
Transportation Research Part B 186 (2024) 102994

0
(

H
e
Z
T

A

K
T
F
T
N

1

L
a
u
l

l
o
t
m

a

h
R

Contents lists available at ScienceDirect

Transportation Research Part B

journal homepage: www.elsevier.com/locate/trb

ow mandatory are ‘Mandatory’ lane changes? An analytical and
xperimental study on the costs of missing freeway exits
haohan Wang ∗, Mohsen Ramezani, David Levinson
he University of Sydney, School of Civil Engineering, Australia

R T I C L E I N F O

eywords:
raffic flow theory
reeway exit ramp
ravel cost
etwork resilience

A B S T R A C T

Lane changing, recognised as one of the most intricate manoeuvres in road traffic, has attracted
extensive scholarly interest. To date, the concept of lane change has been categorised into two
distinct classifications, namely mandatory and discretionary. Mandatory lane changes (MLCs)
are often regarded as absolute, implying that the possibility of not executing the lane change
is frequently disregarded. This paper questions this widely accepted proposition by evaluating
the costs of neglecting an MLC. Specifically, we examine the costs associated with not making
MLCs for exiting freeways, effectively quantifying the cost of missing such exits. The core of this
study involves a dual approach comprising an analytical model for the costs of missing exits
alongside an empirical analysis of two GPS datasets from the Minneapolis - St. Paul metropolitan
area. The performance of the analytical model is validated by cross-referencing it against exit-
missing costs from the top 50 metropolitan areas in the US. Regarding the empirical study, it was
found that while both time and distance costs are associated with missing exits, the magnitudes
of these costs are not substantial. The results obtained in this study offer novel insights into
the nature of MLC, and we argue that future models should consist of discretionary (DLC),
mandatory (MLC), and expedient (ELC) lane changes. Moreover, the analytical model developed
in this study can be integrated into the trade-off function of an ELC model, enabling drivers to
bypass their intended exit when needed.

. Introduction

As one of the most common microscopic road manoeuvres, lane change has attracted considerable research interest, e.g. Ji and
evinson (2020) among others. Poorly executed lane changes can cause flow oscillations and traffic incidents that may incur social
nd economic costs. More severe impacts are often observed under heavier traffic conditions with the potential of flow breakdowns
nder extreme cases (Ahn and Cassidy, 2007; Zheng et al., 2013; Gao and Levinson, 2023). Therefore, the development of precise
ane change models is a crucial step for understanding the fundamental characteristics of traffic flow.

Based on its motivation, the notion of lane change has traditionally been classified as discretionary or mandatory. Discretionary
ane change (DLC) occurs when the driver perceives that the target lane offers superior driving conditions compared to the current
ne. This encourages the driver to change lanes in aspiration of speed and safety advantages. Mandatory lane change (MLC), on
he other hand, applies when the driver must leave the current lane, in order to avoid obstructions downstream (e.g., lane drop) or
oving to the appropriate lane in preparation for future turning movements.

The idea of categorising various lane change types was first introduced by Gipps (1986), who proposed a rule-based model that
ssesses the possibility, necessity, and desirability of a lane change before outputting a binary result of whether to change or not.
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Although the model does not explicitly define MLC and DLC, the author designated a hierarchical structure of lane change decisions
based on the motivation of changing lanes. Halati et al. (1997) extended upon Gipps’ model and classified lane changes as DLC and
MLC. MLCs are performed when the driver must leave the current lane, such as avoiding lane blockage or use downstream off-ramp.
DLCs are performed when the driver perceives the target lane has better driving conditions but are not required to do so. Yang and
Koutsopoulos (1996) likewise, developed a micro-simulator based on Gipps’ model. In their model, MLCs are triggered to bypass
downstream blockage, connect to path link, obey lane-use regulations, and respond to signs. DLCs are performed when the speed
of the leader is below a desired speed. Ahmed (1999) developed a discrete choice framework to model three lane-changing steps:
decision to consider a lane change, choice of a target lane, and gap acceptance. A forced merging model that captures forced lane
changing behaviour and courtesy yielding is developed. DLCs are only considered when MLCs conditions do not apply.

To account for the sudden transition from DLC to MLC, Toledo et al. (2003) proposed an integrated approach where DLC and
LC are jointly considered in a single utility model. The relative importance between the two depends on a number of explanatory

ariables, including the surrounding vehicle states, future path plans, network knowledge, and driving styles. Later in Toledo et al.
2005), the authors saw the research gap that existing models do not explicitly incorporate the choice of a target lane, which may
equire a sequence of lane changes. Consequently, they propose an approach that evaluates the utility of each lane as the target,
ased on a number of attributes, such as the lane speed and density, presence of heavy vehicles, and future path planning variables.
he execution of the lane change is determined using a gap acceptance model with spatial information between the subject vehicle
nd its lead and lag vehicles in the adjacent lane.

Extending on the integrated DLC and MLC model, Toledo et al. (2007) presents a framework that captures inter-dependencies
etween lane changing and acceleration and takes into account drivers’ planning capabilities. The proposed driving behaviour model
s based on the concepts of short-term goals and short-term plans. The short-term goal is defined as a target lane, which is the lane
hat the driver perceives as best to be in. Down a hierarchy is the short-term plan, which is defined by a target gap that the driver
ntends to use to change lane. Finally, to facilitate the short-term plan, the driver applies an acceleration. Schakel et al. (2012)
roposed a lane change model centred around the idea of lane change desire. The desire follows from the trade-off between route,
peed, and keep right incentives. As lane change desire increases, drivers become more assertive. Four levels of lane change desire are
ormulated, from lowest to highest, the lane changer performs: no lane change; lane change only in a free fashion; synchronisation
ith target lane to prepare for lane change; lane change indication to create gap. Relaxation is implemented as drivers accept smaller

ime headways for large desire. Other game-theoretic methods (Kita, 1999; Zhang et al., 2020), machine learning methods (Hunt
nd Lyons, 1994; Hou et al., 2014), and artificial intelligence simulation models like fuzzy logic models (Hou et al., 2012) were
lso developed to investigate human preferences of MLC. For a systematic review of lane change and gap acceptance, please refer
o Zheng (2014).

In summary, numerous lane change models have been proposed in the literature. However, it is common for these models to
acitly accept that MLCs are absolute, meaning that the possibility of not performing the lane change is often overlooked. While this
roposition holds true in scenarios where the driver must make a lane change decision (e.g., changing lanes to avoid a blockage), its
alidity is questionable in scenarios that are not as restrictive (e.g., changing lanes for tactical routing). In this paper, we study what
ould be the cost for not making a lane change, which consequently reflects the level of mandatoriness of a lane change maneuver.
e specifically focus on the tactical routing scenario, examining lane changes made to diverge onto a freeway off-ramp. Hence, the

tudy is conducted on the cost of not making the lane change decision at that exiting point and tries to corroborate ‘‘how costly
ould this misstep be’’. It should be noted, the lane change we focus on in this paper is centred around the combined concepts
f lane change decision and execution. We assume that a lane change decision directly indicates whether a lane change has been
xecuted and, consequently, whether the vehicle has taken the correct off-ramp. Thus, the problem transforms to examining the
osts associated with missing off-ramps.

We start by formulating the exit-missing costs analytically by decomposing the costs into sub-components on the freeway
nd surface street network levels. Through utilising probability theory and stochastic geometry, the costs can be approximated
ith simple variables derived from the network structures. The proposed model is then validated using simulation data from the
ongitudinal Employer-Household Dynamics (LEHD) Census dataset (US Census Bureau, 2022a) for the top 50 metropolitan areas
n the US.

In addition, we conduct an empirical investigation using two large-scale GPS datasets from the Minneapolis - St. Paul metropolitan
egion. Real-life GPS data are considered vital for gaining insight into drivers’ decision-making processes, and as such, it is critical
n analysing actual exit-missing costs. The datasets in this study were collected at high sampling rates and include comprehensive
PS trajectories.

Both the analytical and empirical results indicate that the additional costs associated with not executing lane changes to exit
reeways are generally on the order of minutes and kilometres. Compared with lane changes performed to avoid obstacles, lane
hanging for tactical routing has lower mandatoriness. This may partially explain why drivers are sometimes prone to missing their
cheduled turns. From a modelling perspective, models should account for the likelihood of drivers missing exits, which could be due
o factors such as tiredness, distractions, or miscalculations regarding the ease of lane change maneuvers. From a design perspective,
his study could be particularly useful in informing lane change decisions at the route choice level.

Findings of this paper suggest that future research could investigate lane change models that distinguish between three
ategories: discretionary, expedient (ELC), and mandatory, where the benefits of changing lanes are on the order of seconds/metres,
inutes/kilometres, and infinite, respectively. In this paper, we define ELC as lane changes performed only for tactical routing. All

ther previously defined MLCs remain in the MLC category. Lane changes made to avoid downstream obstacles are considered MLCs
2

ecause the cost of not executing such a lane change would, intuitively, be infinite. If no lane change decisions are made, the drivers
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Fig. 1. Diagram illustrating the composition of the costs. In this case, the vehicle moves in an upward direction along the freeway, indicated by the grey dashed
line. The pink and green routes denote the paths from the exits on the freeway to the destination (marked as a cross). The orange line corresponds to the
section of the freeway located between the two exits. The cost incurred due to missing the original exit and subsequently taking the alternative exit is equal to
the combined length of the orange line and the disparity between the lengths of the pink and green lines. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

could be stuck indefinitely. Other previously defined MLCs, such as obeying lane usage indications or yielding to emergency vehicles,
remain in the MLC category until further verification of their costs. However, we hypothesise that they might be better classified
as ELCs since drivers sometimes choose not to make these lane changes. Drivers often weigh the trade-offs between changing lanes
and not changing lanes before making decisions.

The rest of the article is organised as below. Section 2 introduces our analytical model for the exit-missing costs. The performance
of the model is validated in Section 3 using simulated costs from the US. In Section 4, our empirical study is explicated, outlining the
methodology, as well as presenting the result outcomes and corresponding discussions. Finally, in Section 5, this paper concludes
by summarising the research findings, the limitations, and the implications for future studies.

2. Analytical costs for missing freeway exits

To adequately address the nature of the exit-missing cost, we break it down and solve it analytically. By applying probability
theory and stochastic geometry, the actual figures can be estimated by feeding some network-level variables into the model. A
summary table of notation conventions is provided in Appendix A.

2.1. Mean of exit-missing costs

Our study initially investigates the distance cost incurred due to missed exits. This cost, expressed as the extra travel distance
(𝐷), can be subdivided into two distinct components: the freeway level cost (𝐷F) and the surface street level cost (𝐷S). 𝐷F is simply
the gap length between the alternative and the original exits, whereas 𝐷S represents the discrepancy between the distance travelled
from the alternative exit to the destination and the distance travelled from the original exit to the destination. The corresponding
travel distances on the surface street network can be further decomposed to the circuities (𝐶a and 𝐶o) multiplying the Euclidean
distances (|𝑙a| and |𝑙o|) from the exits to the destination. Circuity is defined as the ratio between the route length and the Euclidean
distance for an OD pair (Axhausen et al., 2003). Fig. 1 visualises these relationships.

Extending the aforementioned approach to encompass multiple trips over a region, the formulation transforms into determining
the average distance cost by calculating the mean of its constituent parts. While the average gap length and the average circuity can
be computed with relative ease, estimating the average Euclidean distance between a destination and its original or alternative exits
presents a challenge, as the location of the destination is a random variable, and the distance is contingent upon it. To tackle this
issue, we assume that people use a pool of nearby exits to reach their locations and subsequently determine the proportion of trips
3
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Fig. 2. Diagram showing the contribution of exits to the surrounding destinations. The blue regions indicate that destinations within this area are reached
from their nearest exit, the green area corresponds to the second nearest exit, and the red area corresponds to the third nearest exit. Subgraph (a) shows the
contribution of exits for the original route while (b) shows the contribution of exits for the alternative route, which we assume that drivers have missed their
intended exits. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

that belong to each exit. Next, we calculate the average Euclidean distance of the exits, and this value, when considered alongside
their proportion of usage, forms the measure of the average distance to the alternative and original exits.

Suppose that freeways can be subdivided into segments at exits. For one arbitrary segment (see Fig. 2), the percentage of people
travelling to the nearest (1st order) and 2nd nearest (2nd order) exits can be approximated as follows: If we assume that individuals
are fully rational and choose to travel through the off-ramp that minimises their travel time, then there exists an equilibrium point
between exits A and B at which the travel time from both exits is identical. Suppose the velocity on the freeway is higher than that
on the surface street network (i.e. 𝑣s < 𝑣f). In this case, the location of the equilibrium point can be determined using the following
relationship.

𝑑f = 𝑑1 + 𝑑2
𝑑f
𝑣f

+
𝑑1
𝑣s

=
𝑑2
𝑣s

where 𝑑f is the length between consecutive exits; 𝑑1 and 𝑑2 are distances to the equilibrium from exit A and exit B depicted in
Fig. 2(a); 𝑣f and 𝑣s are speeds on the freeway and surface street networks respectively.

By solving the above equations simultaneously, the length of 𝑑1 and 𝑑2 can be obtained. For the original route (Fig. 2(a)), people
with destinations below the equilibrium (in 𝑑2) use exit A and people with destinations above the equilibrium (in 𝑑1) use exit B.
Therefore, 1 − 𝑣s∕(2𝑣f) proportion of people (in blue areas) exit through their nearest off-ramp and 𝑣s∕(2𝑣f) proportion (in green
area) exit through their second nearest off-ramp.

Similarly, considering that the intended exits are now missed (Fig. 2(b)), people living in the green area (the bottom segment)
who previously travelled using exit A will now use exit B instead, which is their second order exit; people in the blue area (the
middle segment) who previously used exit A now use exit B, their nearest exit; and people in the red zone (the top segment),
who used exit B for travel now have to use the next downstream exit (not shown on the figure), which would be of order three.
Therefore, after missing exits, 𝑣s∕(2𝑣f) proportion of people use their nearest exit, 1∕2 proportion of them use the second nearest
exit, and 1∕2 − 𝑣s∕(2𝑣f) proportion use the third nearest exit.

Assuming that all segments between the exits follow the same allocation throughout the sample region, the representations for
the mean 𝐷F and 𝐷S are:

⟨𝐷F⟩ =
∑𝑚
𝑖 𝑑f,𝑖
𝑚

= 𝑑f (1)

⟨𝐷S⟩ = 𝐶
[

⟨𝑟1⟩
𝑣s
2𝑣f

+ ⟨𝑟2⟩
1
2
+ ⟨𝑟3⟩

(

1
2
−
𝑣s
2𝑣f

)]

− 𝐶
[

⟨𝑟1⟩
(

1 −
𝑣s
2𝑣f

)

+ ⟨𝑟2⟩
𝑣s
2𝑣f

]

= 𝐶
[

⟨𝑟1⟩
(

𝑣s
𝑣f

− 1
)

+ ⟨𝑟2⟩
(

1
2
−
𝑣s
2𝑣f

)

+ ⟨𝑟3⟩
(

1
2
−
𝑣s
2𝑣f

)] (2)

where 𝑑f,𝑖 represents the distance of the 𝑖th gap between two successive exits; 𝑚 is the total number of gaps between consecutive
exits; 𝐶 is the average circuity of the region; ⟨𝑟𝑛⟩ is the average Euclidean distance between any random destination on the region
and its 𝑛th closest exit; and 𝑣𝑓 and 𝑣𝑠 are the average speeds on freeway and street networks, respectively.

To estimate the average Euclidean distance from any destination to its 𝑛th closest exit ⟨𝑟𝑛⟩, one can naively double-integrate
the Euclidean norm for 𝑥 over 0 to infinity and 𝑦 from 0 to the height of the block. However, the solution does not converge to
4
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a finite value and, therefore, cannot be used for approximation. While it may be possible to numerically determine the range of 𝑦
values, the resulting error would be too large for the approximation to be valid. Instead, we make the assumption that the spatial
distribution of exits across the region follows a two-dimensional homogeneous Poisson point process (HPPP). This assumption allows
us to generalise the problem and obtain a solution using probability theory. For a point process 𝛷 ⊂ R2 to be an HPPP, it has to
inhere the following properties (Stoyan et al., 2013):

• The number of points of the point process 𝛷 within any Borel set 𝐵 ⊂ R2 follows a Poisson distribution, i.e.,

P(𝜓(𝐵) = 𝑛) =
𝑒−𝛬(𝐵)(𝛬(𝐵))𝑛

𝑛!
(3)

where 𝜓(𝐵) is the counting measure, defined as 𝜓(𝐵) =
∑

𝑥𝑖∈𝛷 1(𝑥𝑖 ∈ 𝐵), and 𝛬(𝐵) is the intensity measure, defined as
𝛬(𝐵) = E[𝜓(𝐵)].

• For M disjoint sets 𝐵1,… , 𝐵𝑀 , the random variables 𝜓(𝐵1),… , 𝜓(𝐵𝑀 ) are independent.
• The intensity 𝜆 is a constant.

A useful property that the HPPP exhibits for the derivation of the 𝑛th nearest neighbour distribution is motion-invariance (Daley
nd Vere-Jones, 2008). A point process is said to be motion-invariant if it is both stationary and isotropic. Stationary means that if
he observer moves or translates the coordinate system, the distribution of the points do not change. Isotropic, on the other hand,
mplies that the distribution of points is invariant to the rotation of the axes. Together they suggest that regardless of the realisation
f the subset 𝐵, the points inside will always follow the same HPPP (Poisson distributed with mean 𝜆𝓁(𝐵), where 𝓁(𝐵) is the area
f 𝐵 in R2). Consequently, the distributions of the 𝑛th nearest neighbours are invariant to the underlying distribution of the random
estinations, such as homes, offices, and other functional areas, which are known to display heterogeneous spatial patterns. This
roperty enables the modelling of exit-missing costs without making assumptions or evaluations on the spatial distribution of the
estinations, which can simplify our analysis.

We now introduce the cumulative distribution function (CDF) and the probability density function (PDF) for the distance 𝑅𝑛 to
he 𝑛th nearest point from the origin. This is an extension to the distance distribution of the nearest neighbour commonly used in
ireless communication problems (Baccelli et al., 1997).

emma 1. The CDF and PDF of the 𝑛th nearest-neighbour distance for a motion-invariant HPPP 𝛷 with intensity 𝜆 are

CDF ∶ 𝐹𝑅𝑛 (𝑟𝑛) = 1 − 𝑒−𝜆𝜋𝑟
2
𝑛

𝑛−1
∑

𝑘=0

(𝜆𝜋𝑟2𝑛)
𝑘

𝑘!
(4)

𝑃𝐷𝐹 ∶ 𝑓𝑅𝑛 (𝑟𝑛) =
𝑒−𝜆𝜋𝑟2𝑛 (𝜆𝜋𝑟2𝑛)

𝑛−1

(𝑛 − 1)!
2𝜆𝜋𝑟𝑛 (5)

Proof. By definition, the CDF of 𝑅𝑛 is

𝐹𝑅𝑛 (𝑟𝑛) = P(𝑅𝑛 ≤ 𝑟𝑛) = 1 − P(𝑅𝑛 > 𝑟𝑛)

Envisage a disk 𝐵(𝑜, 𝑟𝑛) with its centre at the origin and radius 𝑟𝑛. The event that the distance of the 𝑛th closest point 𝑅𝑛 is
greater than 𝑟𝑛 implies that the number of points intersecting the disk would be at most 𝑛 − 1. Thus, the above expression can be
elaborated as follows

𝐹𝑅𝑛 (𝑟𝑛) = 1 − P(𝜓(𝐵(𝑜, 𝑟𝑛)) ≤ 𝑛 − 1) = 1 −
𝑛−1
∑

𝑘=0
P(𝜓(𝐵(𝑜, 𝑟𝑛)) = 𝑘)

We know from the definition that 𝜓(𝐵(𝑜, 𝑟𝑛)) is Poisson distributed. Therefore, the CDF of 𝑅𝑛 is given by

𝐹𝑅𝑛 (𝑟𝑛) = 1 −
𝑛−1
∑

𝑘=0

𝑒−𝜆𝜋𝑟2𝑛 (𝜆𝜋𝑟2𝑛)
𝑘

𝑘!

Then, the PDF of 𝑅𝑛 is simply obtained by differentiating the CDF with respect to 𝑟𝑛. Or else, the PDF can be derived by calculating
the product of the probabilities that 𝑛 − 1 points are embedded in the disk and 1 point lies on the disk. Both would yield the same
function. □

From this point, the average distance to the 𝑛th closest point can be computed as

⟨𝑟𝑛⟩ =
∫ ∞
0 𝑟𝑛𝑓 (𝑟𝑛)d𝑟𝑛
∫ ∞
0 𝑓 (𝑟𝑛)d𝑟𝑛

=
∫ ∞
0 𝑟𝑛𝑒−𝜆𝜋𝑟

2
𝑛 (𝜆𝜋𝑟2𝑛)

𝑛−12𝜋𝑟𝑛𝜆 d𝑟𝑛
∫ ∞
0 𝑒−𝜆𝜋𝑟2𝑛 (𝜆𝜋𝑟2𝑛)𝑛−12𝜋𝑟𝑛𝜆 d𝑟𝑛

(6)

By substituting 𝜆𝜋𝑟2 with 𝑢, we can determine the mean cost as follows:

⟨𝑟𝑛⟩ = (𝜆𝜋)−
1
2
∫ ∞
0 𝑒−𝑢𝑢𝑛−

1
2 d𝑢

∫ ∞ 𝑒−𝑢𝑢𝑛−1 d𝑢
= (𝜆𝜋)−

1
2

⎡

⎢

⎢

𝛤 (𝑛 + 1
2 )

𝛤 (𝑛)

⎤

⎥

⎥

(7)
5

0
⎣ ⎦



Transportation Research Part B 186 (2024) 102994Z. Wang et al.

a

o

w
s

With the above derivations, the average distance cost for missing exits can be approximated:

⟨𝐷⟩ = 𝑑f +
𝐶

√

𝜆𝜋

[

(

𝑣s
𝑣f

− 1
)(

𝛤 (1.5) −
𝛤 (2.5)

2
−
𝛤 (3.5)

4

)

]

= 𝑑f +
11𝐶

32
√

𝜆

[

1 −
𝑣s
𝑣f

]

(8)

The time cost can also be approximated using the solution we derived above. By considering the distance cost on the freeway
nd surface street separately, the approximated time cost is

⟨𝑇 ⟩ =
⟨𝐷F⟩

𝑣f
+

⟨𝐷S⟩

𝑣s

=
𝑑f
𝑣f

+ 𝐶

𝑣s
√

𝜆𝜋

[

(

𝑣s
𝑣f

− 1
)(

𝛤 (1.5) −
𝛤 (2.5)

2
−
𝛤 (3.5)

4

)

]

=
𝑑f
𝑣f

+ 11𝐶

32
√

𝜆

[

1
𝑣s

− 1
𝑣f

] (9)

2.2. Standard deviation of exit-missing costs

To fully characterise the exit-missing cost, we also formulate the standard deviation of the costs. The cost functions consist of
a number of random variables, including the exit gap (𝑑f), circuity (𝐶), freeway speed (𝑣f), surface street speed (𝑣s), as well as
the Euclidean distance to the three nearest exits (𝑟1, 𝑟2, 𝑟3). The standard deviation of the costs can be determined by considering
the variance of each random variable and their respective covariance. Note, the parameter 𝜆 is implicitly considered in the mean
distance to the nearest neighbours (𝑟1, 𝑟2, 𝑟3).

We approximate the variance of the cost functions using the Delta method (Liu, 2012). Here, we assume all variables are
independent, and the covariance terms are zero. Note the Euclidean distance to the three nearest exits (𝑟1, 𝑟2, 𝑟3) are assumed
to be independent because these distances are calculated from any random points in the region where the variables are three
independent realisations of the same underlying point process. First, we confirm that both the distance and time cost functions are
smooth (i.e. continuous and differentiable), which indicates that they can be approximated with Taylor expansion. To avoid an
infinite regress of higher-order terms, we use the first-degree Taylor polynomial around the population mean 𝜇. A function 𝑔 with
𝑘 independent random variables is expressed as:

𝑔(𝑥1,… , 𝑥𝑘) ≅ 𝑔(𝜇1,… , 𝜇𝑘) + (𝑥1 − 𝜇1,… , 𝑥𝑘 − 𝜇𝑘)

⎛

⎜

⎜

⎜

⎝

𝜕𝑔
𝜕𝑥1

(𝜇1,… , 𝜇𝑘)
⋮

𝜕𝑔
𝜕𝑥𝑘

(𝜇1,… , 𝜇𝑘)

⎞

⎟

⎟

⎟

⎠

(10)

To use the Delta method for approximating the underlying distribution of function 𝑔, we assume all variables are asymptotically
normal (i.e., 𝑥𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2𝑖 ) for large samples). This is a reasonable assumption and allows us to avoid other assumptions for the
back-transformation. Moreover, this assumption leads to reasonable estimates of mean and variance, as shown later in Section 3.2.
After rearrangement, 𝑥𝑖 − 𝜇𝑖 ∼ 𝑁(0, 𝜎2𝑖 ). Therefore:

(𝑔(𝑥1,… , 𝑥𝑘) − 𝑔(𝜇1,… , 𝜇𝑘)) ≅ (𝑁(0, 𝜎21 ),… , 𝑁(0, 𝜎2𝑘))

⎛

⎜

⎜

⎜

⎝

𝜕𝑔
𝜕𝑥1

(𝜇1,… , 𝜇𝑘)
⋮

𝜕𝑔
𝜕𝑥𝑘

(𝜇1,… , 𝜇𝑘)

⎞

⎟

⎟

⎟

⎠

(11)

Hence, by the properties of the normal distribution:

𝑔(𝑥1,… , 𝑥𝑘) ∼ 𝑁

⎛

⎜

⎜

⎜

⎜

⎝

𝑔(𝜇1,… , 𝜇𝑘), (𝜎21 ,… , 𝜎2𝑘)

⎛

⎜

⎜

⎜

⎜

⎝

(

𝜕𝑔
𝜕𝑥1

(𝜇1,… , 𝜇𝑘)
)2

⋮
(

𝜕𝑔
𝜕𝑥𝑘

(𝜇1,… , 𝜇𝑘)
)2

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

(12)

To adapt the above expression to our problem, the partial derivatives of the variables for both the time and distance costs are
btained and summarised in Table 1.

An estimation of the variance for the exit gaps, circuity, freeway speed, and surface street speed can all be obtained numerically,
hereas the variance (𝜎2𝑟𝑛 ) of the distance 𝑟𝑛 to the 𝑛th nearest exit requires the formulation of its mean (Eq. (7)) and the second

tatistical moment of the probability density:

𝜎2𝑟𝑛 = E(𝑟2𝑛) − (E(𝑟𝑛))2

=
∫ ∞
0 𝑟2𝑛𝑒

−𝜆𝜋𝑟2𝑛 (𝜆𝜋𝑟2𝑛)
𝑛−12𝜋𝑟𝑛𝜆 d𝑟𝑛

∫ ∞
0 𝑒−𝜆𝜋𝑟2𝑛 (𝜆𝜋𝑟2𝑛)𝑛−12𝜋𝑟𝑛𝜆 d𝑟𝑛

− (𝜆𝜋)−1
⎛

⎜

⎜

⎝

𝛤 (𝑛 + 1
2 )

𝛤 (𝑛)

⎞

⎟

⎟

⎠

2

= (𝜆𝜋)−1
(

𝛤 (𝑛 + 1)
𝛤 (𝑛)

)

− (𝜆𝜋)−1
⎛

⎜

⎜

⎝

𝛤 (𝑛 + 1
2 )

𝛤 (𝑛)

⎞

⎟

⎟

⎠

2

= (𝜆𝜋)−1
⎡

⎢

⎢

⎢

𝑛 −
⎛

⎜

⎜

⎝

𝛤 (𝑛 + 1
2 )

𝛤 (𝑛)

⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

(13)
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Table 1
Partial derivatives for all random variables in the cost functions.

Distance cost (𝐷) Time cost (𝑇 )
𝜕
𝜕𝑑f

1 1
𝑣f

𝜕
𝜕𝐶

𝑟1
(

𝑣s
𝑣f

− 1
)

+ 𝑟2
(

1
2
− 𝑣s

2𝑣f

)

+ 𝑟3
(

1
2
− 𝑣s

2𝑣f

)

𝑟1
(

1
𝑣f

− 1
𝑣s

)

+ 𝑟2
(

1
2𝑣s

− 1
2𝑣f

)

+ 𝑟3
(

1
2𝑣s

− 1
2𝑣f

)

𝜕
𝜕𝑣f

𝐶
[

−𝑟1
𝑣s
𝑣2f

+ 𝑟2
𝑣s
2𝑣2f

+ 𝑟3
𝑣s
2𝑣2f

]

− 𝑑f
𝑣2f

+ 𝐶
[

−𝑟1
1
𝑣2f

+ 𝑟2
1
2𝑣2f

+ 𝑟3
1
2𝑣2f

]

𝜕
𝜕𝑣s

𝐶
[

𝑟1
𝑣f

− 𝑟2
2𝑣f

− 𝑟3
2𝑣f

]

𝐶
[

𝑟1
𝑣2s

− 𝑟2
2𝑣2s

− 𝑟3
2𝑣2s

]

𝜕
𝜕𝑟1

𝐶
(

𝑣s
𝑣f

− 1
)

𝐶
(

1
𝑣f

− 1
𝑣s

)

𝜕
𝜕𝑟2

𝐶
(

1
2
− 𝑣s

2𝑣f

)

𝐶
(

1
2𝑣s

− 1
2𝑣f

)

𝜕
𝜕𝑟3

𝐶
(

1
2
− 𝑣s

2𝑣f

)

𝐶
(

1
2𝑣s

− 1
2𝑣f

)

Therefore, for a cost function 𝑔 (either 𝐷 or 𝑇 ), the estimated standard deviation is calculated as follows:

𝜎𝑔 =

√

√

√

√

√

∑

𝑥∈{𝑑f ,𝐶,𝑣f ,𝑣s ,𝑟1 ,𝑟2 ,𝑟3}

(

𝜕𝑔(𝑑f, 𝐶, 𝑣f, 𝑣s, ⟨𝑟1⟩, ⟨𝑟2⟩, ⟨𝑟3⟩)
𝜕𝑥

)2

𝜎2𝑥 (14)

3. Simulation experiments of exit-missing costs in the top 50 metropolitan areas

While we have formulated the exit-missing costs analytically, their performance against the actual values is as yet undetermined.
Since real GPS data containing missed exits are rare (we discuss an example in a subsequent section), we evaluate our model with
simulated costs for the 50 most populated metro areas in the US. The effectiveness of the model is showcased against a baseline,
and various evaluation metrics are calculated. The limitations of the analytical model are discussed in Section 5.

3.1. Extraction of exit-missing costs

This section demonstrates the computations of exit-missing costs for the top 50 most populated metro areas in the US. All trips
involving links outside of the metros are discarded. The trip generation data used in our research is a subset of the 2013 Longitudinal
Employer-Household Dynamics (LEHD) dataset termed LEHD Origin–Destination Employment Statistics (LODES), which contains
state-wise commuting data at census block levels (US Census Bureau, 2022a). A census block is the smallest areal unit for which
detailed social demographic and mode share data are available. A typical census block consists of 250–550 housing units, and for
this reason, the inter-block commuting number is usually small (most are 0 or 1).

The shapefiles of these census blocks were acquired from the Census TIGER/line files (US Census Bureau, 2022b). Since not
all centroids lie within their respective blocks, the internal points of the polygons are snapped to their nearest nodes in the 2013
Open Street Map (OSM) traffic network. One drawback of the OSM network is the absence of speed limits on some links. This was
accounted for by imputing the travel speeds of the missing values using the mean of the remaining links for the particular highway
type. The link travel time is then calculated using the speed and the length. It should be noted that we have omitted the impact of
traffic congestion in this Section; the travel time calculated is based solely on the free-flow speed. The impact of traffic congestion
on exit-missing costs is further evaluated in Section 4.2.4.

The method we use to determine the exit-missing costs is by randomly sampling 10,000 OD pairs from the LODES data for each
metropolitan area, where the sampling weight follows from the inter-block commuting number (i.e. the number of trips belonging to
an OD). For the sake of simplicity, we assume all flows on an OD pair are allocated to the shortest path according to an all-or-nothing
assignment. Then for each OD, Dijkstra’s algorithm computes the shortest path with travel time as the edge impedance. This route is
then regarded as the original route with its final exit stored (if it exists, else remove the OD from the list). The travel costs, namely
time and distance, from the upstream point of the final exit to the destination are computed as the original costs. The alternative
path assumes the driver has missed the intended exit and will use the following off-ramp to exit the freeway, that is of saying, the
alternative route proceeds along the mainline, and the shortest path algorithm is utilised to determine the most efficient route from
the second exit to the destination. The travel costs for this shortest path, along with the extra portion on the freeway, are calculated
as the alternative costs. Consequently, the cost of missing an exit is calculated by subtracting the original cost from the alternative
cost. Since both routes are computed from the shortest paths, the cost is guaranteed to be positive. Finally, for each metro area, the
costs from all the sampled ODs are aggregated across the commuting population, and the mean and standard deviation of the costs
are computed. Note that the impacts of traffic flows, variations in speed, and the presence of traffic signals are not accounted for
in this section. To overcome the above limitations, we conduct experiments on a real-world GPS dataset in Section 4. The LEHD
dataset used in this section only contains commuting OD information. Further commuting related analysis are also investigated in
Section 4. The empirical results demonstrate that the exit-missing costs are consistent with the values computed in this section and
7

thus support the conclusion that costs for missed exits are negligible.
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3.2. Goodness of fit with analytical costs

We undertake a comparative analysis to showcase the dependencies between predicted and observed costs. Fig. 3 illustrates the
catter plots of the simulated mean values and the estimated mean values of the distance and time costs of missing the freeway
xit. Likewise, residual plots are presented to showcase potential bias in our model. Residuals are calculated by subtracting the
redicted values from the actual/simulated values. The scatter plots show a clear linear relationship between the two variables for
oth time and distance, and the points scatter approximately along the 45-degree line. Las Vegas (LAS), Riverside (RAL), and Salt
ake City (SLC) are exceptions that are computed to be outliers using the Bonferroni outlier test (Fox, 2008). Further looking into
he three instances shows that the low exit densities, together with large exit gaps, have contributed to the large discrepancies. As
n example, the average exit gap for SLC is 4.380 km, which even exceeds the total predicted distance costs (average exit gap and
urface street network cost combined) for most metro areas. This is due to extremely large exit gaps embedded in the metropolitan
egions (maximum gap length of 68.470 km for SLC), which inflate the average gap length. Moreover, the three outliers have the
owest exit densities among all 50 metros. This is due to them having dispersed freeway networks, lowering the exit-area ratio,
nd further exaggerating the costs. Thus, it is reasonable to conjecture that the models would align more closely in regions where
reeway exits exhibit more uniform densities. In urban settings, freeways and their exits tend to be densely distributed, whereas
nter-urban freeways and their exits are sparser. When considering the metropolitan region in its entirety, there will be zones with
enser exits and others that are less dense. This variability likely accounts for the significant discrepancies observed in the predicted
alues.

The root-mean-square error (RMSE) and mean absolute error (MAE) are applied as the evaluation metrics for quantifying the
erformance of the predicted costs. After removing the outliers, namely SLC, RAL, and LAS, the RMSE and MAE for distance costs
re 0.524 km and 0.413 km, respectively. While for the time costs, the RMSE and MAE are 0.418 min and 0.333 min. To extrapolate
hat these figures suggest, we construct a simple baseline for the predictor using the mean of the 50 observed values (3.558 km for
istance and 2.307 min for time). The respective RMSE and MAE for distance costs are 0.831 km and 0.716 km, and for time are
.465 min and 0.392 min. Hence, our model has outperformed the simple baseline model with solely the information on metropolitan
oad networks and can thus provide valuable insights into the compositions of the costs.

In addition, we conducted a stratified analysis of the simulated costs, distinguishing between trips made to work and those made
eturning home, and assessed the model’s performance in each case. The scatter diagrams for the two scenarios are illustrated
n Fig. 4. Notably, the MAE values indicate that the model performs better for the to-home trips than the to-work trips. This
s because our model is formed based on the assumption that the exits are distributed homogeneously, implying that analytical
utcomes remain constant irrespective of destination distribution (due to motion-invariance). However, in reality, the exits are not
istributed homogeneously, and neither are the destinations. While setting the destinations to homes does not make the exits appear
omogeneous, the simulated relative spacings between the two would be more homogeneous since homes are more widely located
han workplaces, which are more often concentrated in business districts. If the distribution of the destinations is highly clustered
r regular in the vicinity of the exit points, then the travel distance between the two sets may be affected by this inhomogeneous
ature of the destination set.

The results for the standard deviation of the costs are somewhat less promising (shown in Fig. 5). Although there is still a positive
orrelation between the predicted and observed values, the analytical model tends to produce underestimated standard deviations,
s shown by the points falling in the lower half of the scatter plot and the residuals clustering at some positive values. The reason
ehind this discrepancy is twofold. First and foremost, we assume the distribution of exits to be spatially homogeneous, which
ould down-estimate the variance for the distance to the 𝑛th closest exits. Secondly, we assume that the random variables in the

ormulations are independent, which yields zero covariance between the terms. However, in reality, many of these variables, such
s the exit gap length and the distance to the 𝑛th nearest exit, are interdependent. As a result, the variance and hence the standard
eviation of the costs are undervalued. One outlier has been detected for both the distance and the time costs, which is Salt Lake
ity. The much higher than rest variance for the exit gap length (𝜎2𝑑f

= 64.007 km2) and the distance to exits (𝜎2𝑟1 = 9.483 km2; 𝜎2𝑟2
10.290 km2; 𝜎2𝑟3 = 10.554 km2) led to this abnormality. Apart from SLC, the standard deviation of many other metro areas also

iverge from the dominant stream. The reasoning is more or less the same: metros with fewer off-ramps have high variation in exit
ap length and distance to the nearest exits, which consequently overstates the variance of the functions.

In line with the evaluation of the mean, the RMSE and MAE measures are applied to the predicted standard deviation of the
osts. The RMSE and MAE for the standard deviation of the distance costs are 1.257 km and 1.055 km, and are 0.741 min and
.614 min for time costs. The means of the 50 observed standard deviations are again used as the baseline. The RMSE and MAE
or the baseline are computed to be 1.133 km and 0.938 km for distance costs, and 0.628 min and 0.492 min for time costs. This
mplies that our model underperformed against the baseline. However, the model performance is reasonable, considering that only
etwork variables are fed into the model and that the dispersion of data around the mean is typically harder to predict. Since we
ave already assessed the impact of the normality assumption on the predictions, it is unlikely that the observed discrepancies
tem from this specific assumption. Instead, we suspect the large discrepancy arises from assuming the variables are independent.
ithout knowledge of the asymptotic distributions of these variables, determining their covariances is challenging. By assuming the

ariables are independent, only the variance matrix is needed in the calculations. Since we want to find the within-metropolitan
ariances of the travel costs, it is essential to determine the within-metropolitan covariances of the variables. However, given that
he variables were not sampled concurrently and have distinct contexts (e.g., speed was derived from road links, while circuity was
btained from simulated trips), it is infeasible to compute their covariance. Thus, to quantify the joint variability between these
ariables, their joint distributions would be necessary, but this information is absent. Consequently, future research should aim to
8
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Fig. 3. Scatter plots comparing the actual and predicted mean of costs. Subplots (a) and (c) are scatter plots showing the relationship between the observed and
predicted values. The three outliers marked are Las Vegas (LAS), Riverside (RAL), and Salt Lake City (SLC). Subplots (b) and (d) are residual plots showcasing
the distribution of residuals against the predictions. The MAE for the exit-missing distance cost is 0.413 km, and is 0.333 min for the exit-missing time cost.

identify and quantify the joint variability between these variables and assess if this contributes to the disparity between predicted
and simulated values.

Finally, it is crucial to highlight that the residuals in Figs. 3(b) and 3(d), as well as Figs. 5(b) and 5(d), seem to be non-normally
istributed. In fact, the error is decreasing with increasing predicted values. This pattern is likely a result of the inhomogeneous
istributions of the exits. Given our HPPP assumption, the analytical model exhibits a strong dependence on the distribution of
ff-ramps from the networks. The considerable variability in exit density and exit gap length leads the predictions to overshoot the
ctual values in regions with vast area but sparsely populated off-ramps. This model limitation is elaborated upon in the limitations
n Section 5.

. Empirical evidence for exit missing costs

In this section, we analyse GPS datasets to corroborate our prior conclusions that the costs associated with missing off-ramps are
ot excessively high. Due to the scarcity of real-time vehicle data, our analysis is limited to a single metro area out of the 50 metro
reas we have covered. Specifically, we focus our investigation on the Minneapolis-St. Paul metropolitan area. Since the LODES
9

ataset only provides commuting OD information, our analysis in this section encompasses both commuting and non-commuting
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Fig. 4. Scatter plots for the actual and predicted mean of costs for to-work and to-home trips. To-work trips are shown in green and to-home trips are in red.
he outliers marked are Las Vegas (LAS), Riverside (RAL), and Salt Lake City (SLC). Subplots (a) and (b) illustrate the scatters of the distance and time costs,
espectively. The MAE for the exit-missing distance cost for the respective to-work and to-home trips are 0.438 km and 0.531 km. For the exit-missing time
ost, the MAE for the respective to-work and to home trips are 0.414 min and 0.313 min. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

rips, intending to identify any disparities in their cost distributions. The relationship between peak hour congestion and exit-missing
osts is likewise assessed. Apart from the evaluation of time and distance costs, we also incorporate the computation of circuity
nd a deviation measure, which serves to quantify the spatial dissimilarity between the two routes. These measurements help us
xplore the consequences of missing freeway off-ramps and are discussed in Appendix C. Furthermore, in Appendix D, we conduct
categorical analysis on the exiting behaviours detected in the two datasets. A simple heuristic is introduced to extract trips that

ossibly missed their intended off-ramps.
Below, we set out a list of hypotheses that are of interest to our study:

1. Missing freeway exits will incur additional travel time and distance. However, from the results in Section 3.2, we hypothesise
that the exit-missing costs are low (only a matter of minutes for time and kilometres for distance);

2. The cost distribution of missing an exit for commuting trips and non-commuting trips are not significantly different from the
supply/network perspective;

3. The costs for missing exits depend on the traffic conditions. In peak hour periods, we presume the costs are more severe,
especially for the time cost, since congestion may further delay the travel time;

4. There exists a positive relationship between deviation and exit-missing costs. The larger the deviation (spatial dissimilarity)
between the original and alternative routes, the higher the additional travel time or distance (discussed in Appendix C);

5. The mean circuitousness of alternate routes is anticipated to surpass that of the original routes due to excess rerouting
(discussed in Appendix C);

.1. Method for empirical analysis

.1.1. Datasets and pre-processing
Two datasets were employed in our study: the I-35W dataset and the Travel Behaviour Inventory (TBI) dataset. The I-35W data

ere collected for part of a traffic behaviour research on the resilience of traffic systems when a detrimental event occurs, in this
ase before and after the reopening of the I-35W Mississippi River Bridge, which collapsed in 2007 (Zhu et al., 2010). The GPS
ata were collected for up to 13 weeks in 2008/2009. The participants were required to install either a logging device (Otrec) or a
eal-time communication device (VMT) on their cars. Out of 190 subjects who participated, 143 records were retrieved and utilised
or our study. 47 of them (VMT) were recorded using an installed GPS unit with a frequency of one point per second, while the rest
6 (Otrec) were recorded using a portable GPS unit plugged into an in-vehicle power source, with a frequency of one point every
5 m.

The TBI dataset was collected in 2010/2011 by the Metropolitan Council of the Twin Cities. GPS devices were deployed to 278
ndividuals from 250 households, who carried them on their person for all of their travel, including both in and outside of cars.
onsequently, prior to undertaking other pre-processing procedures, the TBI data necessitated trip stratification, mode classification,
10
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Fig. 5. Scatter plots for the actual and predicted standard deviation of costs. Subplots (a) and (c) are scatter plots showing the relationship between the observed
nd predicted values. The outlier marked represents Salt Lake City (SLC). Subplots (b) and (d) are residual plots showcasing the distribution of residuals against
he predictions. The MAE for the standard deviation of exit-missing distance cost is 1.055 km, and is 0.614 min for the standard deviation of exit-missing time
ost.

nd trip purpose identification. We modified the simple set of rules designed by Tang and Levinson (2018) to perform the above three
asks. The mode identification process is based on studies by Chen et al. (2010), Gong et al. (2012). The trips were first stratified
y placing a 300-s threshold on the time gaps of successive GPS points. Then, the car mode was classified with the following rules:

• Average speed of all points > 10 km/h, which precludes most walking trips.
• Maximum speed of all points > 30 km/h, which precludes most cycling trips.
• If both the first and last points with speed ≥ 10 km/h lie within 50 m of bus stops, the trip is considered in bus mode and

removed.
• If both the first and last points with speed ≥ 10 km/h lie within 150 m of rail stations, the trip is considered in rail mode and

removed.

Finally, trip purposes are identified by matching the relative location of origin and destination with the known home and work
ocation of the subject. A 500-m buffer region is used to account for parking and GPS error. The applied process exclusively identifies
ar trips, wherein these trips are subsequently classified into either commuting or non-commuting categories.
11
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Table 2
Summary of the data pre-processing steps. VMT and Otrec together contribute to the I-35 W dataset. For each dataset, both the numbers of trips and
points are showcased, as well as the original and final data size. The Otrec data do not contain speed attributes; thus, the speed filter is omitted.

VMT Otrec TBI

Trips Points Trips Points Trips Points

Original 32,730 18,334,840 16,658 7,344,553 3,470 8,721,622

Warm/cold start −3,906 −3,500,813 −637 −512,852 −198 −3,841,283
Boundary elimination −730 −1,001,889 −7 −4,654 −192 −969,389
Short trips −13,630 −413,854 −2,046 −105,458 −117 −6,102
Position jump 0 −937 0 −964 0 −53
Abnormal speed 0 −169,272 – – 0 −3,879
Fill missing 0 +170,653 0 +698 0 +340,538
Circuity −1,653 −2,492,702 −1,191 −542,778 −296 −922,571

Final 12,811 10,926,026 12,777 6,178,545 2,667 3,318,883

Although the datasets are of high resolution, some data-cleaning steps are still necessary. The data first undergo filtering to
liminate a set of beginning and ending points to address the so-called warm-start-cold-start problem and the excess dwell time at
he destination. A trip is updated with its new origin, the first point with distance from the original origin ≥ 50 m, and the updated

destination, the first point with distance from the original destination ≤ 50 m. Afterwards, a rough location screening is performed
by fitting the trips to the Twin Cities region. In addition, we address potential positional jumps in the data by incorporating a
small elliptical zone for each GPS point using their respective coordinate, speed, heading, and a 50 m error buffer. Points outside
their neighbours’ zones are recognised as off-route points and removed. Abnormal speed changes, defined with an instantaneous
acceleration of ±5 m s−2, are also identified and removed from the data. Another common type of speed anomaly, caused by the
interference of the satellite signals, usually emerges in the form of a sudden drop of velocity to zero along with linearised trajectory
points. These points are likewise removed by tracking the speed change of the vehicles and identifying obstructions, primarily
tunnels, in the network. Finally, the missing gaps are filled with interpolated points to construct continuous, connected trips.

Furthermore, we preclude detour routes which may cause misleading outputs. Such excess routing may be undertaken to facilitate
the pick-up or drop-off of passengers, resulting in original travel expenses that are well beyond the shortest path costs. Hence,
the alternative route computed by the shortest path algorithm can have substantially shorter travel costs than the original route,
leading to savings in time and distance by missing an exit. In response, we apply the network circuity to remove trips based on
their directness. The top 10th percentile of all trips is removed with an upper bound threshold of 1.84 for the I-35W dataset and
2.25 for the TBI dataset.

Finally, the processed trips are matched with the 2013 OSM network, the earliest and most compatible open-source map regarding
the data collection time frame. As one of the test variables for the dataset, the I-35W bridge is removed from the network before
the reopening date of 18th September 2008. The map-matching algorithm employed was developed using the hidden Markov model
and a set of precomputed shortest paths (Yang and Gidófalvi, 2018). This algorithm takes into account connectivity and adjacency
between consecutive points. The links included in the precomputation were within 3 km from the points, thus significantly increasing
the computational speed of the matching process when querying from the database.

The above procedure is applied to I-35W and TBI datasets with the carry-over data analysed to test the hypotheses. Table 2
summarises trips and points removed in each pre-processing step.

4.1.2. Estimation of exit-missing costs
To compute the travel time on specific links, we utilise the TomTom Twin Cities dataset, which contains link-wise speed

information from 2010 that has been preserved in databases categorised by the time of day. These data attributes are transferred to
the high-resolution OSM network, which had previously been employed for map-matching purposes. Due to the mismatching links
for the two road networks, we assign the speed attributes through the largest overlapping proportion between the TomTom network
and an auxiliary OSM buffer. The match yields a 95.9% coverage, which implies that only 4.1% of the OSM network is not adapted
with a link speed. These remaining links mainly comprise minor local roads, and their speeds are extrapolated using the mean of
the three nearest neighbouring edges. To provide a fair comparison between the intended trajectory and the best alternative, we
calculate the trip travel times based solely on the network edges matched to the GPS points. It should be noted that the TomTom
network takes into account factors such as turns, congestion, and traffic signals implicitly in its speed data. Moreover, we make the
assumption that drivers travel at the median (50th percentile) speed for their respective time of day.

The approach of finding the exit-missing costs is similar to that introduced in Section 3.1. Based on the GPS dataset and road
network, we identify the freeway off-ramps the participants used to exit freeways. To mimic the behaviour of missing an exit,
Dijkstra’s algorithm is then performed from the source node of the second exit to the final point mapped to the network. Link
impedances for shortest path calculations are based on the travel time of each link, which is estimated using the link length divided
by the TomTom link speed. The shortest path from the second exit, together with the additional segment on the freeway, constitute
the alternative route. Time and distance differences between the original route and its alternative are used to quantify the costs of
missing exit.
12
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Table 3
Number of exits extracted from datasets. VMT and Otrec together contribute to the I-35 W dataset.

Final Interim All

Commute Non-commute Commute Non-commute Commute Non-commute

VMT 934 5,282 723 3,861 1,657 9,143
Otrec 1,777 4,336 1,486 3,370 3,263 7,706
TBI 177 1,063 137 1,026 314 2,089

Table 4
Summary of the time cost of missing exits. (**𝑝 ≤ 0.01, *𝑝 ≤ 0.05).

I-35W TBI

Without SP constraint With SP constraint Without SP constraint With SP constraint

All exits

Mean (min) 0.479 1.612 0.163 1.833
Median (min) 1 2 1 2
Std (min) 2.931 1.704 4.129 1.683
Min (min) −24 −8 −49 −31
Max (min) 14 14 12 12
Sample size 21,769 15,727 2,403 1,625

𝑝-value 0.000e−30** 0.000e−30** 0.027* 0.000e−30**

Final exits

Mean (min) 0.636 1.808 0.275 1.894
Median (min) 1 2 1 2
Std (min) 2.824 1.631 3.161 1.642
Min (min) −23 −3 −24 −1
Max (min) 14 14 12 12
Sample size 12,329 7,936 1,240 715

𝑝-value 0.000e−30** 0.000e−30** 1.118e−3** 0.000e−30**

4.2. Empirical results

This section presents the empirical results from I-35W and TBI datasets and provides a comprehensive discussion of the attributes
f exiting activities. Our empirical analysis indicates that the costs associated with missing exits are consistent with the analytical
nd simulated values we have obtained. Collectively, these findings suggest that the exit-missing costs are on the order of a few
inutes or kilometres. The number of outputted samples from the two empirical datasets are summarised in Table 3. A total of
4,002 exiting behaviours are observed, and the spatial distribution of these exits is illustrated in Appendix B.

.2.1. Costs of missing exit
We start by discussing whether missing exits incur additional travel costs for drivers and, if so, how costly missing exits are.

osts are evaluated in terms of additional time and distance from the difference between the original route and its alternative.
omputation of the costs is discussed in Section 4.1.2. We analyse two scenarios in this study. The first comprises all exits used by
he drivers. This approach can be somewhat biased since a human-chosen route (original) is compared with a shortest time path
alternative), which may result in considerably large time/distance savings (negative costs) when an exit is missed. Therefore, we
dopt another scenario (named with SP constraint hereafter), which consists of exits with their remaining portion of the trip (from
he upstream node of CE to the destination) within 10% of the shortest path travel time. By applying the shortest path filter, we
re able to ensure that the original and alternative routes are comparable.

Fig. 6 presents distributions of the time costs of missing exits for exits in I-35W and TBI datasets. Two exiting scenarios are
howcased for the costs. The first includes all exits within each trip, which consists of both final and interim exits. The second
cenario involves only the final exits of each trip. From Fig. 6, density plots without the SP constraint all exhibit left skewness,
ndicating that a significant proportion of the trips deviate from the shortest path to such an extent that the variation is even greater
han that resulting from a missed exit. This has an adverse effect on the accuracy of our analysis and justifies the introduction of
he shortest path filter. However, even without the SP constraint, both the mean and the median of all four cases still lie above 0.
able 4 summarises the statistics for distributions of the time cost of missing exits and their respective 𝑝-values. Here we applied

the one-sample t-test with the null hypothesis: the mean of the additional travel time from missing exits is less than or equal to
0. All 𝑝-values are statistically significant, which provides evidence for us to reject the null hypothesis in favour of its alternative.
Although we confirm missing an exit does incur additional travel time, the magnitude of the increase is generally mild.

Moreover, we compare the empirically derived results with those from our analytical derivations and simulations. To maintain
consistency, only the final exits are considered in the comparison. Combining the I-35W and TBI samples yields a mean of 1.815 min
and a standard deviation of 1.632 min. Based on the combined mean, there are, respectively, 9% and 14% over-estimations for
the analytical and simulated results (1.984 min and 2.077 min). Similarly, the combined standard deviations is compared to the
analytical and simulated values (1.472 min and 2.019 min). There is a 10% under-estimation and a 24% over-estimation for the
analytical and simulated results. Although the error may seem large, it is worth noting that we are approximating complicated
exit-missing costs using analytical and simulated models laden with simplifications and assumptions. Notably, the analytical model
13
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Fig. 6. Distributions of the time cost of missing exits and corresponding CDFs. Cost is calculated by subtracting the travel time of the alternative route from
he travel time of the original route. Blue plots correspond to samples without the SP constraint in place. Green plots correspond to samples with the 10% SP
onstraint. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

mploys only five network variables to estimate these costs. Most importantly, the observations from all three approaches show
hat people tend to spend more time after missing an exit, yet the time costs are, on average, relatively low (approximately 2 min
or Twin Cities). Therefore, lane changes intended to exit a freeway may not be strictly required if no opportunity for a safe lane
hange prior to the exit emerges. Drivers are thus resilient to missing exits.

The extra travel distance incurred by missing an exit is further evaluated. Fig. 7 presents the travel distance costs of missing
xits for the two datasets, while the statistics of the distributions are summarised in Table 5. We hypothesise that by missing an
xit, one would be penalised with extra travel distance. Thus, for our null hypothesis, we assume that the mean of the additional
ravel distance from missing exits is less than or equal to 0. The alternative hypothesis states otherwise. Once again, the 𝑝-values

favour the alternative, and we conclude that a driver would be subjected to extra travel distance when missing an exit.
Likewise, we evaluate the discrepancies between empirical results and those derived from analytical and simulation methods

for the distance cost. By combining the two datasets, the mean and standard deviation are 3.068 km and 2.272 km, respectively.
Recall that the mean distance costs from the analytical and simulated means are 2.634 km and 3.145 km, while the standard
deviations are 2.020 km and 3.409 km. The combined empirical means are therefore, 14% under-estimated by the analytical value
and 3% over-estimated by the simulated value. The standard deviations, on the other hand, are 11% under-estimated and 50% over-
estimated by the analytical and simulated methods. From the above analysis, it is clear that while the estimated means serve as
reasonable approximations, the standard deviations diverge notably. In particular, the simulated standard deviation tends to surpass
the empirical value by a margin. The large difference may be a result of the higher variability in the sampled data. Since the LEHD
data cover large amounts of commuting ODs from each metro area, the variability between routes may be substantially different.
This will in turn magnify the variance of the exit-missing costs. Nevertheless, the observations underscores that the exit-missing
costs are not substantial.

4.2.2. Analysis on relative proportions
In general, evaluating whether an increase in travel time/distance is relevant for the drivers would require a discussion on what

proportion of the total trip this represents. Therefore, we further evaluate the exit missing costs in terms of the relative proportions
14

of the costs to their original trips.
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Fig. 7. Distributions of the distance cost of missing exits and corresponding CDFs. Cost is calculated by subtracting the distance of the alternative route from
he distance of the original route. Blue plots correspond to samples without the SP constraint in place. Green plots correspond to samples with the 10% SP
onstraint. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
Summary of the distance cost of missing exits. (**𝑝 ≤ 0.01, *𝑝 ≤ 0.05).

I-35W TBI

Without SP constraint With SP constraint Without SP constraint With SP constraint

All exits

Mean (km) 1.958 2.536 1.879 2.978
Median (km) 1.900 2.218 1.967 2.582
Std (km) 2.636 2.278 3.811 3.493
Min (km) −20.270 −16.548 −43.587 −4.677
Max (km) 23.802 23.802 23.326 23.326
Sample size 21,769 15,727 2,403 1,625

𝑝-value 0.000e−30** 0.000e−30** 0.000e−30** 0.000e−30**

Final exits

Mean (km) 2.452 3.041 2.382 3.370
Median (km) 2.199 2.522 2.132 2.863
Std (km) 2.479 2.235 2.949 2.630
Min (km) −36.717 −2.872 −12.249 −4.504
Max (km) 23.697 23.697 23.164 23.164
Sample size 12,329 7,936 1,240 715

𝑝-value 0.000e−30** 0.000e−30** 0.000e−30** 0.000e−30**

Fig. 8 illustrates the time costs as a percentage of the original trip length, while Table 6 summarises the statistics. Continuing
rom the t-tests performed for the absolute costs, in this section, we examine whether the mean percentage costs are also positive.
he null hypothesis is set such that the mean values are assumed to be 0. The 𝑝-values for all scenarios are significant, indicating that,

on average, the percentage time costs are not 0. In particular, for all our scenarios, the costs are positive. When the SP constraint
is in place, the percentage time costs are approximately 12% for all exits and 14% for the final exits. Unsurprisingly, without the
SP constraint, a portion of the distributions shifts to the negative range, and the mean proportional time costs drop.
15
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Fig. 8. Distributions of the time cost of missing exits and corresponding CDFs. Costs are in proportion of the original trip length.

Table 6
Summary of the time cost of missing exits in terms of the proportion of the total trip. (**𝑝 ≤ 0.01, *𝑝 ≤ 0.05).

I-35W TBI

Without SP constraint With SP constraint Without SP constraint With SP constraint

All exits

Mean 0.0637 0.1194 0.0523 0.1201
Median 0.0465 0.0769 0.0444 0.0769
Std 0.2058 0.2013 0.2079 0.1594
Min −1.7143 −0.8182 −2.7857 −0.1667
Max 4.6667 4.6667 1.8000 1.8000
Sample size 21,769 15,727 2,403 1,625

𝑝-value 0.000e−30** 0.000e−30** 0.000e−30** 0.000e−30**

Final exits

Mean 0.0782 0.1476 0.0592 0.1427
Median 0.0526 0.0952 0.0400 0.0952
Std 0.2377 0.2417 0.1836 0.1776
Min −1.0000 −0.2500 −0.5385 −0.1250
Max 4.3333 4.3333 1.6000 1.6000
Sample size 12,329 7,936 1,240 715

𝑝-value 0.000e−30** 0.000e−30** 0.000e−30** 0.000e−30**

As for the percentage distance costs, the distributions are illustrated in Fig. 9, and the statistics are presented in Table 7. Again,
he null hypothesis is set such that the mean values are 0. All 𝑝-values suggest that the distance percentage costs relative to the

original trips are positive. The magnitudes of the costs with SP constraints are approximately 17% for all exits and 23% for final
exits. The results above suggest that the percentage distance costs are typically larger than the percentage time costs. We speculate
16
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Fig. 9. Distributions of the distance cost of missing exits and corresponding CDFs. Costs are in proportion of the original trip length.

Table 7
Summary of the distance cost of missing exits in terms of the proportion of the total trip. (**𝑝 ≤ 0.01, *𝑝 ≤ 0.05).

I-35W TBI

Without SP constraint With SP constraint Without SP constraint With SP constraint

All exits

Mean 0.1372 0.1743 0.1231 0.1736
Median 0.0898 0.1130 0.0839 0.1166
Std 0.2270 0.2379 0.2039 0.1939
Min −0.7571 −0.7571 −1.8837 −0.1250
Max 4.4029 4.4029 2.0158 2.0158
Sample size 21,769 15,727 2,403 1,625

𝑝-value 0.000e−30** 0.000e−30** 0.000e−30** 0.000e−30**

Final exits

Mean 0.1825 0.2313 0.1540 0.2243
Median 0.1163 0.2313 0.1022 0.1740
Std 0.2613 0.2842 0.2052 0.2243
Min −0.3694 −0.0497 −0.3184 −0.0719
Max 4.3433 4.3433 2.0009 2.0009
Sample size 12,329 7,936 1,240 715

𝑝-value 0.000e−30** 0.000e−30** 0.000e−30** 0.000e−30**

that this observation might be due to vehicles having to travel further down the freeway after missing an exit. The freeway section,
which has much higher traffic speeds than local streets, then understates the marginal impact on travel time.

Furthermore, both the figures and tables show that the percentage costs are fairly consistent for the two datasets, suggesting a
trong dependence of the exit-missing costs to the network in which the trips belong to. From both absolute and percentage costs, it
an be seen that the cost tend to be higher for final exits than all exits. The fact that interim exits have higher flexibility for future
oute choice might have caused this phenomenon. The earlier an exit is missed, we believe the easier it is for the driver to adjust
17

ts route to make up for the costs.
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Table 8
Summary table for the time cost of missing exits for commuting and non-commuting trips. (**𝑝 ≤ 0.01, *𝑝 ≤ 0.05).

I-35W TBI

All exits Final exits All exits Final exits

Commuting

Mean (min) 1.599 1.957 2.016 2.167
Median (min) 1 2 2 2
Std (min) 1.759 1.819 1.785 1.523
Sample size 3,510 1,688 189 168

Non-commuting

Mean (min) 1.616 1.768 1.808 1.857
Median (min) 2 2 2 2
Std (min) 1.688 1.575 1.669 1.653
Sample size 12,217 6,248 1,436 1,262

𝑝-value 0.595 2.548e−5** 0.111 0.022*

Table 9
Summary table for the distance cost of missing exits for commuting and non-commuting trips. (**𝑝 ≤ 0.01, *𝑝 ≤ 0.05).

I-35W TBI

All exits Final exits All exits Final exits

Commuting

Mean (km) 2.472 3.224 3.221 3.763
Median (km) 2.170 2.436 2.314 3.122
Std (km) 2.448 2.655 2.743 2.464
Sample size 3,510 1,688 189 168

Non-commuting

Mean (km) 2.554 2.991 2.947 3.318
Median (km) 2.231 2.558 2.608 2.760
Std (km) 2.227 2.105 2.458 2.646
Sample size 12,217 6,248 1,436 1,262

𝑝-value 0.059 1.444e−4** 0.155 0.039*

It can also be seen that the distributions with the SP constraint have a larger portion in the negative plane. However, instead
f skewing to the left, the plot now skews to the right, indicating that trips with negative costs typically have high travel time or
istance that forces the percentage costs low. Due to the invalidity of comparing excess routing original trips and shortest path
lternatives, analysis hereafter are performed with the SP constraint in place.

.2.3. Analysis on commuting effect
Unlike the data obtained from the LEHD dataset, GPS data used in this study consists of both commuting and non-commuting

rips, providing an opportunity to examine the impact of trip purposes on exit-missing costs. Here, we only assess the ‘‘SP-
onstrained’’ scenario. The two-sample independent t-test is applied, assuming equal variances. The null hypothesis states that the
xpected values for the costs of missing exits for commuting and non-commuting trips are the same. The alternative states otherwise.

As above, both time and distance costs are examined. Figs. 10 and 11 demonstrate the cost distributions for commuting and
on-commuting trips, and their statistics are summarised in Tables 8 and 9. Interestingly, all 𝑝-values for the final exit cases are

significant, and in general, the average costs for commuting trips are larger than the average for non-commuting trips. This opposes
our initial hypothesis and suggests that the costs of missing an exit are somehow related to the purpose of the trip. The cases
involving all exits are not statistically significant due to the greater flexibility after missing an interim exit. In other words, when
drivers miss an interim exit, they have more alternative routes available to them than if they missed the final exit. This flexibility
allows drivers to more easily counteract the negative effects of missing an exit, which could downplay the impact of different OD
locations, leading to seemingly consistent comparison outcomes.

An inspection of the trips containing final exits shows that the average distances between the final exit and the destination for
commuting trips (2.992 km) and non-commuting trips (2.970 km) are barely different. Therefore, the flexibility of route choice is
similar, and the discrepancy is likely related to the length of rerouting. The deviation factors are computed for both the original paths
and the shortest paths (from the exit to the destination). Commuting trips are seen to have a higher average deviation (2.787 km)
than non-commuting trips (1.720 km). The difference in the costs thus could not have been caused by a higher sensitivity of the
commuting trips towards missing exits due to them travelling more frequently on the shortest path. Therefore, the cost discrepancy
is likely related to the network configuration.

4.2.4. Analysis on peak hour effect
Considering that traffic congestion may play a crucial role in the composition of exit-missing costs, we examine the effects of

travelling during peak hours. Again, we focus solely on the ‘‘SP-constrained’’ scenario. The analysis done in this section divides the
trips into peak hour and off-peak hour ones based on the time that a trip was performed. A trip is deemed to have experienced peak
hour effects if its entire duration falls within one of the following peak periods: morning peak (7–9 am) or afternoon peak (4–6 pm).
18

These peak hours are considered only on weekdays.



Transportation Research Part B 186 (2024) 102994Z. Wang et al.
Fig. 10. Distributions for the time cost of missing exits in commuting and non-commuting trips and the corresponding CDFs.

Fig. 11. Distributions for the distance cost of missing exits in commuting and non-commuting trips and the corresponding CDFs.
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Table 10
Summary table for the time cost of missing exits for peak hour and off-peak hour trips. (**𝑝 ≤ 0.01, *𝑝 ≤ 0.05).

I-35W TBI

All exits Final exits All exits Final exits

Peak hour

Mean (min) 1.677 1.944 2.084 2.1468
Median (min) 2 2 2 2
Std (min) 1.756 1.721 1.923 1.7786
Sample size 4,538 2,374 238 109

Off-peak hour

Mean (min) 1.586 1.751 1.789 1.8482
Median (min) 1 2 2 2
Std (min) 1.682 1.588 1.636 1.6130
Sample size 8,486 5,562 1,387 606

𝑝-value 2.536e−3** 1.421e−6** 0.013* 0.080

Table 11
Summary table for the distance cost of missing exits for peak hour and off-peak hour trips. (**𝑝 ≤ 0.01, *𝑝 ≤ 0.05).

I-35W TBI

All exits Final exits All exits Final exits

Peak hour

Mean (km) 2.512 3.057 2.864 3.226
Median (km) 2.190 2.553 2.767 2.906
Std (km) 2.311 2.247 2.165 2.085
Sample size 4,538 2,374 170 109

Off-peak hour

Mean (km) 2.545 3.034 2.992 3.396
Median (km) 2.220 2.522 2.539 2.845
Std (km) 2.265 2.230 2.529 2.717
Sample size 11,189 5,562 1,455 606

𝑝-value 0.411 0.674 0.527 0.534

Figs. 12 and 13 illustrate the time and distance cost distributions, taking into account the effects of peak hours. Tables 10 and 11
resent the statistics corresponding to the two figures. The t-tests were conducted with the null hypothesis that the costs during
eak and off-peak hours are equivalent. Notably, none of the distance costs exhibit a significant 𝑝-value, indicating that the distance

costs from missing exits during peak and off-peak periods tend not to differ. On the other hand, a majority of the time costs are
shown to be statistically significant. Given the consistency in distance costs, the variation in time costs might be explained by the
deteriorating traffic condition during the peak hours. This is further corroborated by the higher average costs observed during peak
hour instances. Although the 𝑝-value is not significant for the final exits of the TBI dataset, the peak hour mean remains considerably
higher than the off-peak mean. The insignificant 𝑝-value might be attributed to a smaller sample size compared to other cases.

From the figures, particularly the CDFs, it is evident that the time cost distributions for peak hour trips are generally more
platykurtic. This trend arises because alternative routes that are longer than the original ones, leading to positive exit-missing costs,
experience increased time costs due to slower traffic. Similarly, original routes that are longer than their alternative counterparts,
resulting in negative costs, also have their travel time amplified, which further decreases the time cost (resulting in more negative
values). This rationale underscores our decision to focus solely on the SP-constrained cases. The unconstrained distributions, with
a significant portion below 0, would yield more negative costs during peak hours, potentially skewing the results. The SP cases are
thus more compelling given that the two routes are more comparable. Thus, the empirical results identify the presence of traffic
congestion during peak hours. The lowered speed during peak hours tends to magnify the time cost of missing exits, whereas the
distance costs remain relatively unchanged.

5. Conclusions and limitations

This study ascertains the costs of missing exits, thereby exploring the benefits of performing lane changes for exiting freeways.
First, an analytical model is proposed, whereby the exit-missing costs are deconstructed into sub-components with their values then
estimated. Both the mean and standard deviation of the costs can be approximated. The proposed analytical methodology is then
applied to the top 50 metropolitan regions in US. and the outcomes are compared with simulated values. The results demonstrate
that the proposed analytical approach is practicable and can provide valuable insights into the nature of costs associated with
missed exits. Specifically, networks with lower circuity, faster freeway speeds, and faster local street speeds often have higher costs
associated with missing exits. Furthermore, if a network has sparser exit density and greater distances between exits, the costs for
missing an exit tend to be high. However, inhomogeneous exit distributions can cause the prediction to overshoot the actual costs
by a margin. Therefore, the model would perform satisfactorily in areas where exits are more homogeneous, such as in urbanised
areas. Subsequently, we conduct a thorough analysis of two real-life empirical datasets obtained from the Minneapolis - St. Paul
region. The results from both datasets are similar and also correspond with the analytical and simulated outcomes. All three analyses
indicate that although missing exits can lead to higher travel costs, the increase is negligible, amounting to only a few minutes or
kilometres.
20
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Fig. 12. Distributions for the time cost of missing exits in peak hour and off-peak hour trips and the corresponding CDFs.

Fig. 13. Distributions for the distance cost of missing exits in peak hour and off-peak hour trips and the corresponding CDFs.
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These findings shed light on the costs associated with not executing a lane change to exit off-ramps. When lane changes are
erformed to avoid obstacles, the costs are essentially infinite, given that the maneuver prevents the driver from being indefinitely
tuck. In contrast, the costs tied to not changing lanes for exiting freeways are notably lower. This discrepancy might partially explain
hy drivers occasionally miss their intended turns. As such, we recommend more lane change models to incorporate the probability
f drivers missing exits, which could arise from factors such as fatigue, distractions, or underestimations of the complexity of a lane
hange maneuver. For the design of lane change controllers, our study can assist in balancing the trade-off between executing a
ane change and enduring a longer route to the destination.

Given the distinct benefits of making a lane change to exit a freeway versus doing so to avoid blockage, we categorise the
andatoriness of lane changes into three levels: discretionary, expedient (ELC), and mandatory. The respective benefits of these

ane changes are on the scale of seconds/metres, minutes/kilometres, and infinite. Based on our findings, we classify lane changes
or tactical routing as ELC. Future studies should assess the benefits of other types of MLCs, such as obeying lane usage indications
r yielding to emergency vehicles, to determine if they should also be classified as ELCs.

The present study is subject to several limitations, and we will first discuss the ones for the analytical model:

• As part of the cost functions, the contribution of exits to the surrounding households (in Section 2.1) is formulated based
on the assumption that people are rational and fully aware of the travel time to their destinations. In fact, it has been
previously demonstrated that drivers are not always rational and often do not travel on the shortest available path (Zhu
and Levinson, 2015; Dia, 2002; Jiang et al., 2020). Therefore, the deterministic proportions we derived may not accurately
reflect the true contribution of nearby exits. Since the experiment we conducted in Section 3 is based on the shortest path
assumption, the potential ramifications of this limitation may not be readily apparent. However, future research should address
this shortcoming by incorporating route choice techniques into the model.

• It is postulated in the proposed model that exits are characterised by a homogeneous Poisson point process, which represents
a simplified approximation of the true distribution. In practice, the design of exit locations would be more dependent on the
population of the surrounding neighbourhood, the spatial distribution of freeways, and the overall accessibility of the region.
However, accounting for all possible scenarios would make our model overly complex and would require the computation of
input parameters such as the locations of city centres and the density of links on the freeway network.

• As demonstrated in Section 3, the predicted value exhibits a strong dependence on the number of off-ramps from the street
network. In our examples, the high variation in exit density and exit gap length led to the predictions to overshoot the actual
values in regions with a larger area and fewer off-ramps. This is essentially a repercussion of the underlying HPPP assumption,
which makes the model sensitive to fluctuations in the number of exits in subsets of the regions. Therefore, instead of computing
the costs for a large geographical area, our model would perform better for areas where the density of exits is more consistent
(e.g. urbanised area instead of the entire metropolitan area).
It should be noted that the findings we have obtained are based on the average costs for an overall network. In dense urban
area, with a lot of redundancy, missing an exit would not cost much if there is no congestion. However, in a sparser network,
that may not be the case. Examples such as SLC and LAS have sparse networks and are observed to have relatively high costs
associated with missing an exit.

• Finally, our analytical model fails to take into account supply side influences. As an example, higher flows are observed closer
to the city centre than in rural areas. Thus higher weights should be placed on exits in more populated areas where the traffic
network is denser and shorter exit-missing costs are expected.
In addition, both the analytical and simulated models have omitted the impact of traffic congestion on the costs. As highlighted
in Section 4.2.4, heavier traffic is observed to impact exit-missing costs, particularly the time cost. This suggests that further
research should be undertaken to incorporate congestion into the cost modelling. However, in the absence of link-wise speed
data for different time periods, we will defer this inquiry to future research. Likewise, the fluctuations in traffic flow can
influence exit choice of drivers, which could, in turn, impact the exit-missing costs. In particular, a driver may opt for an
earlier exit due to a downstream blockage or choose a later exit due to spillback from the usual off-ramp. In summary, factors
such as spillbacks from bottlenecks can greatly affect route choices and consequently, lane-changing decisions and costs. It
is challenging to disentangle the effects of congestion from path choice. The impact may be more visible if newer datasets
are used, which reflect a wide spread of communication and technology systems where drivers may follow directions from
navigation apps. The impact of such path planning behaviour on the costs of missing exits may be explored in future research
by comparing old and new travel patterns.

The following are the limitations of our empirical analysis:

• The empirical datasets only cover the Twin Cities region. As a result, it remains unclear whether the same findings can be
extrapolated to other regions. It is important to note that the performance of traffic networks is heavily influenced by their
structural characteristics (Xie and Levinson, 2007). Therefore, high variability of travel costs may exist for networks with
different configurations and road densities.

• The estimation of trips with missed final exits is based solely on a set of simple rules, without knowledge of the actual intentions
of drivers. This approach may not accurately capture the complexities of real-world driving behaviours. A more accurate
analysis could be achieved through the use of a driving simulation or an in-vehicle dataset that provides detailed vehicle
22
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• The alternative routes computed are assumed to follow the next downstream exit, which may not be a valid assumption.
After missing exits, drivers will likely follow their intuitions to navigate to the destinations, which may not involve the exit
directly downstream of the missed one. To address this issue, future research could incorporate data capturing drivers’ actual
behaviours after missing exits, which would provide a more accurate representation of travel patterns.

• The presence of in-car navigation may also influence the human reaction after an exit is missed. This factor was not directly
accounted for in our analysis, since it is unknown which individuals used in-car navigation during the data collection period.
However, we have indirectly considered this by purposefully selecting two datasets that were not collected recently (2008/09
and 2010/11, respectively). At that time, in-car navigation systems were not widely available, and only a fraction of people
in the US used such systems regularly (Leshed et al., 2008). Moreover, Google Maps was released in September 2008, so its
influence on the route choice decisions of drivers in the I35-W dataset should be minimal. Regarding the TBI dataset, there
might have been a broader adoption of in-car navigation systems by 2010 than in 2008. Nonetheless, based on the shortest
path usage analysis in Appendix D, we believe the impact of GPS navigation on exit choices would not significantly influence
the calculated costs. After in-car navigation become wider adopted (in more recent years), we anticipate that there might be
changes to the costs of missing exits as people are more likely to travel on the shortest paths, and concern about unfamiliarity
routes might diminish.

• By utilising trajectory data from GPS records, we may have overlooked the influence of human factors on the exit-missing
costs, such as variations in the Value of Time (VOT) and drivers’ perceived travel costs. VOT differs among individuals and for
different trip purposes, making exit-missing costs situation- and individual-dependent. For instance, the costs associated with
missing an exit during a leisure trip would differ from those during a trip to a time-sensitive meeting. However, this study
focuses solely on objective costs incurred when exits are missed, omitting demand-side factors. To assess the impact of VOT
on the cost of missing freeway exits, future studies should investigate the marginal disutility of travel costs for various types
of trips and for different driver populations. For research related to commuting VOT, interested readers can refer to Li et al.
(2010), Carrion and Levinson (2012).
Furthermore, the costs perceived by human drivers may differ from the actual costs incurred on the road. Perceived costs can
depend on various factors, including the driver’s familiarity with the road, the nature of the trip, the driver’s expected arrival
time, and individual variations. As an example, individuals may encounter discomfort while navigating an unfamiliar route.
Missing a frequently used exit and travelling into an unfamiliar area can significantly impact the urgency of a lane change.
In such cases, the lane change may feel ‘‘more mandatory’’ than the objective costs incurred. Extracting this information
can be challenging and may require an understanding of the mismatch between drivers’ expected and actual utilities. Future
research should explore how mandatory a lane change feels to a driver using datasets beyond trajectory data. Surveys can
gauge drivers’ attitudes towards distracted driving and VOT, while driving simulator experiments, or in-vehicle monitoring,
coupled with electroencephalogram technologies, may be better suited for investigating the cognitive processes and emotional
responses while driving, offering insights into unconscious processes.

As for future research directions, our findings can be applied to model lane changes when dealing with the trade-off between
afety and travel time/fuel consumption (Ji and Levinson, 2021; Ji et al., 2023a,b). The analytical model we proposed can be
ntegrated into the cost functions by allowing a certain degree of stochasticity in the merging process. Moreover, our work can
rovide insight into exiting activities for traffic simulations. Existing microscopic models use rules to model lane changes in
reparation for exits. For instance, VISSIM adopts two criteria for exiting: the lane change distance and the emergency stop distance.
he lane change distance specifies the distance from which the driver becomes aware of the upcoming exit and will consider it in

ane change maneuvers. The emergency stop distance is the distance from the exit the driver will stop to wait for an acceptable
ap to change lanes. On the other hand, AIMSUN uses a look-ahead heuristic, which reduces the chance of a vehicle coming to a
top to exit. However, the same assumption is made that a car will force a gap in the target lane when executing the lane change,
hich often causes the traffic condition to deteriorate as vehicles build up (Barceló, 2010). We argue that such an assumption can
e relaxed given that the cost of missing an exit is relatively small in most urban cases, and the vehicle will eventually route back
o its destination when necessary.

The findings of this study challenge the conventional notion of MLC and suggest a need for researchers to refine existing lane
hange models.
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Table 12
List of main notations.
Notations Definition (unit)

Network Variables
𝐷 The distance cost of missing exits (km)
𝐷F The distance cost of missing exits on freeway network (km)
𝐷S The distance cost of missing exits on surface street network (km)
𝑇 The time cost of missing exits (min)
𝐶 The network circuity
𝑑f The intermediate gap length between freeway exits (km)
𝑣f The travel velocity on freeway network (km/min)
𝑣s The travel velocity on surface street network (km/min)

Point Process
R Set of real numbers
1 The indicator function
P The probability of an event occurring
E The expectation of a random variable
𝜇 The population mean of a random variable
𝜎 The population standard deviation of a random variable
𝛷 A point process in R2

𝐵 A Borel set of the underlying point process 𝛷
𝜓 The simple counting measure of 𝐵, defined as 𝜓(𝐵) = ∑

𝑥𝑖∈𝛷
1(𝑥𝑖 ∈ 𝐵)

𝛬 The intensity measure of points in 𝐵 defined as 𝛬(𝐵) = E[𝜓(𝐵)]
𝓁 The Lebesgue measure of subset 𝐵
𝜆 The intensity of the point process 𝛷
𝛤 The gamma function defined as 𝛤 (𝑧) = ∫ ∞

𝑜 𝑡𝑧−1𝑒−𝑡d𝑡
𝑓∕𝐹 Probability/Cumulative distribution function of a random variable
𝑅𝑛 The random variable representing the distance between a randomly chosen point and

its 𝑛th nearest neighbour in the point process
𝑟𝑛 The distance between a particular point and its 𝑛th nearest neighbour in a given

point process. It can be thought of as a particular realisation of 𝑅𝑛
𝑔 A multivariate function representing either the time or the distance cost function

Fig. 14. Spatial location of all exits in the datasets.

Appendix A. Notation

See Table 12.

Appendix B. Exits analysed

See Fig. 14.
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Fig. 15. Original and alternative routes of trip 497 from sample GPS1019. The deviation of this original-alternative pair is calculated as the square root of the
shaded area.

Fig. 16. Route deviation distributions and CDFs between original and alternative routes from final exits. Blue plots correspond to samples without the SP
constraint in place. Green plots correspond to samples with the 10% SP constraint. Subplots (a) and (b) correspond to the I-35W dataset and the TBI dataset,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Appendix C. Route deviation and circuity

In this appendix section, we compute the circuity for both original and alternative routes to ascertain whether there is a change in
circuitousness by missing an exit. To quantify the discrepancy between the original and the alternative routes, we employ the route
deviation, which measures the closeness between two trajectories with the same OD. The measure is computed from the square root
of the area of the concave hull that is enclosed by the routes (Wang et al., 2022). A higher deviation suggests that the alternative
path is more dissimilar to the original path and, by our assumption, may imply higher routing costs. Fig. 15 shows an arbitrary trip
and its best alternative. In this case, the alternative readjusts itself back to the original route after exiting at the next downstream
ramp. The deviation from missing the exit can be derived from the square root of the shaded area.

Fig. 16 shows the distributions of deviation for final exits. As shown in the figure, 90% of the exiting samples have deviations
less than 3 km, reinforcing that alternative routes may not be very dissimilar to their original pair. Furthermore, it is expected and
observed that original routes with the SP constraint deviate less from their alternatives since both paths have optimised travel times.

To understand the impact of missing an exit on the directness of the trips, we utilise the network circuity, which is computed
as the ratio between the route length and the Euclidean distance between the origin and the destination. Circuity is computed for
25
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Fig. 17. Circuity distributions and CDFs for original and alternative routes from final exits. The purple plots correspond to the original routes, and the green
plots correspond to the alternative routes. Subplots (a) and (c) correspond to the I-35W dataset and subplots (b) and (d) correspond to the TBI dataset. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

original and alternative routes from the source node of the exit to the final destination of the trip. The outcomes are illustrated
in Fig. 17. As can be seen, the densities of the original routes are more concentrated at lower values, while the alternative routes
are more platykurtic. Although computed with shortest path assumptions, the alternative routes have a spread-out distribution due
to the great variability of the Euclidean distance between the assessed ODs. In general, we assume a shorter distance between the
exit source node and the destination will induce a larger circuity as there is a higher likeliness of taking detours, but this may also
depend on the road network topology.

Moreover, we compare the deviation factors to the change in circuity and exit missing costs, evaluating our hypothesis that
larger deviation can induce larger time and distance discrepancies. The correlations are assumed to be linear, and the Pearson

orrelation coefficients are calculated between the variables. As shown in Table 13, only the costs are strongly correlated, while the
eviation has weak correlations with other variables. This suggests the deviation is not suited for estimating the costs of missing an
xit. Although counter-intuitive, considering the opposing effect of the negative time/distance costs may explain this outcome. In
ddition, the deviation is not only related to the closeness of the original and alternative trajectories but also their length. This adds
stochastic nature to the parameter. Therefore, although the deviation is a fair measure of the spatial variation of two routes, it can
e misleading when used as a parallel comparison standard. On the other hand, the circuity difference is seen to have a moderate
ositive correlation with the costs, indicating that more circuitous routes correspond to higher travel costs. Unsurprisingly, the travel
osts themselves have a strong positive correlation as the average velocities on alternative routes are guaranteed to be positive.

ppendix D. Categorical analysis of final exits

In this section, we demonstrate our method of estimating the number of final exits missed by the participants. Here we only
ssess the final freeway exits since the intention of remaining on the freeways for the interim exits is ambiguous as there is higher
lexibility for a driver to choose an interim exit than it is for a final exit. We also neglect non-commuting trips since inconsistent OD
airs can generate distinctive routes with different choice sets of exits. For each driver, we split all commuting trips into to-home
nd to-work. The I-35W dataset (VMT and Otrec combined) is further stratified into before-bridge-reopen and after-bridge-reopen,
nsuring bridge usage consistency.
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Table 13
The correlation between measurements of missing exits. The factors are: the extra travel time cost, the extra travel distance cost,
the circuity difference, and the routes deviation.

Factors 1 2 3 4

1. Travel time cost – 0.736*** 0.433** −0.368*
2. Travel distance cost – 0.523** −0.207*
3. Circuity difference – −0.187*
4. Route deviation –

***: Strong correlation (0.7 < |𝑟| < 1).
**: Moderate correlation (0.4 < |𝑟| < 0.7).
*: Weak correlation (0.1 < |𝑟| < 0.4)

Fig. 18. Final exits of to-work trips for sample GPS2038. The subject used three different exits during the sampling period. Common Exit (CE) denotes the
ordering of the final exits regarding the frequency of usage; Shortest Exit (SE) corresponds to the ordering of the exits based on their usage in the 𝑛th shortest
paths (from the source node of CE to the destination marked by the purple cross); Next Exit (NE) is defined as the next exit directly downstream of the CE,
which we assume a trip that missed the CE has traversed along.

The final exits under each subcategory are extracted and sorted according to their proportion of appearance, where the most
frequent exit is assigned to be the Common Exit (CE). We then retain only the downstream exits of the CE by applying the
breadth-first search algorithm on the freeway and ramp network for each distinctive commuting OD pair.

The remaining exits are ranked based on the order of shortest path using a variant of the path deletion K-shortest paths
algorithm (Azevedo et al., 1993). The algorithm incrementally eliminates the final exit in the fastest route, which forces the algorithm
to search for a new shortest path with a different final exit. The loop stops once the analysed exit is matched with the final exit of
the shortest path. The order of the Shortest Exit (SE) is then recorded.

In addition, we identify the Next Exit (NE) downstream of the CE for each OD pair by running a single source Dijkstra search
starting at the CE source node. NE can be obtained as the exit edge with the least cost assuming equal link impedances on all edges,
excluding the CE. Trips in the same OD pair that contain the NE are then identified and classified as trips with missing exits if and
only if their proportion of appearance in their respective OD pair is less than equal to certain threshold. Otherwise, it is assumed
to be intentional. In this paper, we set the thresholds to be 25%, 15%, and 5%.

Above we have developed a simple heuristic to categorically analyse the exits based on their frequency of usage, travel time to
destination, and likeliness of being missed. The three labels are illustrated in Fig. 18 through an arbitrary commuting OD pair. The
CE, in this case, has the highest travel time out of the three options, which in turn emphasises that people are often not rational in
their route choice. The implementation of the procedure is showcased in Algorithm 1.

Following the aforementioned procedure, 2,888 final exits from commuting trips are used to analyse the exiting behaviour of
drivers. After assigning the labels to all final commuting exits, the counts are aggregated, and the output is presented in the format
of a decision tree (Fig. 19). The branches of the trees represent the decisions regarding ordering, while the leaves represent the
percentages of the corresponding orders.

Looking top-down from the decision tree, the large majority (roughly 98%) of the final exits are comprised of CEs, while at most,
three exits were used by participants during the sampling period. This suggests people tend to minimise variation by sticking to a
fixed commuting route.

Furthermore, we see that the CEs are often not the SEs (13.19% for the I-35W dataset and 18.90% for the TBI dataset) even
27

from the point just upstream of the CE. Previous studies (Zhu and Levinson, 2015; Tang and Levinson, 2018) on the same datasets
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Fig. 19. Decision tree of exit structures for commuting trips. All numbers on leaves are in percentage. Blue corresponds to the order of CE; green corresponds
to the order of SE; orange corresponds to the binary decision of NE. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Algorithm 1 Exit Class Identification
Input:

𝑂𝐷list: A list of OD vectors with each vector containing different numbers of trips. Each trip (element of a vector) contains
different links

Output:
𝑓𝑖𝑛𝑎𝑙_𝑒𝑥𝑖𝑡𝑠[𝑂𝐷]: For each OD, a table that contains the exits used in that OD pair along with the counts, CE, NE, and SE
orders

Definitions:
(𝑈𝑖, 𝑉𝑖): Source and target nodes of a link 𝑖
𝐺: Road network graph
𝐺freeway: A subgraph of the road network graph containing freeway network only
BFS(graph, start, depth): Breadth-first search function
dijkstra(graph, start, end): Dijkstra’s shortest path function

1: for each 𝑂𝐷 in 𝑂𝐷list do
2: for each 𝑡𝑟𝑖𝑝 in 𝑂𝐷 do
3: Extract the final exit (𝑈exit, 𝑉exit) from trip
4: 𝑓𝑖𝑛𝑎𝑙_𝑒𝑥𝑖𝑡𝑠[𝑂𝐷] ← (𝑈exit, 𝑉exit)
5: end for
6: 𝑒𝑥𝑖𝑡_𝑐𝑜𝑢𝑛𝑡𝑠 ← count occurrences of each unique(𝑈exit, 𝑉exit) in 𝑓𝑖𝑛𝑎𝑙_𝑒𝑥𝑖𝑡𝑠
7: 𝐶𝐸_𝑒𝑥𝑖𝑡 ← argmax(𝑒𝑥𝑖𝑡_𝑐𝑜𝑢𝑛𝑡𝑠)
8: 𝑑𝑜𝑤𝑛_𝑙𝑖𝑛𝑘𝑠 ← BFS(𝑔𝑟𝑎𝑝ℎ = 𝐺freeway, 𝑠𝑡𝑎𝑟𝑡 = 𝑈𝐶𝐸_𝑒𝑥𝑖𝑡, 𝑑𝑒𝑝𝑡ℎ = 20)
9: 𝑑𝑜𝑤𝑛_𝑒𝑥𝑖𝑡𝑠 ← 𝑓𝑖𝑛𝑎𝑙_𝑒𝑥𝑖𝑡𝑠 ∩ 𝑑𝑜𝑤𝑛_𝑙𝑖𝑛𝑘𝑠

10: for (𝑈exit, 𝑉exit) in 𝑑𝑜𝑤𝑛_𝑒𝑥𝑖𝑡𝑠 do
11: 𝐶𝐸[(𝑈exit, 𝑉exit)] ← ranking of (𝑈exit, 𝑉exit) in 𝑒𝑥𝑖𝑡_𝑐𝑜𝑢𝑛𝑡𝑠
12: 𝑁𝐸[(𝑈exit, 𝑉exit)|(𝑈exit, 𝑉exit) = 𝑑𝑜𝑤𝑛_𝑒𝑥𝑖𝑡𝑠[2]] ← 1
13: set 𝑘 ← 1
14: while True do
15: 𝑆𝑃 ← dijkstra(𝑔𝑟𝑎𝑝ℎ = 𝐺, 𝑠𝑡𝑎𝑟𝑡 = 𝑈𝐶𝐸_𝑒𝑥𝑖𝑡, 𝑒𝑛𝑑 = 𝑉𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
16: if (𝑈exit, 𝑉exit) ∈ 𝑆𝑃 then
17: 𝑆𝐸[(𝑈exit, 𝑉exit)] ← 𝑘
18: break
19: else
20: 𝐺 ← 𝐺 − {last exit in 𝑆𝑃 }
21: end if
22: 𝑘 ← 𝑘 + 1
23: end while
24: end for
25: 𝑓𝑖𝑛𝑎𝑙_𝑒𝑥𝑖𝑡𝑠[𝑂𝐷] ← sort 𝑓𝑖𝑛𝑎𝑙_𝑒𝑥𝑖𝑡𝑠[𝑂𝐷] based on unique (𝑈exit, 𝑉exit)
26: 𝑓𝑖𝑛𝑎𝑙_𝑒𝑥𝑖𝑡𝑠[𝑂𝐷] ← 𝑓𝑖𝑛𝑎𝑙_𝑒𝑥𝑖𝑡𝑠[𝑂𝐷] ∪ {𝑒𝑥𝑖𝑡_𝑐𝑜𝑢𝑛𝑡𝑠, 𝐶𝐸,𝑁𝐸,𝑆𝐸}
27: end for
28: return 𝑓𝑖𝑛𝑎𝑙_𝑒𝑥𝑖𝑡𝑠

argue the trips used by the participants deviate significantly from the shortest paths, which may provide reasoning as to why a
large proportion of CEs do not coincide with SEs. Although consisting of only a tiny proportion, CEs with SE orders as large as 7/8
still suggest that some trips are largely inefficient in terms of travel time. This phenomenon did not seem to improve from 2007/08
(when the I-35W dataset was collected) to 2010/11 (when the TBI dataset was collected). The total percentage of final exits on
the shortest path dropped from 85.50% to 79.88%. Despite more people being exposed to advanced navigation systems over the
2–3 years (especially after the release of the Google Maps phone app on September 2008), the usage of the shortest path has not
seen improvements. This lagging effect on technological advancement possibly indicates that people are reluctant to change their
regular routines.

The NEs, on the other hand, are observed to have relatively low ratios, which may result from people intentionally skipping the
E due to other external factors. For instance, the driver may perceive that the CE is congested or wish to fuel their car by taking a
ifferent route. Regardless of the cause, the drivers are assumed to fully understand the consequences of skipping the CE and thus
re not accounted for missing it. After deducting these trips, only 0.40% in the I-35W dataset and 1.22% in the TBI dataset are
egarded as NEs. By applying the 25% threshold, 12 trips remain to be determined to contain missed exits, the 15% threshold yields
trips, while 5% yields 2 trips. As expected, the occurrence of missing exits only consists of a small portion of the total trips. It

s worth noting that this analysis is independent of the rest of the paper, which focuses on the cost of missing a freeway exit. The
xtracted missed exits are not used as samples for any other analysis.
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