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Traffic Control

Intelligent Transportation Systems

Categories
Technology

Q Intelligent Vehicles (V2X,

Driven
autonomous)

@ Sensors
@ Traffic Management Systems
© Processors

@ Traveler Information System
@ Actuators

Q@ Intelligent Planning
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Traffic Control
Traffic Control

Macroscopic/traffic
Microscopic/vehicles @ Ramp Metering

@ Traction Control @ Signalized Intersection
@ Adaptive Cruise Control @ Diversion

@ Lateral Control @ Evacuation

@ Collision Avoidance @ Pedestrian

@ V2V, V2I @ Economic Control

@ Vehicle Streams (Tolling, congestion

pricing)
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Static Travel Time Model Problems with Static Mod

Static Travel Time Model

Static Travel Time Model

Q@ T(f) = tw(f/ C)

@ BPR: N
w-sfoes(9)
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wvel Time Model Problems with Static Mod.

Problems with Static Model

Problems with Static Model
© Depends on uniform condition
© Doesn’t change with time
© Based on traffic flow

Problems with Flow based Model
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Single Vehicle Two Vehicles Multiple Vehicles

Microscopic Model: Single Vehicle

Single Vehicle

Co——>

.
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e Two Vehicles Multipl

Microscopic Model: Two Vehicles

Two Vehicles

Co——> D
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es Multiple Vehicles
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Mesoscopic Model

Multiple Vehicles
@ Statistical Mechanics
@ Speed Distribution (Boltzmann)
@ Equilibrium

@ Non-equilibrium Statistical Mechanics
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Mass Conservation

Mass Conservation

First Integral Form

To To to t2
f p(tg,:v)dac—J p(tl,x)dx:j p(t,xl)v(t,xl)dt—ﬁ p(t, m2)v(t, z2)dt

1 1 t1 1
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Mass Conservation

Mass Conservation

Second Integral Form

d ("2
a p(t, @) dz = p(t, z1)v(t, 71) — p(t, 22)v(t, z2)
o1
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Mass Conservation

Mass Conservation

Differential Form

0 0
Zo(t ~q(t,z) =0
atp( , ) + azq( , )
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Mass Conservation

Mass Conservation
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LWR Model

Fundamental Diagram

Conservation

0 0
—p(t —ft,z) =
o Pt = 2) =0

P o f= p(t7 l‘)U(t, iL‘)

Greenshield Model

Pm
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LWR Model

Fundamental Diagram

Conservation

0 0
— o(t - =
o Pt o)+ = fh2) =0

f: p(tv JJ)U(t, I)

Greenberg Model

_ Pm
! o) = oy in(™2)
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LWR Model

Fundamental Diagram

Conservation

0 0
—p(t —f(t,z) =0
= p(t,2) + =f(t,2)

P fm f=p(t, 2)v(t, z)

Underwood Model

s v(p) = v exp(—)

v m
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LWR Model

Conservation

0 0
&P(t; z) + %f(t ) =

f: p(t, :E)v(t’ :E)

0
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LWR Model

ot

) cos
g=v(1——|p stnf

Pm

P
p(tz,y) + V- g(t, 2, y) =0




Lagrangian Model

0 0
—s(t — =
(?ts( , 1) + on V(s)=0

e Lagrangian Se °

s(t, n) spacing function of time ¢
and n vehicle number

@ Modeling useful for Lagrangian
sensors like smartphone

@ Observability Important

Pushkin Kachroo D



Characteristics Scalar Riemann Problems Admissibi

Characteristics

Characteristic Speed
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Characteristics Scalar Riemann Problems
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Characteristics Scalar Riemann Problems Admissibi

Distributional Solution

Cauchy Problem
u(Ov z) = u0($)

Distributional Solution

A measurable locally integrable function u(t, z) is a solution in
the distributional sense of the Cauchy problem if for every test
function ¢

JJ [u(t, 2) de(t, ) + f(u(t, z)) pz(t, )] dzdt+ JR uo(z) ¢(z,0) de=0

Rt xR
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lar Riemann Problems Admissibi

Weak Solution

Weak Solution
Distributional solution in the open strip; initial condition, L'

cont. in t
u(t, ) = u(t, ")

lim | |u(t, ) — up(z)| dz =0
t—0 R
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Characteristics Scalar Riemann Problems Admissibi

Shock Wave

Calculating Shock Speed

Xpr — pe) = flpr) — flpe)
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Characteristics Scalar Riemann Problems Admissibi

Rarefaction Wave

Entropy Violating Solution

7 7

Pe Pr Pe Pr

Applications in ITS



Characteristics Scalar Riemann Problems Admissibi

Urban Morphology

[Vutz, o) =

dzx
dat
dy

x="
du 1
a s
dp s
dr

dg
=

= sp,




Characteristics Scalar Riemann Problems Admissibi

Admissibility Conditions

/anishing Viscosity

Lax Admissibility Condition

n(w) = |u— k| and q(u) = sign(u — k) - (f(v) — f(k))

| fn {lu(z, ) — ke + sign(u(a ) — Bz, & u(m 1) — b K)o

—sign(u(z, t) — k) [fz(z, t, u(z, ) — g(z, t, w(z, )]} dzdt = O

lim |u(z, t) — uo(z)|dz = 0. Z Z
t—0 Ky
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Characteristics Scalar Riemann Problems

Solution Properties

ut + f(w)e =0, u(0,z) = ug(z)

Mazimum Principle:
[u(t, o < lluolleo

Total variation diminishing:
TV(u(t, ) < TV(uo)

L' Contractive:
lu(t, ) = v(t )l < luo — voly

© © ©0 ©

Monotonicity Preserving:

ug monotone => u(t,:) monotone

©

Monotonicity:
ug < vg = u(t, ) < v(t,-)

©

Lipschitz Continuity in time:

lu(t, -) — (s, )y < Il Ly TV(uo) [t — sl

Admissibi




Characteristics Scalar Riemann Problems Admissibi

Initial-Boundary Problem
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Single Vehicle Traffic Dynamics Derivation of the Tr

Macroscopic Model: Single Vehicle

Single Vehicle

cp——>

.
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Si Traffic Dynamics Derivation of the Tr

Macroscopic Model: Traffic Dynamics

Traffic Dynamics
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Vehicle Traffic Dynamics Derivation of the Tr

Macroscopic Model: Traffic Dynamics

Shock Waves

\
)

Rarefaction Waves

7
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ricle Traffic Dynamics Derivation of the Tr

Derivation of the Travel Time Dynamics

Travel Time on Vehicle Path

v

Derivation

T(t+ At 3+ Ag) = T(t,7) — —22

v(t, z)
0T(t, x) 0T(t,z) , _ Az
ot S oz Ar= u(t, z)

0T(t,z) 0T(t, x)
t 1=0
8 C2R D oot ) + |
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Single Vehicle Traffic Dynamics Derivation of the Tr

Derivation of the Travel Time Dynamics

Travel Time on Vehicle Path

dT(t,xz(t)) _
— =1 7

-

0 0 ¢’
) _
dt
aTéi,x) i aTéix)v(p(t,I))Jrl:O M
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Single Vehicle Traffic Dynamics Derivation of the Tr

Total Dynamics

Total Dynamics

Z0(60) + 2 [p(t,D)p(, )] = 0

LD L IS pih,) +1=0
(p(t ) = vt = L)

m
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Transportation Networks

Static to Dynamic

@ Conservation on links

@ Also on Nodes

@ Entropy or Vanishing Viscosity on Nodes and Links
25 (69) + - flp'(1,2)) = 0 e [as b, 1€ [0, 7

o o o .
aw’(t, z, k, 1, 8) + v'(p'(t, av))a—wl(t7 z, k, 7, 8) = 0V € [as, b, t € [0, T
5

Time ¢, space z, link 4, OD pair (r, s), and path k, fraction 7.

pz(t7 x? k’ T’ S) = Trz(t7 I7 k7 T? S)pl(t7 x)

UNLY
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Heterogeneous Traffic

‘ogeneous

fi(p17p27 e 71077«) = Pivi(Plap% t non)a 1=1,2,---,n
Table: Multi-class Traffic Variables

Variable Meaning

pi Traffic density of class ¢

vi(p1,p2, -+ ,pn) Traffic speed of class 7 as a function of all densities

filp1,p2,-++ ,pn)  Traffic flow of class 7 as a function of all densities

UNLY
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Heterogeneous Traffic

rogeneous Traffic

Vi—= 1727 , api(t7 ili) afi(pl(tv z)va(tv iE), 7p7l(t7 :E)) — 0,
ot oz
aTZ t, aTZ i, x), thy @)po o0 g t,
(t9) | OTpr (D). Pt pnlt0)

ox

TNl
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Applications
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Conclusions

@ Static travel time models not adequate

@ Travel time dynamics derived from basic principles

@ Applications
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