 1 offers to lease a vehicle with no associated cost,

his vehicle is indifferent to platform 2’s own vehicles from platform 2’s perspective. Therefore, we assume 𝐸∗[Prr𝑎,1] is estimated
sing 10-minute average matchings divided by the average number of idle vehicles. The 𝑐r𝑎,1 that maximizes Eq. (25) is independent

of 𝛽4, as we take the derivative
d(𝐸[𝜋r𝑎,1])

d(𝑐r𝑎,1)
= 0, which yields:

𝑐r𝑎,1 = −𝑊 (𝑒−𝛽3+𝐸[𝜋h𝑎,1]+1) + 𝐸[𝜋h
𝑎,1] + 1. (27)

We denote this optimal lease price as 𝑐r∗𝑎,1. Subsequently, solving Eq. (25) at such lease price allows the highest expected vehicle
lease profit, 𝐸∗[𝜋r

𝑎,1] to be determined.

3.5. Transformation of the optimization problem

For each individual waiting passenger, we can obtain the optimal values for the passenger referral price and the corresponding
maximized expected passenger referral profit, i.e., 𝑓 r∗

𝑖,1 and 𝐸∗[𝜋r
𝑖,1], respectively. For each individual idle vehicle, we can obtain the

vehicle lease price and the corresponding maximized expected vehicle lease profit, i.e., 𝑐r∗𝑎,1 and 𝐸∗[𝜋r
𝑎,1], respectively.

Consequently, we can transform Eq. (11) into an equivalent optimization problem as follows, with the same constraints as in
Eqs. (12)–(16), and with 𝑓 r

𝑖,1 = 𝑓 r∗
𝑖,1 ∀ 𝑝𝑖,1 ∈ 1 and 𝑐r𝑎,1 = 𝑐r∗𝑎,1 ∀ 𝑣𝑎,1 ∈ 1:

max
𝑥𝑎,1𝑖,1 ,𝑥

𝑎,1
𝑗,2̂

,𝑥𝑏̂,2̂𝑖,1 ,𝑥
r
𝑖,1 ,𝑥

r
𝑎,1

∑

1

𝜋𝑎,1
𝑖,1 𝑥

𝑎,1
𝑖,1 +

∑

̄1

𝜋𝑎,1
𝑗,2̂

𝑥𝑎,1
𝑗,2̂

+
∑

̃1

𝜋𝑏̂,2̂
𝑖,1 𝑥

𝑏̂,2̂
𝑖,1 +

𝑚
∑

𝑖=1
𝐸∗[𝜋r

𝑖,1]𝑥
r
𝑖,1 +

𝑘
∑

𝑎=1
𝐸∗[𝜋r

𝑎,1]𝑥
r
𝑎,1 (28)

s.t. (12)-(16)

. Numerical experiments

.1. Experiment setup

We test the proposed cooperation mechanism in a simulator, where the Manhattan New York road network is transformed into
directed graph. We assume that every link in the road network has a unique and time-invariant speed at which vehicles travel,

.e. the effects of congestion (Alisoltani et al., 2021; Beojone and Geroliminis, 2021, 2023a; Zhang and Zhang, 2022; Zhang and
ie, 2022) are not considered in this study. For the passenger choice model introduced in Section 2.1, they are consistent for all

est cases considered. Some of the parameter values for each individual passenger are drawn from bounded normal distributions.
he mean, standard deviations, and bounds for those parameters are shown in Table 1.

We consider 7 test cases, the platforms adopt the same pricing and wage parameters for the first 6 test cases. In the final test
ase, we consider that one of the platforms’ prices is slightly higher than the other one. The parameter values associated with pricing
nd wage structures (Section 2.3) in all 7 test cases are shown in Table 2.

We consider four symmetrical duopoly test cases, where the fleet sizes operated by both platforms are identical, and the
9

robability of the passengers choosing each platform is 50%. We also consider three asymmetrical duopoly test cases, where the
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Table 2
Platform pricing and wage structure parameters for the 7 test cases.

Platform Parameter Description Unit Test cases 1–6 Test case 7

1

𝜆1,1 Fixed base price $ 2.55 2.55
𝜆2,1 Trip duration variable price $/min 0.6 0.6
𝜆3,1 Wage per unit time driver spent matched $/min 0.48 0.48
𝜆4,1 Wage per unit time driver spent occupied $/min 0.48 0.48

2

𝜆1,2 Fixed base price $ 2.55 3
𝜆2,2 Trip duration variable price $/min 0.6 0.6
𝜆3,2 Wage per unit time driver spent matched $/min 0.48 0.48
𝜆4,2 Wage per unit time driver spent occupied $/min 0.48 0.48

Table 3
The supply and demand for the six test cases considered. We denote the fleet sizes for each of
the two platforms as 𝑉 t

1 and 𝑉 t
2 respectively. We denote the probability of passengers choosing

each of the two platforms as Pr1 and Pr2, respectively.
Test case no. 𝑉 t

1 𝑉 t
2 Pr1 Pr2

1 1600 1600 50% 50%
2 2000 2000 50% 50%
3 2400 2400 50% 50%

4 2400 1600 60% 40%
5 2400 1600 50% 50%
6 2400 1600 40% 60%

7 2000 2000 50% 50%

fleet sizes for the two platforms and/or the probability of the passengers choosing each platform are different. We summarize the
details of the test cases in Table 3. We use real passenger demand data from 7–11 am on 3/Feb/2015 (Tuesday) based on New York
City yellow taxi trip records (71692 trip requests). The data includes the time, origin, and destination of each passenger request.
We assume the passengers select one of the platforms based on given probabilities. Vehicles are added at random locations at the
beginning of the simulation until the desired fleet size is achieved. The total rate of vehicle addition into the market is 4 vehicles
per second. When they are added to the network, they start to randomly cruise until they are matched and dispatched to pick up a
passenger. Once the passenger is dropped off, the vehicle becomes idle again, and we assume they become stationary at the drop
off location. From the start of each simulation, we allow for 40 min of warm-up period, any performance indicators are taken after
this period (roughly 62000 trip requests in the remaining time). The results are obtained by averaging 5 simulations.

For each test case, we compare the proposed mechanism to two benchmark scenarios which are an equivalent non-cooperating
standard) duopoly and an equivalent monopoly (identical total demand and supply). The equivalent non-cooperating (standard)
uopoly has the same setup as shown in Table 3. Whereas the equivalent monopoly operates a fleet with a size equal to the sum
f the two platforms in the duopoly while servicing the total demand. To conduct fair comparisons, we assume that the passenger
hoice parameters, as well as the platform pricing and wage parameters, are the same for all scenarios and are as already set out
n Tables 1 and 2. The platforms also adopt the same matching interval, 𝛥, at 10 s. Additionally, the platforms all consider the

same long-term cost of passenger cancellation, 𝑐c, which is assumed to be $4.6 (Jiao and Ramezani, 2022). Also for conducting fair
comparisons, we assume for the benchmarks, the platforms all adopt a matching algorithm that maximizes the expected profits with
the consideration of ‘holding’ passengers or vehicles for future rounds of matching. This can be formulated as follows:

max
𝑥𝑎,1𝑖,1 ,𝑥

h
𝑖,1 ,𝑥

h
𝑎,1

∑

1

𝜋𝑎,1
𝑖,1 𝑥

𝑎,1
𝑖,1 +

𝑚
∑

𝑖=1
𝐸[𝜋h

𝑖,1]𝑥
h
𝑖,1 +

𝑘
∑

𝑎=1
𝐸[𝜋h

𝑎,1]𝑥
h
𝑎,1 (29)

s.t.
𝑘
∑

𝑎=1
𝑥𝑎,1𝑖,1 + 𝑥h𝑖,1 = 1 ∀ 𝑝𝑖,1 ∈ 1 (30)

𝑚
∑

𝑖=1
𝑥𝑎,1𝑖,1 + 𝑥h𝑎,1 = 1 ∀ 𝑣𝑎,1 ∈ 1 (31)

𝑥𝑎,1𝑖,1 , 𝑥
h
𝑖,1, 𝑥

h
𝑎,1 ∈ {0, 1} (32)

here 𝑥h𝑖,1 and 𝑥h𝑎,1 are the decision variables to ‘hold’ passenger 𝑝𝑖,1 and vehicle 𝑣𝑎,1, respectively.

.2. Symmetrical duopolies

.2.1. Performance of the cooperation mechanism
For each of the test cases (1) - (3), we compare the performance indicators of the cooperation mechanism to the standard (non-

ooperative) duopoly and monopoly scenarios. The results are shown in Tables 4, 5, and 6. Note we repeat 5 simulation experiments
10

or each scenario to obtain average performance indicators.
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Table 4
Performance of the cooperation mechanism in comparison with standard symmetrical duopoly and monopoly for the test case
(1): 𝑉 t

1 = 𝑉 t
2 = 1600,Pr1 = Pr2 = 50%.

Performance indicators Duopoly Cooperation mechanism Monopoly

Average passenger matching timea (s) 14.4 15.5 15.1
Average passenger pickup timeb (s) 202.9 186.6 (−8.0%) 175.5 (−13.5%)
Average passenger in-vehicle time (s) 830.8 837.4 860.4

Type I Cancellations (impatience) 20 469 20 968 22 578
Type II Cancellations (dissatisfactory service) 6150 5103 4275
Total passenger cancellations 26 619 26 071 (−2.1%) 26 853 (0.9%)
Number of serviced passengers 35 735 36 277 35 447

Total platform profit ($) 97 763 103 772 (6.1%) 105 436 (7.8%)
Potential future loss due to cancellations ($) −122448 −119926 −123520

Average vehicle idle time 6.2% 5.3% 6.1%
Average vehicle dispatched time 16.5% 15.5% 14.3%
Average vehicle occupied time 77.3% 79.2% 79.6%
Drivers’ average wage ($/hr) 27.01 27.26 27.04

a Average passenger matching time is defined as the average time between a passenger entering the platform until they are
matched by the platform, excluding those who canceled before being matched (Type 1 Cancellation). Note that due to this
definition, there is not a direct positive relationship between type 1 cancellation, and the average matching time.

b Average passenger pickup time is defined as the average time between the passenger being matched to the indicative time
that the vehicle will arrive, including those who are not satisfied with the trip (Type 2 Cancellation).

Table 5
Performance of the cooperation mechanism in comparison with standard symmetrical duopoly and monopoly for the test case
(2): 𝑉 t

1 = 𝑉 t
2 = 2000,Pr1 = Pr2 = 50%.

Performance indicators Duopoly Cooperation mechanism Monopoly

Average passenger matching time (s) 11.3 12.0 12.2
Average passenger pickup time (s) 190.5 180.2 (−5.4%) 166.5 (−12.6%)
Average passenger in-vehicle time (s) 796.1 799.6 812.0

Type I Cancellations (impatience) 13 609 13 622 15 297
Type II Cancellations (dissatisfactory service) 5968 5262 4092
Total passenger cancellations 19 577 18 884 (−3.5%) 19 389 (−1%)
Number of serviced passengers 42 750 43 642 42 921

Total platform profit ($) 116 884 122 015 (4.4%) 125 180 (7.1%)
Potential future loss due to cancellations ($) −90054 −86866 −89189

Average vehicle idle time 13.6% 12.6% 13.5%
Average vehicle dispatched time 15.2% 14.7% 13.5%
Average vehicle occupied time 71.2% 72.7% 73.0%
Drivers’ average wage ($/hr) 24.88 25.17 24.91

Table 6
Performance of the cooperation mechanism in comparison with standard symmetrical duopoly and monopoly for the test case
(3): 𝑉 t

1 = 𝑉 t
2 = 2400,Pr1 = Pr2 = 50%.

Performance indicators Duopoly Cooperation mechanism Monopoly

Average passenger matching time (s) 9.8 10.4 10.8
Average passenger pickup time (s) 179.2 171.2 (−4.5%) 160.5 (−10.4%)
Average passenger in-vehicle time (s) 787.4 789.8 797.8

Type I Cancellations (impatience) 10 443 10 555 11 879
Type II Cancellations (dissatisfactory service) 5497 4928 4138
Total passenger cancellations 15 940 15 482 (−2.9%) 16 017 (0.5%)
Number of serviced passengers 46 467 46 884 46 340

Total platform profit ($) 129 331 133 366 (3.1%) 135 810 (5.0%)
Potential future loss due to cancellations ($) −73324 −71219 −73678

Average vehicle idle time 23.1% 22.7% 23.7%
Average vehicle dispatched time 13.0% 12.6% 11.7%
Average vehicle occupied time 63.9% 64.7% 64.6%
Drivers’ average wage ($/hr) 22.14 22.25 21.97
11
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Table 7
Passenger referral and vehicle lease statistics for the test cases (1)–(3).

Test case (1) Test case (2) Test case (3)

Total successful passenger referrals 5839 2877 2444
Average passenger referral profit ($) 0.55 1.11 1.35
Total passenger referral profit ($) 3213 3187 3295

Total successful vehicle leases 2277 3965 4464
Average vehicle leases profit ($) 1.87 1.76 1.62
Total vehicle leases profit ($) 4267 6959 7246

Total profit ($) 103 772 122 015 133 366
Total profit generated from cooperation ($) 7480 10 146 10 541
Proportion of cooperation profit relative to total profit 7.2% 8.3% 7.9%

It can be observed that inefficiencies due to market fragmentation do exist. Using test case (2) as an example (Table 5), comparing
he monopoly to the duopoly, the average passenger pickup time is reduced by 24 s (12.6%), the number of cancellations is decreased
y 188 (1%), and an additional $8296 (7.1%) of total profit is generated. Though the monopoly does not outperform the duopoly
ubstantially, it does act as a benchmark for the upper limit of the cooperation mechanism.

The proposed cooperation mechanism between the two platforms in the duopoly improves all major performance indicators
ompared to those without cooperation for all three test cases. Again, using test case (2) as the example, the mechanism reduces
verage passenger pickup time by 10.3 s (5.4%) compared to the standard duopoly, while being 13.7 s (8.2%) more than the
onopoly. We see a $5131 (4.4%) increase in profit, which is only $3165 (2.5%) short of the monopoly. Surprisingly, we observe

he number of cancellations from the cooperating duopoly is even lower than that in the monopoly (which also occurs in the other
wo test cases). There is a 693 (3.5%) and a 505 (2.6%) reduction in cancellation compared to the standard duopoly and the
onopoly, respectively. From the driver’s perspective under the cooperation mechanism, we can observe that they spent marginally
ore time with passengers onboard, and less time deadheading or being idle compared to the standard duopoly. Consequently, the
ourly wage of drivers is increased by $0.29 (1.2%). This hourly wage is higher than that observed in the monopoly for all three
est cases. This is due to the fact that drivers are assumed to be paid for deadheading.

There is a distinct correlation between the number of cancellations due to dis-satisfactory service and average passenger pickup
ime. It is logical that as the average passenger pickup times decrease in the cooperating duopoly and further in the monopoly, the
uality of service improves and the number of cancellations due to dis-satisfactory service reduces. At the same time, there is also a
ubtle correlation between the number of cancellations due to impatience and the average passenger in-vehicle time. As passenger
n-vehicle time increases, the vehicles spend more time en-route which would lead to a reduced number of idle vehicles and thus
educed matching rate. Consequently, the number of cancellations due to impatience would increase. This is observed for all three
est cases. Therefore, as the cooperation mechanism reduces the average passenger pickup time, while maintaining roughly the
ame average passenger in-vehicle time, it yields the lowest number of total cancellations. We argue that the apparent increase in
he average passenger in-vehicle time in the monopoly is a consequence of the profit maximizing algorithm. When there are more
atching options for the monopoly, the matching algorithm tends to match passengers with longer trips which would generate more

evenue. It implies that the monopoly is implicitly favoring passengers with longer trips while foregoing the potential of servicing
ore passengers. This is also evident that as the total number of vehicles decreases, the average passenger in-vehicle time increases,

s when supply is scarce, the platforms favor passengers with longer trips.

.2.2. Properties of the cooperation mechanism
For test cases (1) - (3), when the cooperation mechanism is in place, we document the number of total successful passenger

eferrals (vehicle leases) conducted by the two platforms together, the average passenger referral (vehicle lease) profit, and the total
assenger referral (vehicle lease) profit. Additionally, we also document the total profit generated by the cooperation mechanism
rom the two platforms, and the proportion of cooperation profit relative to total profit. These statistics are shown in Table 7.

Fig. 3 shows one platform’s successful passenger referrals and vehicle leases, and the average profit per instance, over time,
or each of the three test cases. Note that the referral & lease profits shown for the platform, are implied by the prices set by the
latform, which is determined through the optimization problem in Eqs. (11)–(16). At the same time, they are the additional costs
ncurred by the other platform as it accepts the referral & lease offers. Furthermore, since the two platforms are symmetrical and
dopt the same cooperation mechanism, the results from the other platform are similar to the ones shown due to symmetry, and
herefore are omitted.

It is interesting to point out a few observations. First, as the market goes from under-supplied (test case (1)) to over-supplied
test case (3)), the platforms’ passenger referral profit (price) increases, while the vehicle lease profit (price) decreases. This is
ntuitive, as vehicles are more valuable when the market is under-supplied, while passengers are more valuable when the market is
ver-supplied. Secondly, again as the market goes from under-supplied to over-supplied, the platforms’ successful passenger referrals
ecrease, while successful vehicle leases increase. This is primarily due to the profit (price) set by the mechanism, as a higher profit
price) discourages referral/lease acceptance. Lastly, the average vehicle lease profit (price) is generally higher than the average
assenger referral profit (price). This is due to the consideration of the long-term cost of passenger cancellation in the optimization
roblem, which reduces the expected residual value of passengers. Consequently, the platforms are willing to make a lower referral
rofit to get the passengers serviced.
12



Transportation Research Part C 162 (2024) 104598G. Jiao and M. Ramezani

a

4

4

t
s

d
i
t

Fig. 3. One platform’s successful passenger referrals and vehicle leases, and the average profit per instance, over time, for each of the three test cases. The
values are determined in 3-minute intervals. (a) and (b): Test case (1); (c) and (d): Test case (2); and (e) and (f): Test case (3).

Table 8
Performance of the cooperation mechanism in comparison with standard asymmetrical duopoly for the test case (4): 𝑉 t

1 = 2400, 𝑉 t
2 = 1600,Pr1 = 60%,Pr2 = 40%.

Performance indicators Standard Duopoly Cooperation mechanism

Platform 1 Platform 2 Combineda Platform 1 Platform 2 Combineda

Average passenger matching time (s) 11.8 10.6 11.2 11.9 12.0 12.0
Average passenger pickup time (s) 183.6 199.7 191.7 176.5 185.0 180.8 (−5.7%)
Average passenger in-vehicle time (s) 802.0 793 797.5 802.1 799.3 800.7

Type I Cancellations 8634 5203 13 837 8322 5551 13 873
Type II Cancellations 3211 2627 5838 2904 2166 5070
Total passenger cancellations 11 845 7830 19 765 11 226 7717 18 943 (−4.2%)
Number of serviced passengers 25 763 16 967 42 730 26 056 17 395 43 451

Total platform profit ($) 71 668 45 106 116 774 73 754 48 201 121 956 (4.4%)

Average vehicle idle time 13.3% 14.0% 13.6% 13.1% 11.9% 12.6%
Average vehicle dispatched time 14.8% 15.8% 15.2% 14.3% 15.1% 14.6%
Average vehicle occupied time 72.0% 70.2% 71.3% 72.6% 73.0% 72.8%
Drivers’ average wage ($/hr) 24.98 24.76 24.89 25.04 25.34 25.17

Combined means the sum or average of the two platforms depending on the indicator.

.3. Asymmetrical duopolies

.3.1. Performance of the cooperation mechanism
Similar to previously, for each of the test cases (4) - (6), we compare the performance indicators of the cooperation mechanism

o the standard (non-cooperative) duopoly and monopoly scenarios (note that the equivalent monopoly for cases (4) - (6) is the
ame as for case (2) shown in Table 5). The results are shown in Tables 8, 9, and 10.

It can be observed that as the asymmetry increases, i.e., from test case (4) to test case (6), the overall performances of the standard
uopolies worsen. This is intuitive, as the increased asymmetry leads to more supply and demand imbalance for each of the platforms
n the duopolies. Notably, we observe that the implementation of the cooperation mechanism improves the overall performance of
he duopoly to roughly the same level regardless of the level of asymmetry. In other words, the cooperation mechanism is capable of
13
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Table 9
Performance of the cooperation mechanism in comparison with standard asymmetrical duopoly for the test case (5): 𝑉 t

1 = 2400, 𝑉 t
2 = 1600,Pr1 = Pr2 = 50%.

Performance indicators Standard duopoly Cooperation mechanism

Platform 1 Platform 2 Combined Platform 1 Platform 2 Combined

Average passenger matching time (s) 9.7 14.4 12.08 11.7 12.3 12.0
Average passenger pickup time (s) 182.1 203.9 193.0 178.4 184.0 181.2 (−6.1%)
Average passenger in-vehicle time (s) 784.1 833.4 808.7 792.9 807.3 800.0

Type I Cancellations 5139 10 508 15 647 6369 7304 13 673
Type II Cancellations 2885 3130 6015 2631 2692 5323
Total passenger cancellations 8024 13 638 21 662 9000 9996 18 996 (−12.3%)
Number of serviced passengers 22 956 17 782 40 738 21 899 21 493 43 392

Total platform profit ($) 63 338 48 757 112 095 67 751 53 816 121 567 (8.4%)

Average vehicle idle time 24.1% 6.5% 17.1% 14.7% 10.0% 12.8%
Average vehicle dispatched time 13.0% 16.4% 14.4% 14.3% 15.2% 14.7%
Average vehicle occupied time 62.9% 77.1% 68.6% 71.0% 74.9% 72.5%
Drivers’ average wage ($/hr) 21.86 26.93 23.89 24.56 25.95 25.12

Table 10
Performance of the cooperation mechanism in comparison with standard asymmetrical duopoly for the test case (6): 𝑉 t

1 = 2400, 𝑉 t
2 = 1600,Pr1 = 40%,Pr2 = 60%.

Performance indicators Standard duopoly Cooperation mechanism

Platform 1 Platform 2 Combined Platform 1 Platform 2 Combined

Average passenger matching time (s) 8.2 17.5 12.8 11.7 12.3 12.0
Average passenger pickup time (s) 174.2 197.0 185.6 177.5 181.5 179.5 (−3.3%)
Average passenger in-vehicle time (s) 780.6 895.3 838.0 791.4 803.0 797.2

Type I Cancellations 2921 17 426 20 347 4717 8906 13 623
Type II Cancellations 2250 2807 5057 2222 2945 5167
Total passenger cancellations 5171 20 233 25 404 6939 11 851 18 790 (−26.0%)
Number of serviced passengers 19 638 17 279 36 917 18 064 25 531 43 595

Total platform profit ($) 55 261 50 328 105 589 63 476 58 864 122 340 (15.9%)

Average vehicle idle time 35.8% 4.3% 23.2% 14.9% 9.3% 12.6%
Average vehicle dispatched time 10.6% 15.3% 12.5% 14.3% 15.2% 14.6%
Average vehicle occupied time 53.6% 80.3% 64.3% 70.9% 75.5% 72.7%
Drivers’ average wage ($/hr) 18.49 27.56 22.12 24.52 26.13 25.17

effectively bridging the supply and demand imbalance between the two platforms. Consequently, we observe that the improvement
due to the cooperation mechanism can be substantial. For example, under test case (6), the cooperation mechanism leads to a 26%
reduction in passenger cancellations, a 15.9% increase in the total profit generated by the platforms, and a 13.8% increase in drivers’
average wage per hour.

Looking at each of the two platforms separately, since platform 1 has a higher fleet size, we can see that it performs better than
latform 2 as expected. For all three test cases, after the implementation of the cooperation mechanism, the profit generated by
ach of the two platforms improves. For test case (4), the cooperation mechanism leads to a reduction in passenger cancellations
n both platforms. Whereas for test cases (5) and (6), the passenger cancellations increase slightly on platform 1, while decreasing
ignificantly for platform 2. This is due to the fact that platform 1 is over-supplied and platform 2 is under-supplied in these two
est cases, and the implementation of the cooperation mechanism led to the sharing of capacity from platform 1 to platform 2.

.3.2. Properties of the cooperation mechanism
For test cases (4) - (6), when the cooperation mechanism is in place, we document the number of total successful passenger

eferrals (vehicle leases) conducted by the two platforms together, the average passenger referral (vehicle lease) profit, and the total
assenger referral (vehicle lease) profit. Additionally, we also document the total profit generated by the cooperation mechanism
rom the two platforms, and the proportion of cooperation profit relative to total profit. These statistics are shown in Table 11.

It can be observed that as the asymmetry intensifies (test case (4) to test case (6)), the number of successful passenger referrals and
ehicle leases increases, while the average referral and lease prices reduce. It suggests that as the supply and demand imbalance
ncreases, the proposed cooperation strategy actively tries to bridge the gap. Furthermore, as each platform has more misplaced
assengers or vehicles, the cooperation strategy causes the associated prices of the referrals and leases to drop, such that more
uccessful matches can be facilitated.

Using test case (6) as a specific example, we visualize each of the two platforms’ successful passenger referrals and vehicle leases,
nd the average profit per instance, over time, which is shown in Fig. 4.

We can observe that platform 1 is leasing a significant amount of vehicles to platform 2 at a relatively low price. Whereas
latform 2 is referring a significant number of passengers to platform 1 at a relatively low price. Conversely, platform 1 is referring
minimal amount of passengers to platform 2 at a relatively high price. While platform 2 is leasing a minimal number of vehicles
14

o platform 1 at a relatively high price. Again, this is evidence that the proposed cooperation mechanism is performing as intended.



Transportation Research Part C 162 (2024) 104598G. Jiao and M. Ramezani
Table 11
Passenger referral and vehicle lease statistics for the test cases (4)–(6).

Test case (4) Test case (5) Test case (6)

Total successful passenger referrals 2859 3313 4340
Average passenger referral profit ($) 1.08 1.03 0.96
Total passenger referral profit ($) 3096 3400 4277

Total successful vehicle leases 4155 4662 5761
Average vehicle leases profit ($) 1.75 1.72 1.67
Total vehicle leases profit ($) 7270 8039 9598

Total profit ($) 121 956 121 567 122 340
Total profit generated from cooperation ($) 10 366 11 439 13 875
Proportion of cooperation profit relative to total profit 8.5% 9.4% 11.3%

Fig. 4. The platforms’ successful passenger referrals and vehicle leases, and the average profit per instance, over time, for the test case (6). The values are
determined in 3-minute intervals. (a) and (b): platform 1, which is over-supplied; (c) and (d): platform 2, which is under-supplied.

Platform 1, which has an excess supply that cannot be effectively utilized, is sharing its capacity to platform 2. While platform 2,
which has an excess demand that cannot be serviced effectively, is letting platform 1 provide the service. Therefore, it shows that
the proposed cooperation mechanism is actively bridging the supply and demand imbalance between the two platforms, which has
led to the overall performance of the duopoly.

In summary, the employment of the proposed cooperation mechanism leads to improvements in all performance indicators for
all stakeholders compared to equivalent standard duopolies for all test cases considered. Additionally, the proposed cooperation
mechanism is shown to be especially effective as the asymmetry between the duopoly increases. Consequently, there is no need for
a policy maker or agency to intervene (Dandl et al., 2021) and the players (platforms) can/should engage in such a cooperation
mechanism.

4.4. Duopoly with different prices

For the test case (7), we compare the performance indicators of the cooperation mechanism to the standard (non-cooperative)
duopoly; note that there is no equivalent monopoly for this test case. The results are shown in Tables 12. The number of total
successful passenger referrals (vehicle leases) conducted by the two platforms together, the average passenger referral (vehicle lease)
profit, and the total passenger referral (vehicle lease) profit are shown in Table 13. Finally, each of the two platforms’ successful
passenger referrals and vehicle leases, and the average profit per instance, over time, are visualized in Fig. 5.

In this scenario, Platform 2 is charging passengers relatively more than Platform 1. As a result for standard duopolies, we can
observe the Type II cancellations for Platform 2 is much higher than that of Platform 1, as the utilities for passengers are reduced
due to higher costs. At the same time Type I cancellations for Platform 2 is reduced. This is due to the fact that there will be more
idle vehicles available for Platform 2 as more passengers cancel after being matched. Overall, Platform 2 serves fewer passengers
than Platform 1. Though due to the higher prices, Platform 2 generates more profit than Platform 1.

After implementing the cooperation strategy, it can be observed that key performance indicators improve. For example, the
average passenger pickup times are reduced by 4.1%, the total passenger cancellations are reduced by 3.4%, while the total profit
generated by the two platforms is increased by 3.5%. However, these improvements are not as significant as in previous test cases.
15
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Table 12
Performance of the cooperation mechanism in comparison with standard asymmetrical duopoly for the test case (7). Platform 1 offers service at the ‘fair’ price,
while Platform 2 offers service at a slightly higher price.

Performance indicators Standard duopoly Cooperation mechanism

Platform 1 Platform 2 Combined Platform 1 Platform 2 Combined

Average passenger matching time (s) 11.2 6.8 9.0 11.0 8.3 9.6
Average passenger pickup time (s) 190.2 201.7 195.9 176.1 199.7 187.9 (−4.1%)
Average passenger in-vehicle time (s) 796.8 765.1 781.0 796.0 765.4 780.7

Type I Cancellations 6848 2142 8990 6277 2858 9135
Type II Cancellations 2907 8986 11 893 2398 8643 11 041
Total passenger cancellations 9755 11 128 20 883 8675 11 501 20 176 (−3.4%)
Number of serviced passengers 21 408 20 065 41 473 22 504 19 666 42 170

Total platform profit ($) 58 375 64 603 122 978 62 029 65 201 127 230 (3.5%)

Average vehicle idle time 13.5% 22.7% 18.1% 15.0% 19.5% 17.2%
Average vehicle dispatched time 15.2% 13.1% 14.2% 14.4% 13.2% 13.8%
Average vehicle occupied time 71.3% 64.2% 67.8% 70.7% 67.3% 69.0%
Drivers’ average wage ($/hr) 24.91 22.27 23.59 24.49 23.17 23.83

Table 13
Passenger referral and vehicle lease statistics for the test case (7).

Test case (7)

Total successful passenger referrals 2773
Average passenger referral profit ($) 1.08
Total passenger referral profit ($) 2999

Total successful vehicle leases 4567
Average vehicle leases profit ($) 1.83
Total vehicle leases profit ($) 8337

Total profit ($) 127 230
Total profit generated from cooperation ($) 11 336
Proportion of cooperation profit relative to total profit 8.9%

Fig. 5. Each platform’s successful passenger referrals and vehicle leases, and the average profit per instance, over time. The values are determined in 3-minute
intervals. (a) and (b): Platform 1 which offers service at the ‘fair’ price; (c) and (d): Platform 2 which offers service at a slightly higher price.

This is due to the cooperation strategy being unable to pass the benefit to the passengers. For example, passengers from Platform
2 who pay higher prices still pay the same price even though they may be serviced by Platform 1. Consequently, there will still be
higher Type II cancellations for passengers from Platform 2. We can also observe this phenomenon in Fig. 3. Platform 2 is charging
a relatively low passenger referral price, since the increased cancellation rate reduces the expected profit of ‘holding’ a passenger.
However, the successful passenger referral is counter-intuitively lower for Platform 2. This is in fact due to the passengers still having
to pay the original price, which leads them to Type II cancellations, and thus hindering successful referrals. Likewise, the successful
vehicle leases from Platform 1 to Platform 2 are lower despite of lower lease price, due to more Type II passenger cancellations
even when Platform 2 wants to utilize the leased vehicles from Platform 1.
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5. Summary and future work

This paper has proposed a ‘referral’ cooperation mechanism under the duopoly setting, which is inspired by the capacity-sharing
trategy. In its essence, whenever a platform is under-supplied while the other platform is over-supplied in a localized area, the
echanism should help the platforms to bridge their supply and demand. Under the proposed cooperation mechanism, each platform
as the option to refer their passengers and let the other platform provide the service. The platforms also have the option to offer
o temporarily (for a single trip) lease their vehicles for the other platform to utilize. We then present and solve the platform
atching optimization problem integrating when to exercise those referral (lease) options while determining the optimal referral

lease) prices with the goal of profit maximization. Numerical experiments on a disaggregated simulator show that the proposed
ooperation mechanism improves all performance indicators compared to equivalent standard duopolies. For example, symmetrical
uopolies documented 4.5%–8% pickup time reduction, 2.1%–3.5% cancellation reduction for passengers; 0.5%–1.2% hourly wage
ncrease for drivers; and 4.4%–6.1% increase in profit for platforms. Additionally, the proposed cooperation mechanism is shown to
e especially effective as the asymmetry between the duopoly increases. For example, one test case considered shows the mechanism
an achieve up to a 26% reduction in cancellations for passengers; a 13.8% hourly wage increase for drivers; and a 15.9% increase
n profit for platforms. We argue that the effectiveness of the proposed cooperation mechanism is due to its capability to successfully
ridge the supply and demand imbalances between the two platforms. Therefore as the spatial and temporal imbalance between
upply and demand is bound to happen in the e-hailing market, the proposed cooperation mechanism should prove itself to be useful
n reality.

This study considers the isolated effects of market fragmentation. However, a real e-hailing market can be much more dynamic.
herefore, future studies can investigate the effects of competition in the e-hailing market by relaxing some of the assumptions in
his study, such as allowing passengers’ and drivers’ multi-homing behaviors. Furthermore, a dominant firm may wish to exert its
ominance and demand a better deal from the cooperation strategy, a future study could investigate how similar strategies could
lay out between irrational firms. Additionally, a priority research direction is to use real data to model the cancellation behavior of
ustomers (Type I and Type II), and to scrutinize the relationship between these cancellation types and market conditions. Finally,
he policymaker may have an interest in further reducing the negative externalities of market fragmentation. Therefore, another
esearch topic may consider the policymaker’s role in further improving the proposed cooperation mechanism.
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