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A B S T R A C T

This study proposes a rebalancing method for a dockless e-micromobility sharing system, employing both trucks
and users. Platform-owned trucks relocate and recharge e-micromobility vehicles using battery swapping tech-
nology. In addition, some users intending to rent an e-micromobility vehicle are offered incentives to end their
trips in defined locations to assist with rebalancing. The integrated formulation of rebalancing and recharging
accounts for each e-micromobility vehicle's characteristics, such as location and charge level. The problem is
formulated as a mixed binary problem, which minimizes operational costs and total unmet demand while
maximizing the system's profit. To solve the optimization problem, a Branch and Bound method is employed.
Rebalancing decisions and routing plans of each truck are obtained by solving the optimization problem. We
simulate an on-demand shared e-micromobility system with the proposed integrated rebalancing method and
conduct numerical studies. The results indicate that the proposed method enhances system performance and user
travel times.
1. Introduction

The shared e-micromoibility, as a disruptive transportation mode in
cities, is known to be low-carbon, environment-friendly, and sustainable.
In recent years, e-bike sharing systems (BSS) and e-scooter sharing sys-
tems have been expanded in many cities to serve first and last-mile needs
in multimodal transportation networks, e.g., see Chen et al. (2018) and
Dell’Amico et al. (2014). In the literature, these systems have been
demonstrated to offer significant societal benefits (Zhang and Liu, 2021).
Therefore, exploring various operating strategies to manage these sys-
tems efficiently could be highly advantageous.

There are two types of e-micromobility sharing systems based on their
operation: station-based systems and dockless systems. In station-based
e-micromobility sharing systems, users must rent e-micromobility vehi-
cles from stations where these e-vehicles are stored and returned (Raviv
and Kolka, 2013). Dockless free-floating e-micromobility sharing sys-
tems, on the other hand, enable users to rent and return e-vehicles at any
location within the operating area. In terms of operations, e-micro-
mobility systems including e-bikes and e-scooters, exhibit comparable
attributes. Therefore, within this context, we employ the term ‘e-bikes’ as
a representative for both e-bikes and e-scooters for the sake of brevity.

In dockless systems, users can locate available e-bikes through online
u (M. Ramezani).
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maps and select and reserve them. However, these systems may suffer
from the e-bike imbalance problem, where e-bikes become unevenly
distributed due to asymmetric travel patterns within the day (Li et al.,
2016). This leads to an imbalance between supply and demand (Ghosh
et al., 2017). This problem is known as the bike rebalancing problem
(BRP), which needs to be addressed to enhance service reliability (Du
et al., 2020). The BRP entails transferring bicycles from locations with an
abundance of bikes to areas experiencing a deficiency, with the goal of
decreasing the number of unmet customer demands (Stokkink and Ger-
oliminis, 2021).

In the literature, BRP has been categorized into static BRP (SBRP) and
dynamic BRP (DBRP). The SBRP considers the last status of the system
(available bikes in the operating area) while assuming variation in de-
mand in different parts of the operating area is negligible during the
rebalancing period (Liu et al., 2018; Papazek et al., 2014). In contrast,
DBRP considers demand variation over time (Ghosh et al., 2017; Wang
and Szeto, 2021). From the perspective of strategies used in rebalancing,
BRP can be classified into operator-based BRP and user-based BRP.
Operator-based rebalancing involves the use of a fleet of rebalancing
trucks by operators to relocate bikes across different regions (Dell’Amico
et al., 2018; Li et al., 2021). On the other hand, user-based rebalancing
relies on user incentivization, where users voluntarily participate in
October 2024
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rebalancing tasks in return for a reward, which could be considered as a
discount on the rental fee or a paid incentive fee (Cheng et al., 2021; Li
and Liu, 2021; Zhang et al., 2019). An integrated approach combining
operator-based and user-based rebalancing strategies has been intro-
duced for non-electric bikes in Xu et al. (2022) to address the issue of
inadequate deployment of rebalancing trucks by operators.

The rebalancing problem becomes particularly crucial in the context
of electric bikes (e-bikes) and electric scooters (e-scooters), which have
gained popularity in large cities due to their enhanced convenience and
higher speeds compared to traditional bicycles (Kazemzadeh and Ronchi,
2022). This challenge arises from the need to ensure that these e-vehicles
remain operational throughout the day by addressing their charging re-
quirements, thereby preventing instances of e-bikes and e-scooters being
rendered idle due to low battery levels (Xu et al., 2022).

Accordingly, the e-bike/e-scooter rebalancing problem considering
the level of charge of e-bikes/e-scooters has a notable effect on the supply
usage and profitability of the system. Chu et al. (2022) proposed an
operator-based mixed-integer programming model for dockless
e-scooters considering a battery swapping threshold for e-scooters. An
overnight operator-based rebalancing and on-board charging is proposed
in Osorio et al. (2021), in which the state of charge of e-bikes and the
required duration of on-board charging for e-bikes while being trans-
ported on rebalancing vehicles is taken into account in the formulation.
Fast en-route charging opportunities for various electric vehicles signif-
icantly help to address the travel range limitations of these vehicles (Hu
et al., 2022). In the context of battery recharging and rebalancing oper-
ations, Zhou et al. (2023) introduced a strategy for rebalancing planning
and battery swapping. This approach uses charging cabinets and involves
deploying two separate teams of staff. The deployment is guided by
predictions of e-bike inventory levels and battery status. Three distinct
states of battery charge levels are considered in the planning process.

The above studies shed light on the significance of factoring in the
level of charge when addressing the e-bike/e-scooter rebalancing prob-
lem. However, prior research has not delved into addressing an inte-
grated operator-based and user-based rebalancing approach for e-
scooters/e-bikes while considering their level of charge. Such a reba-
lancing problem for e-micromobility sharing systems is more challenging
to address because of the need to manage e-bikes that require charging
and repositioning simultaneously. Additionally, it is essential to deter-
mine the optimal charge level for e-bikes allocated to user-based reba-
lancing, while also considering the cost and benefits of battery charging,
all in an integrated and effective manner.

This study develops a method for integrated operator-based and user-
based rebalancing for dockless e-bike/e-scooter sharing systems. We
propose a mixed-binary-nonlinear rebalancing program (MBNRP). The
proposed model determines e-bikes/e-scooters that should be reposi-
tioned by a fleet of repositioning trucks or users to minimize the total cost
and maximize the total profit of the system. The proposed system is a
dockless, reservation-based e-bike sharing platform where users reserve
an available e-bike, walk to its location, and park it anywhere after use.

We assume battery swapping as the method used for charging e-
bikes/e-scooters. In such a system, operators of the trucks change the
battery of e-bikes/e-scooters with a full one. Trucks equipped with on-
board charging technology transport depleted batteries, enabling them
to recharge while in transit. The objective function considers the charge
level of each individual e-bike, along with the costs and benefits asso-
ciated with the rebalancing and recharging of these e-bikes. Users are
encouraged to participate in rebalancing activities by receiving in-
centives in exchange for concluding their trips with rented e-bikes and
dropping them off at specified locations designated by the platform. The
incentive considered in this study exempts the trip variable fare for those
who participate (while the initial unlock fee of e-bikes applies).

The proposed model is tested in a simulation environment, and the
performance of the proposed method is compared with a number of
rebalancing benchmark methods. Users’ decision making has been
modeled with a utility choice model, and the branch and bound method
2

is used to solve the MBNRP efficiently. Furthermore, the dockless e-bike
sharing system, incorporating the proposed operational rebalancing and
recharging strategies, is compared to a simulated e-hailing system. This
comparison aims to evaluate the performance of sustainable and envi-
ronmentally friendly shared e-bikes, when managed optimally, against e-
hailing systems.

The contributions of this paper are as follows. First, this study pre-
sents an optimization formulation for rebalancing and recharging in e-
bike systems, integrating both operator-based and user-based rebalanc-
ing dynamically throughout the day. Second, the proposed method in-
corporates the specific characteristics of each e-bike, including the
precise battery charge levels, into an integrated rebalancing approach.
While existing research typically partition the e-bike fleet into a number
of groups, considering each e-bike's charge level allows for more efficient
decisions regarding which e-bikes should be charged or allocated for
user-based rebalancing. This approach adds a layer of complexity to the
objective function by requiring that routing decisions for both e-bikes
and trucks be jointly optimized. Third, our paper introduces an incen-
tivization system for e-bike sharing with predefined user destinations for
incentivized e-bikes.

The remainder of the article is structured as follows. Section 2 pre-
sents the problem description. In Section 3, the proposed optimization
model is developed. Section 4 introduces simulation and the benchmarks
for evaluating the proposed model, and the results of comparison among
the proposed method and benchmarks, including a e-hailing system, are
shown in Section 5. In Section 6, we conclude the analysis and discuss
future research directions.

2. Problem description

This study develops a rebalancing strategy for electric bike/scooter
dockless shared systems using integrated operator-based and user-based
strategies. The studied e-bike sharing system operates based on a
reservation-based system. When a passenger requests the platform, they
are presented with information of e-bikes within a predefined acceptable
walking distance, along with their charge levels. If the passenger decides
to use an e-bike, they must first reserve it through the application. After
making the reservation, the passenger will walk to the e-bike's location,
unlock it using the application, and then ride it to their destination. Given
that the e-bike system is dockless, there are no designated docks or
specific parking and charging locations. Passengers are free to pick up
and drop off e-bikes anywhere within the operating area. Required no-
tations are shown in Table 1.

The proposed integrated rebalancing method for e-bikes is opera-
tional throughout an operating day dynamically. The network is denoted

as a directed graph G ¼ ðbN ; bAÞ. The set of nodes bN comprises in-

tersections of the network. bA is the set of arcs representing the streets and
roadways for vehicular traffic across the operating area. These nodes and
arcs are used to pre-calculate the shortest paths in the network. The
location of e-bikes is known as they are equipped with GPS devices.
Throughout the remainder of this paper, we will refer to the locations of
all idle e-bikes considered for rebalancing and locations where e-bikes
should be rebalanced as set N.

The operating day is divided into a number of time intervals (Δtmin).
The rebalancing process is performed at the end of each time interval to
prepare the system to meet the predicted demand at the next time in-
terval. We assume the approximate location and number of incoming
requests (demands) throughout the operating area for each time interval
are predicted based on historical data of user rental patterns. The system
has information on the locations of all idle e-bikes. Node j (with co-
ordinates xj and yj) represents the anticipated location of demand Dj that
can be multiple over Δt min. The platform identifies idle e-bikes within
an acceptable walking distance ω of each node j. Consequently, there are
three possible states for each anticipated demand location (node j): (1) If
the current inventory of idle e-bikes within the distance ω of node j



Table 1
Nomenclature.

Problem description

βk ;β
o
k Utility constants

βtk ,β
i
k, β

c
k E-bike utility coefficient per unit walking time, travel time, and cost for

passenger k

βo;tk ,βo;ik ,
βo;ck

Other modes utility coefficient per unit waiting time, travel time, and
cost for passenger k

Cr
k Rental cost for passenger k

Co
k Trip cost for passenger k

δtki Rental time of Passenger k to complete his/her journey using e-bike i
δtk In-vehicle travel time of passenger k using other modes
Δki Walking distance of passenger k from e-bike i
Δtki Walking time of passenger k from e-bike i
f0 Initial unlock fee
f1 Trip variable fare
IDb

i ID of e-bike i

lb;τi
Level of charge of e-bike i at time τ

lp;τk Required level of charge for passenger k at time τ

oτki Binary variable determining whether e-bike i is a possible option for
passenger k or not

Prki Probability that passenger k selects e-bike i

sb;τi
Status of e-bike i at time τ

uki Utility of passenger k if select e-bike i
uki Utility of passenger k using e-bike i
uok Utility of passenger k if select traveling with other transport modes
ω Acceptable walking distance
w Waiting time in other modes

xb;τi ;yb;τi
Bi-dimensional location vector of e-bike i at time τ

xp;τk ;yp;τk Bi-dimensional location vector of passenger k at time τ

xp;τk ;yp;τk Bi-dimensional location vector of destination of passenger k at time τ

Proposed mixed binary rebalancing problem (MBRP)

Set
Ai Set of nodes that are accessible for e-bike located in node i with current

level of charge li
N Set of nodes
T Set of rebalancing trucks
Index
i, j Indices for nodes
q Indices for trucks
Parameter
Dj Predicted demand for the next time step at node j
Fj Final e-bike inventory at node j
Ij Initial e-bike inventory at node j at the end of current interval
kq Capacity of rebalancing truck q
li Level of charge of e-bike located in node i
lfull Level of charge of a fully-charged battery
M A large positive value
pj Net imbalanced penalty related to shortage or surplus in node j
Qq

ij Number of e-bikes carried by truck q when traveling from node i to j

rij Reward of user-based rebalancing from node i to j
s Unit battery swapping cost
c Unit travel cost of rebalancing trucks
α Level of charge to rental fee conversion factor
θ Recharging threshold
bb Limit fees paid for user-based rebalancing in each time interval

bd Limit distance traveled by trucks in each time interval

dij Distance of node i to node j
Decision variable
xqij Decision variable for truck-based rebalancing:

1 if e-bike located in Node i is recharged and relocated to j by Truck q;
0 otherwise

yqij Decision variable for routing of truck q:
1 if Truck q passes from Node i to j; 0 otherwise

zij Decision variable for user-based relocation:
1 if e-bike located in Node i is taken by a user from i to j;
0 otherwise

E. Emami, M. Ramezani Communications in Transportation Research 4 (2024) 100155
matches the anticipated demand Dj, neither the node nor the idle e-bikes
within ω radius will be considered for rebalancing. (2) If the anticipated
demand Dj exceeds the available idle e-bikes within the acceptable
walking radius, the idle e-bikes within distance ω of node j will not be
considered for rebalancing activities; however, node j will be considered
3

for rebalancing due to e-bike deficit. (3) If the number of available idle e-
bikes within the distance ω of node j exceeds Dj, the surplus idle e-bikes
will be considered for rebalancing. Also, if there is no anticipated de-
mand within an acceptable walking distance from each idle e-bike, that
idle e-bike will be considered for rebalancing. Additionally, idle e-bikes
with battery levels below a certain threshold (θ) will be considered for
recharging. These locations are treated as nodes that potentially need to
be visited by trucks for rebalancing and recharging activities. Note that,
the anticipated demand locations, idle e-bike locations, and corre-
sponding node locations vary dynamically throughout the day and are
defined at the start of each time interval.

We assume there are n repositioning trucks in the operating area.
Once the rebalancing and recharging plan is determined by the platform,
the necessary information—such as the routing plan for each truck,
which e-bikes require charging, and which e-bikes should be picked up
and dropped off at specific locations—is transmitted to the respective
trucks. By the start of the next time interval, the trucks commence their
assigned tasks. Each truck starts empty at the beginning of each time
interval, since the total travel time for a truck is limited to the duration of
the time interval to conduct all repositioning and recharging tasks. The
repositioning trucks visit determined nodes by the method in which idle
e-bikes are located, pick up certain e-bikes (depending on their charge
level), and then take them to the specific rebalancing destination nodes.
The routing plan of each truck is determined in the final solution.

The technology used for charging is battery swapping. Portable fully-
charged batteries are replaced by truck operators when visiting the nodes
in which idle e-bikes are located. Depleted batteries are transported by
trucks equipped with on-vehicle charging technology, allowing them to
be recharged during transit and subsequently used in the following time
intervals. Given that the number of batteries exceeds the number of e-
bikes, there will be a sufficient quantity of charged batteries available in
the trucks during each time interval of the day. Consequently, this
research does not necessitate modeling the charging locations or the
number of batteries transported by the trucks.

In the context of user-based rebalancing, the model identifies which
e-bikes should be relocated by users, specifies their targeted destinations,
and then presents these designated e-bikes to passengers on the platform
as incentivized options with pre-determined destinations. If a passenger
selects one of these incentivized e-bikes and agrees to the designated
destination, they reserve the e-bike. Next, they proceed to its location and
ride it to the specified destination. Upon arrival, they drop off the e-bike.

The proposed method determines a plan for operator-based and user-
based rebalancing for the next time interval based on data at the end of
the current time step. The approach entails identifying idle e-bikes that
require to be charged and relocated to their assigned destinations using
trucks, idle e-bikes that must be incentivized for user-based rebalancing,
e-bikes that should be visited by trucks to be charged (and not be relo-
cated), and trucks routing plan.

The proposed on-demand e-micromobility system considers the
interaction between four parts: the operating area, e-bikes, the platform,
and the passengers. The detailed descriptions of each component are
presented below.

2.1. Operating area

We use the network of the operating area, including all streets and

intersections ðG ¼ ðbN ; bAÞÞ. Users can travel with e-bikes throughout the
city and park the rented e-bikes without any spatial restrictions.

2.2. E-bikes

E-bikes form the supply side of the system. We assume the number of
e-bikes in the system is constant throughout the day. The characteristics

of e-bike i at time τ are< IDb
i ;x

b;τ
i ;yb;τi ;lb;τi ;sb;τi >, where IDb

i denotes the ID

of e-bike i. xb;τi and yb;τi are bi-dimensional location of e-bike i at time τ. lb;τi
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is level of charge and sb;τi denotes the status of e-bike i at time τ (1 if e-bike
not rented, 0 if rented, and 2 when the e-bike is waiting to be picked up
by a truck or is relocating by a truck).

2.3. Platform

The platform has the information of passengers requesting at each
time τ including their current location vectors ðxp;τk ;yp;τk Þ. The information
of all components of the system becomes updated whenever a passenger
sends a request to the platform and selects and reserves an e-bike or drops
off the rented e-bike. Once a request is made by passenger k at time τ, the
platform calculates the distance of the passenger from all available e-

bikes ðsb;τi ¼ 1Þ. Among the available e-bikes, the e-bikes with distance to
passenger k(Δki), less than a predefined acceptable walking distance
threshold (ω) are introduced to the passenger. Among introduced op-

tions, passenger k considers e-bikes that their level of charge ðlb;τi Þ is more
than the required level for completing his/her intended journey ðlp;τk Þ as
qualified options. Therefore, the binary variable oτki determines whether
e-bike i is a qualified option for passenger k or not.

oτki ¼ 1ðω>ΔkiÞ1ðlb;τi > lp;τk Þ (1)

where the function 1(x) defines the indicator function of event x, i.e.,
1(x) ¼ 1 if x is true, and 1(x) ¼ 0 otherwise. Following this, among
qualified options, passengers choose an e-bike based on a utility model
defined in Section 2.4.

The pricing mechanism of the e-micromobility system is based on the
rental period (after picking up the reserved e-bike). Users pay an initial
fee to unlock the selected e-bikes (f0) and pay f1 per minute. The rental
cost of each e-bike varies for users, depending on the locations where the
e-bikes are stationed and the distance to the user destination. Accord-
ingly, the rental cost for each e-bike is calculated as the below formula.
Let Cr

ki and δtki be the rental cost and rental time for passenger k traveling
to his/her destination using e-bike i.

Cr
ki ¼ f0 þ f1δtki (2)

2.4. Passengers

Passengers are the demand side of the system. Passengers are impa-
tient, which leads to a situation where, upon making a request to the
system, if the system is unable to present suitable e-bikes to passengers or
if passengers cannot find qualified options, they will leave the platform.
Passengers choose an e-bike considering the walking distance from their
current location to the e-bike's location, their value of time, the required
level of charge for completing their journey, and the cost of renting the e-
bike. The characteristics of passenger k requesting at time τ are< xp;τk ;yp;τk ;

xp;τk ;yp;τk ; lp;τk >, where xp;τk ;yp;τk ;xp;τk , and yp;τk indicate current location and
destination of passenger k, respectively. τ is the time the passenger re-
quests to the platform. Let lp;τk be the required level of charge for pas-
senger k to complete his/her journey.

At first, a passenger whose location is known requests to the platform.
The platform provides the passenger with a set of e-bikes within accepted
walking distance (ω). Among introduced e-bikes, the passenger considers
e-bikes whose levels of charge are more than their required level of
charge as qualified options to choose from (n0k qualified options are
shown to passenger k through converting the level of charge to distance).
If the passenger does not choose an e-bike, he/she will travel using other
modes of transport. In this paper, ride-hailing system is considered as the
alternative mode of transport. The choice behavior of users is modeled as
a utility maximization process. The utility of potential options of pas-
senger k can be expressed as Eqs. (3) and (4):

Selecting bike i : uki ¼ βk þ βtkΔtki þ βikδtki þ βckC
r
ki (3)
4

Selecting other modes: uok ¼ βok þ βo;tk wþ βo;ik δtk þ βo;ck Co
k (4)

where βk and βok are utility constants. β
t
k, β

i
k, and βck are utility coefficients

per unit walking time, in-vehicle travel time, and cost for passenger k.
Δtki, δtki, and Cr

ki are the walking time of passenger k to reach e-bike i,
travel time of passenger k using e-bike i, and cost of riding an e-bike for
the passenger, respectively. βo;tk , βo;ik , and βo;ck represent utility coefficients
for waiting time of the passenger, in-vehicle travel time of the passenger,
and cost of the trip for the passenger in a ride-hailing system, respec-
tively. We denote waiting time as w, which is considered a constant.
Travel time and cost of the trip for passenger k are also denoted as δtk and
Co
k . In an e-bike sharing system, the walking time, travel distance, and

travel cost for a passenger depend on the chosen e-bike. In contrast, in a
ride-hailing system, these variables are determined by the passenger's
trip attributes. Therefore, the variables for selecting other modes are
simply a function of matched passenger k with a ride-hailing vehicle.
Therefore, the probability that passenger k selects e-bike i can be
modeled as

Prki ¼ eukiPj¼n0k
j¼1 eukj þ eu

o
k

(5)

Once an e-bike is chosen, the passenger reserves it. Subsequently, the
passenger proceeds to the e-bike's location and rides it to his/her inten-
ded destination. The e-bike becomes available again once the passenger
drops it off.

In the case of user-based rebalancing, where users are incentivized to
participate by leaving the rented e-bike at a different destination, the
rental cost outlined in Eq. (2) would be adjusted. These destinations are
determined based on the predicted demand for the upcoming time in-
terval. If the predicted demand at a given location is less than the number
of e-bikes within ω, that location is designated as a rebalancing desti-
nation. Consequently, if a user selects a bike assigned to user-based
rebalancing, they will drop off the incentivized rented e-bike at that
location. Users are offered the option to rent incentivized e-bikes by only
paying the unlock cost (f0), without incurring the variable part (f1δtki).
Consequently, the rental cost for these incentivized e-bikes is lower.
Based on Eq. (5), users are more likely to choose these e-bikes and
participate in rebalancing.

3. Problem formulation

The proposed model minimizes the cost of an integrated operator-
based and user-based rebalancing in a shared e-micromobility system
while maximizing the system's profit. The cost of operator-based reba-
lancing includes the travel cost of repositioning trucks (Crouting) and the
cost of battery swapping per e-bike ðCo

rechargingÞ. The cost of user-based
rebalancing is related to the amount of incentive given to users who
relocate e-bikes ðCu

rebalancingÞ.
On the other hand, the benefit of recharging is the potential increase

in rental fees (because of longer trips to be served). Additionally, in the e-
micromobility sharing system, the main objective of rebalancing is to
satisfy the demand and minimize the imbalanced penalty (pj) caused by
the difference between predicted demand for e-bike and final e-bike in-
ventory in node j.

The proposed method accounts for four actions for each e-bike: (1)
operator-based rebalancing and recharging, (2) operator-based recharg-
ing, (3) user-based rebalancing, and (4) doing nothing. The mixed binary
rebalancing problem (MBRP) determines the relocation strategy of each
individual e-bike. This decision takes into account factors such as the e-
bike's current position, the positions of trucks, the battery charge level,
and the cost associated with each relocation strategy. Required notations
are shown in Table 1. The assumptions underlying our model are out-
lined as follows.
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� Rebalancing and recharging plans are based on current idle e-bikes.
� The routing and rebalancing plans are communicated to rebalancing
trucks, which are then dispatched.

� Each truck starts empty at the beginning of each time interval,
equipped with the required charged batteries.

� Trucks visit each node only once per interval and are tasked with
picking up and dropping off designated e-bikes at predetermined
nodes.

� For e-bikes allocated solely for charging, truck operators replace the
depleted battery with a fully charged one without transporting the e-
bike.

� Batteries in e-bikes rebalanced by trucks are replaced with fully-
charged ones.

� E-bikes designated for user-based rebalancing are presented to users
via the platform, and batteries of e-bikes relocated by users are not
replaced.

The routing and travel cost of trucks is considered in Eq. (6). The cost
of operator-based rebalancing is related to the distance between the
current position of truck q and the node to which the truck should drive
to pick up or drop off an e-bike (dij) and the unit cost (c) of relocating e-
bikes by the truck (including the cost of hiring an operator and fuel
consumption of the truck). yqij is a binary decision variable that is equal to
1 if truck q traverses from node i to j, 0 otherwise. T and N represent the
set of rebalancing trucks and the set of nodes, respectively. Crouting in-
dicates cost of routing as Eq. (6):

Crouting ¼
X
q2T

X
i2N

X
j2N

cdijy
q
ij (6)

To model the cost of operator-based rebalancing, decision variable xq
ij

are introduced, indicating whether the e-bike located in node i is repo-
sitioned to node j by truck q (equals to 1) or not (equals to 0). If j equals
the index of the current position of the e-bike (node i), it means that the e-
bike in node i should only be recharged; otherwise, the e-bike located in
node i should be relocated to node j and recharged simultaneously. The
recharging cost per e-bike is related to the battery swapping process,
recharging batteries, and the time needed for this task. s refers to the unit
battery swapping cost per e-bike. Cost of operator-based recharging
ðCo

rechargingÞ is defined as Eq. (7):

Co
recharging ¼

X
q2T

X
i2N

X
j2N

sxqij (7)

The cost of user-based repositioning is related to the incentive of
relocating an e-bike from node i to destination j for users (rij). zij is the
user-based repositioning binary decision variable equal to 1 if the e-bike
located in node i should be relocated by a user to node j; 0 otherwise. Cost
of user-based rebalancing ðCu

rebalancingÞ is calculated as Eq. (8):

Cu
rebalancing ¼

X
i2N

X
j2Ai

rijzij (8)

It should be noted that for user-based rebalancing, the e-bike's battery
charge level must be sufficient to enable relocation to node j. Therefore,
Ai represents the set of nodes that can be reached by the e-bike located in
node i with a specific level of charge (Ai 2 N).

Another cost associated with user-based rebalancing pertains to the
battery consumption compared to operator-based rebalancing. The cost
of battery usage in user-based rebalancing ðCu

batteryÞ is calculated as Eq.
(9):

Cu
battery ¼

X
i2N

X
j2Ai

γdijzij (9)

where γ represents the conversion factor that translates the distance
traveled by the user during e-bike relocation into the corresponding
battery charge consumption.
5

However, user-based rebalancing provides a benefit by directly
serving a user. Specifically, while truck-based rebalancing involves
transporting the e-bike via truck, user-based rebalancing involves a user
directly handling the e-bike, thereby receiving service. μ represents the
benefit associated with fulfilling user demand. Therefore, Bu

rental can be
defined as Eq. (10):

Bu
rental ¼

X
i2N

X
j2Ai

μzij (10)

The benefit of operator-based rebalancing of e-bikes is relevant to the
rental cost, which is related to the distance traveled by the rented e-bikes
and their level of charge. When the truck relocates an e-bike, its depleted
battery is replaced with a fully charged one. Hence, the benefit of
recharging can be approximated with the distance that the e-bike can
travel with a fully-charged battery, lfull. Bo

rental refers to potential rental
benefit from e-bikes relocated and charged by operators. α is the con-
version factor to convert the distance that e-bikes could travel to the
rental fee.

Bo
rental ¼

X
q2T

X
i2N

X
j2N

αðlfull � liÞxqij (11)

However, note that since the charging strategy is considered as bat-
tery swapping on the trucks, the batteries of e-bikes relocated by users
will not be replaced with fully charged ones.

The other objective of the BRP is minimizing the number of unmet
demands in each time step. This term strives to minimize the differences
between predicted demand in each node (Dj) and final bike inventory
after rebalancing is carried out (Fj). The

P
j2N

pjjDj � Fjj indicates the cost of

penalty related to the difference between Dj and Fj, which should be
minimized.

Ultimately, the overall mixed binary rebalancing and recharging
problem is formulated as Eqs. (12)–(30):

min
xqij ;y

q
ij ;zij

X
q2T

X
i2N

X
j2N

cdijy
q
ij þ

X
q2T

X
i2N

X
j2N

sxqij þ
X
i2N

X
j2Ai

�
rij þ γdij � μ

�
zij

�
X
q2T

X
i2N

X
j2N

α
�
lfull � li

�
xqij þ

X
j2N

pjjDj � Fjj
(12)

s.t.

X
j2N

yqij � 1 8i 2 N; q 2 T (13)

X
j2N

yqij ¼
X
j2N

yqji 8i 6¼ j; q 2 T (14)

X
q2T

X
j2N

xqij þ
X
j2Ai

zij � 1 8i 2 N (15)

X
i2N

xqij � kq
X
i2N

yqij 8j 2 N; q 2 T (16)

X
j2N

xqij �
X
j2N

yqij 8i 2 N; q 2 T (17)

X
i2N

xqim ¼
X
j2N

Qq
jm �

X
j2N

Qq
mj 8m 2 N; q 2 T (18)

X
i2N

xqmi ¼
X
j2N

Qq
mj �

X
j2N

Qq
jm 8m 2 N; q 2 T (19)

X
i2N

xqij �
X
i2N

Qq
ij 8j 2 N; q 2 T (20)

Qq
ij � kqyqij 8i; j 2 N; q 2 T (21)
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X
q2T

X
i2N

xqij þ
X
i2Ai

zij � maxð0;Dj � IjÞ 8j 2 N (22)

X
q2T

X
j2N

xqij þ
X
j2Ai

zij � Ii 8i 2 N (23)

Fj ¼ Ij þ
X
q2T

X
i2N

xqij þ
X
i2Ai

zij �
X
q2T

X
i2N

xqji �
X
i2Aj

zji 8j 2 N (24)

X
q2T

X
i2N

X
j2N

cdijy
q
ij � bd (25)

X
i2N

X
j2Ai

zijrij � bb (26)

xqij 2 f0; 1g 8i; j 2 N; q 2 T (27)

zij 2 f0; 1g 8i; j 2 N (28)

yqij 2 f0; 1g 8i; j 2 N; q 2 T (29)

Qq
ij � 0 8i; j 2 N; q 2 T (30)

In the objective Eq. (12), the component related to the imbalance be-
tween predicted demand and final bike inventory,

P
jpjjDj � Fjj is

nonlinear. In order to linearize jDj � Fjj, using auxiliary integer variable
Hj, Eqs. (31) and (32) are introduced:

Hj � Dj � Fj 8j 2 N (31)

Hj � �ðDj � FjÞ 8j 2 N (32)

The objective Eq. (12) minimizes the total cost of rebalancing and
maximizes the system's potential profit. Equation (13) ensures that each
truck should visit each node at most one time, and flow conservation of
trucks is guaranteed in Eq. (14). Equation (15) guarantees that only one
rebalancing method should be used for each bike. Equation (16) restricts
the number of e-bikes carried by the truck to each node to trucks' ca-
pacity. Equation (17) ensures that trucks should visit the e-bike that
should be carried to other nodes. Equations (18)–(20) are used to ensure
inventory conservation of e-bikes carried by trucks. Equation (21) im-
plies that the number of e-bikes carried between nodes by each truck
should be limited to the truck capacity. Equation (22) ensures that the
final bike inventory should not exceed predicted/estimated demand at
each node in the next time step. Equation (23) restricts the number of e-
bikes taken from each node to the initial bike inventory in that node.
Equation (24) defines the final number of bikes in each node. Equations
(25) and (26) limit the distance traveled by trucks in operator-based
rebalancing and the total amount of reward given to users in user-
based rebalancing to distance limit and budget limit thresholds. Equa-
tions (27)–(30) are domain constraints.

The proposed mixed binary non-linear problem (Eq. (12)) is linear-
ized using Eqs. (31) and (32), and is considered as a binary linear
problem (MBLP) by setting variables’ domain between 0 and 1. The
branch and bound method is used to solve the MBLP on Matlab 2020.
This method systematically explores branches of feasible solutions,
where each branch represents a subset of the relaxed problem, which
ignores the integer constraints. If the relaxed solution is not integer-
feasible, the algorithm creates branches by selecting a variable with a
fractional value and forcing it to take integer values, thus generating new
subproblems. For each branch, the algorithm solves the linear relaxation
to find a bound on the objective function. These bounds help determine
whether the subproblems should be further explored (branched) or
pruned. The process iterates, branching and bounding on the remaining
subproblems, and updating the best-known solution (incumbent)
6

whenever a superior integer solution is found. This approach ensures an
efficient and systematic search for the optimal solution. The BB method
can be further enhanced by leveraging the unique structure of the
problem to increase algorithm efficiency in future research.

4. Simulation model

In this section, the simulation model of the on-demand e-micro-
mobility sharing system is introduced. The diagram of simulating an on-
demand shared e-micromobility system is shown in Fig. 1. The simula-
tion and related experiments are conducted in Matlab 2020. For the
operating network, we use the Manhattan network, including all streets
and intersections.

The process starts with the entry of a new passenger into the system. If
there is no e-bike within an acceptable walking distance, the passenger
will leave the platform. However, if there are e-bikes available within the
acceptable walking distance, they are presented to the passenger as
qualified options. The passenger can then select an e-bike based on the
required level of charge and their utility. After reserving the e-bike, the
passenger walks to its location, picks it up, and begins their trip. The
process concludes when the passenger arrives at their destination and
drops off the rented e-bike.

For the rebalancing activity, at the end of each time interval, based on
the locations of idle e-bikes and the predicted demand for the next time
interval, the platform uses the proposedMBRPmodel to determine which
truck should visit specific nodes. The model decides where to relocate e-
bikes from and to, and which e-bikes need charging. E-bikes that should
be incentivized for user-based rebalancing are also identified, and the
rebalancing activities then commence. To more accurately reflect real-
world conditions, the simulation accounts for errors in the predicted
demand in terms of both location and quantity compared to the actual
demand in the upcoming time interval. For location errors, the co-
ordinates of the predicted demand are randomly altered within a 250-m
radius. Regarding the number of demands, the simulation introduces
variability: 15% of the predicted demand does not occur, 15% of the
demand arises in unpredicted locations, and the quantity of predicted
demand at each location fluctuates randomly between�10% and þ10%.

Once rebalancing/recharging activities start (concurrent to the gen-
eral operation of the e-bike sharing platform), based on the routing plan,
trucks begin visiting e-bikes and rebalancing destinations to either swap
batteries or pick up/drop off e-bikes for rebalancing. A time of 10 s is
allocated for battery swapping, as well as for picking up or dropping off e-
bikes.

E-bikes assigned for user-based rebalancing are displayed to passen-
gers as incentivized e-bikes with designated destinations. When a pas-
senger opts for one of these e-bikes, they pay an unlock fee without
incurring the variable fee and must drop off the e-bike at the specified
destination. In user-based rebalancing, it is assumed that passengers who
choose and rent incentivized e-bikes will comply with the requirement to
return them to predefined locations. If an incentivized e-bike is not used
within the allocated time interval, it will be reassigned for the Mixed
Rebalancing Problem in the subsequent time interval.

4.1. Network and demand data

In the simulation model, the network of Manhattan is considered as
the test network. The network includes nodes and links such as streets,
bridges, highways, and tunnels. Routing of rebalancing trucks and rented
e-bikes follows the shortest path such that the shortest path and travel
time for users, rented e-bikes, and rebalancing trucks are pre-calculated
using Dijkstra algorithm and stored in a look-up table. In this study, we
assume a constant speed throughout the network, without accounting for
varying traffic conditions, as the bike network is considered separated
from other modes of transportation.

The demand dataset used in this study is the taxi demand data of
Manhattan in one working day in June 2016. Each trip record has the



Fig. 1. Simulation flowchart of the on-demand shared e-micromobility system with the proposed integrated rebalancing method.
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start/end time and latitude and longitude of the start/end location of
each journey. The system receives requests from 45,000 individuals, with
morning and evening demand peaks. The number of e-bikes in the system
is assumed to be 3,000. Initial bike inventory in each node is randomly
generated at 08:00 a.m. The simulation is conducted for 10 h between
08:00 a.m. to 06:00 p.m. Users access the platform over time, sending
requests that include their coordinates captured via the GPS on their
mobile phones. The platform displays e-bikes that are within a conve-
nient walking distance of the user, along with their battery charge levels
and the rental costs including a variable cost rate ($/km) and a fixed cost
(an unlock fee). Users will cancel their requests if they cannot find a
qualified e-bike. Whereas users who find and reserve a qualified e-bike
would walk to the e-vehicle locations, start their journey, and drop the
vehicle off when reaching their destination.
4.2. Benchmarks

The performance of the proposed MBRP model is compared with
three repositioning strategies.

Benchmark 1: No charging – no rebalancing (NC-NR). E-bikes are
utilized by users without any charging or repositioning activity during an
operating day. At the start of each day, e-bikes are fully charged and
randomly distributed.

Benchmark 2: Operator-based charging – no rebalancing (OC-NR). In
this scenario, e-bikes with less than θ percent level of charge are
recharged by recharging trucks during an operating day. An operating
day is divided into some time intervals (Δt). At the beginning of each
time interval, the platform advises recharging trucks to visit and recharge
e-bikes with less than θ percent level of charge based on these e-bikes’
7

current location. The optimum route of recharging trucks is determined
based on the vehicle routing problem (VRP) model. The VRP optimiza-
tion allocating e-bikes to trucks and minimizing the total travel cost of
trucks is defined below:

min
X
q2T

X
i;j2Nθ

ciju
q
ij (33)

s:t:
X
q2T

X
j2Nθ

uqij ¼ 1 8i 2 Nθ (34)

X
j2Nθ

uqij ¼
X
j2Nθ

uqji 8i 2 Nθ; q 2 T (35)

Gq
j � Gq

i �M
�
1� uij

� 8i; j 2 Nθ (36)

uqij 2 f0; 1g 8i; j 2 Nθ; q 2 T (37)

The objective Eq. (33) minimizes the total travel costs of recharging
trucks. Let cij be the travel cost from node i to j. uqij is a binary variable
equals to 1, if truck q traverses node i to j, and 0 otherwise.Nθ is the set of
all nodes that have e-bikes with less than θ percent level of charge.
Equation (34) forces trucks to observe each node only once. Equations
(35) and (36) are used for flow conservation and subtour elimination,
where Gq

i and Gq
j represent the load of the truck q after visiting node i and

node j (number of visited nodes). M is a sufficiently large constant, used
to enforce the constraint when uij equals to 1. If uij is 0, the constraint is
relaxed by the large constantM. These constraints effectively prevent the
formation of subtours by ensuring a consistent sequence of node visits.



Table 2
Passenger choice parameters.

Parameter Description Unit Mean Standard
deviation

Lower
bound

Upper
bound

βk Utility
constant for
selecting e-
bikes

— �1.745 0.2 �2 �1.5

βtk Utility
coefficient
for trip
walking time

1/
min

�0.021 0.005 �0.025 �0.02

βik Utility
coefficient
for trip travel
time

1/
min

�0.016 0.005 �0.02 �0.01

βck Utility
coefficient
for trip cost

1/$ �0.048 0.02 �0.05 �0.018

βok Utility
constant for
selecting
other modes

— �2.467 0.2 �2.6 �2.2

βo;tk
Utility
coefficient
for trip
waiting time

1/
min

�0.026 0.005 �0.03 �0.022

βo;ik
Utility
coefficient
for trip travel
time

1/
min

�0.014 0.004 �0.18 �0.01

βo;ck Utility
coefficient
for trip cost

1/$ �0.056 0.02 �0.08 �0.055

Note: Values are sourced from Luo et al. (2023).

Table 3
Platform's pricing, matching, rebalancing, and recharging parameters.

Parameter Description Unit Value

ω Acceptable walking distance m 500
f0 Initial unlock fee $ 1
f1 Trip variable fare $/min 0.38
c Unit travel cost of rebalancing trucks $/km 1.01
s Unit battery swapping cost $ 0.1
γ Battery consumption cost conversion factor $/km 0.0028
μ Benefit of demand fulfillment $ 1
α Level of charge to rental fee conversion factor $/% 0.57
pj Net imbalanced penalty $ 1
θ Recharging threshold % 20
w Waiting time (other modes) min 3.40

Note: All values are sourced from Jiao and Ramezani (2024), Li and Liu (2021),
Xu et al. (2022), and Zhou et al. (2023).

E. Emami, M. Ramezani Communications in Transportation Research 4 (2024) 100155
Benchmark 3: Operator-based charging and rebalancing (OC-OR). In
practice, shared e-micromobility system platforms deploy rebalancing
trucks to relocate idle e-bikes to nodes with high demand for shared e-
bikes. In such a rebalancing method, the optimization model is based on
decreasing the cost of truck routing and the penalty caused by the
imbalance between the predicted demand of each node and the final bike
inventory of that node. In this benchmark, we assume that the batteries of
e-bikes are swapped with a full one while rebalancing with rebalancing
trucks. Truck-based e-bike rebalancing problem formulation is obtained
when we assign 0 to zij in the objective Eqs. (12), (13) and (32).

5. Numerical experiments

Numerical experiments using the proposed mixed rebalancing
method and three benchmarks are conducted in the simulation envi-
ronment considering the Manhattan road network. Real data of taxi
passenger demand of Manhattan from 08:00 a.m. to 06:00 p.m. on Jun 2,
2016 is considered as demand for the simulation. 20-min interval is
assumed as the time span for conducting rebalancing and/or recharging
activities throughout the operating day. It is assumed that there are 3,000
e-bikes and 10 rebalancing trucks in the operating area working
continuously from 08:00 to 18:00. For each benchmark, 4 simulation
experiments are conducted. In order to make a comparison among the
proposed method and benchmarks, various performance metrics are re-
ported in Section 5.2.

5.1. Experiment setup

Parameters related to the passenger choice model introduced in
Section 2.4 are shown in Table 2. The bounded normal distributions are
used to set the parameters for each passenger individually. The pricing
parameters are presented in Table 3. The incentivization works such that
the variable cost of trip fare for e-bikes, which should be relocated by
users, will be zero (i.e., f1 ¼ 0). However, they still pay the initial unlock
fee (f0). The speeds of users, e-bikes, and trucks are assumed as 1.5 m/s,
20 km/h, and 45 km/h, respectively. In the dynamic simulation model, a
time allocation of 10 s is designated for truck operators to pick up or drop
off e-bikes, as well as to swap their batteries.

5.2. Experiments results

One crucial objective of a shared e-micromobility system is to in-
crease met (serviced) demands. Fig. 2 illustrates the number of met/
unmet demands over time with different rebalancing methods. It can be
observed that the proposed real-time integrated rebalancing method
demonstrates superior performance compared to other repositioning
methods, as it achieves the highest number of successful demands.

The average walking distance of passengers and the total distance
traveled by the fleet of e-bikes are considered as two main metrics of the
shared e-micromobility system. The first metric is related to the spatial
distribution of e-bikes throughout the operating area over time. The
second one reflects the supply utilization factor. The total traveled dis-
tance is influenced by the battery charge level of e-bikes, which di-
minishes over an operating day if effective charging is not implemented.
Figs. 3 and 4 display these two metrics for the proposed method and the
three benchmarks.

Fig. 3 illustrates that the average walking distance increases over
time, which is due to the uneven distribution of e-bikes throughout the
operating day. The analysis reveals that the highest walked distance is
associated with the benchmark scenario where no charging or reba-
lancing is implemented. This indicates the distribution of e-bikes, leading
to longer walking distances for users to find available e-bikes. In contrast,
although walking distances increase throughout the day, the rise is less
pronounced compared to other benchmarks, and the MBRP average
walking distance values are lower than those of the other methods. This
finding highlights the effectiveness of the mixed rebalancing strategy in
8

achieving its primary goal: increasing the accessibility of e-bikes for
users. The reduced walking distance suggests that the proposed method
results in e-bikes being more readily available to users and thereby
improving the overall efficiency and convenience of the e-bike sharing
system. This improvement is crucial for user satisfaction, operational
success, and higher income of the micromobility sharing system, as it
directly addresses the challenge of e-bike availability and accessibility.

The total traveled distance of passengers (equivalent to the fleet total
traveled distance) is shown in Fig. 4, revealing an important trend in the
NC-NR benchmark. It is evident that the traveled distance decreases over
time in this benchmark due to the absence of e-bike charging within the
system. Consequently, only passengers with shorter travel distances are
able to rent available e-bikes. The profit of the system, which is related to
traveled distance by the fleet of e-bikes, is also decreased due to the
reduction in travel distance.

The numbers of rebalanced and recharged e-bikes throughout an
operating day are shown in Fig. 5. As can be seen from Fig. 5, a



Fig. 2. Number of successful renting and number of unmet demand for various benchmarks and the proposed MBRP method.

Fig. 3. Average walked distance/person (m) for successful trips based on time
of the day with various rebalancing and recharging methods.

Fig. 4. Fleet total traveled distance (km) based on time of the day with various
rebalancing and recharging methods.
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considerable portion of rebalanced e-bikes is allocated to user-based
rebalancing, especially during peak hours.

Table 4 compares the performance of the simulated e-bike sharing
system operated under four different rebalancing strategies: NC-NR, OC-
NR, OC-OR, and MBRP. Each strategy is evaluated based on several key
metrics, including the number of successful trips, unserviced demand,
distance metrics, income, operating cost, and total profit. A notable
observation in Table 4 is the higher profit of the proposed method in
comparison with the other benchmarks.

Among the strategies, MBRP demonstrates the highest performance
across most metrics, with 28,636.5 successful trips, the lowest unserviced
demand, and the highest total income and profit, which is 15% higher
than those of a system using either the OC-NR or OC-OR rebalancing
system. This strategy, however, incurs the highest operating cost (asso-
ciated with user incentivization in addition to operator-based rebalanc-
ing costs). Nonetheless, due to its superior rebalancing system, which
includes both operator-based and user-based methods, it generates the
highest income, ultimately resulting in the highest overall profit.

On the other hand, NC-NR, which involves neither rebalancing nor
charging, shows the lowest performance, with only 58% successful trips
compared to MBRP, the highest unserviced demand, and the lowest total
income and profit. The OC-NR and OC-OR strategies offer moderate
performance improvements over NC-NR. These comparisons highlight
the substantial benefits of incorporating rebalancing and charging stra-
tegies, particularly the proposed mixed approach, despite the higher
operational costs.

Table 5 compares the number of e-bikes recharged and rebalanced by
trucks and users throughout an operating day. Notably, in the OC-NR and
OC-OR strategies, a greater number of e-bikes are charged or rebalanced
by operators compared to the MBRP method. In the MBRP strategy, a
notable finding is that operators recharge and rebalance fewer e-bikes,
while users play a significant role in rebalancing. User-based rebalancing
trips account for 44% of the total rebalancing activities. Additionally, the
number of e-bikes rebalanced through the proposed methods is 32%
higher compared to the number rebalanced using the OC-OR method.
This shift towards user-based rebalancing can substantially reduce the
reliance on trucks for rebalancing operations. As a result, there are
considerable environmental and social benefits, such as reduced emis-
sions, decreased traffic congestion, and lower operational costs. By
lessening the need for truck-based rebalancing, the strategy promotes a
greener and more sustainable approach to e-bike sharing systems. This
highlights the success of the integrated rebalancing method, where user
participation in rebalancing complements operator efforts, leading to an
efficient and effective system.

Moreover, with the NC-NR method, the average charge level of the



Fig. 5. Number of e-bikes with various methods: (a) benchmark with operator-based recharging - no rebalancing; (b) benchmark with operator-based rebalancing and
charging; and (c) the proposed integrated method.

Table 4
Comparison of the performance of the system operated with different rebalanc-
ing strategies throughout an operating day (average of four simulations).

NC-NR OC-NR OC-OR MBRP

Number of successful
trips

18,610.6 25,041.1 27,486.9 28,636.5

Number of unserviced
demand

26,037.9 19,636.4 17,134.0 16,011.6

Distance traveled per
trip (km)

4.06 4.82 4.17 5.10

Distance traveled per e-
bike (km)

25.18 40.23 38.30 48.68

Distance walked per
user (km)

0.206 0.308 0.157 0.152

Total income ($) 104,747.67 162,636.67 158,154.12 195,129.11
Total operating cost ($) 0.00 4,142.80 4,058.24 3,823.76
Total incentivization
cost ($)

0.00 0.00 0.00 12,965.91

Total profit ($) 104,747.67 158,493.87 154,095.88 178,339.44

Table 5
Number of rebalanced/recharged e-bikes and total traveled distance by reba-
lancing trucks in different rebalancing strategies throughout an operating day
(average of four simulations).

NC-
NR

OC-NR OC-OR MBRP

Number of e-bikes recharged by
trucks

0.0 9,123.1 4,553.2 4,771.8

Number of e-bikes rebalanced and
recharged by trucks

0.0 0.0 3467.3 2810.1

Number of rebalancing trips by users 0.0 0.0 0.0 2219.8
Total traveled distance by
rebalancing trucks (km)

0.00 3,198.52 3,224.03 3,035.22

Average level of charge of the fleet
(%)

21.8 47.1 42.0 36.3
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fleet throughout the operating day is, on average, 20% lower compared
to strategies that involve continuous charging of the fleet. This signifi-
cantly contributes to the decrease in the number of successful rentals
under the NC-NR method. In contrast, the OC-NR and OC-OR methods
yield comparable results; however, since the OC-NR method involves
trucks solely responsible for visiting the bikes, it maintains the highest
number of charged bikes and the highest average charge level.

The objective of e-bike repositioning is to ensure proportional spatial
distribution of e-bikes with respect to the travel demand throughout the
operating area. To observe the effects of the proposed integrated reba-
lancing method, Fig. 6 presents the spatial distribution of e-bikes
throughout the Manhattan area. In this figure, each point represents the
location of an e-bike, with the color indicating the bike's charge level.
Fig. 6) compares the spatial distribution of e-bikes from the early hours to
the end of the day with various e-bike sharing systems that employ
different rebalancing methods. As depicted in Figs. 6a–6c, during the
final hours of the operating day, there are clusters of e-bikes in some
regions of the network. The proposed integrated rebalancing method
effectively addresses this issue by preventing excessive accumulation of
e-bikes in particular regions within the operating area and ensuring their
efficient redistribution throughout the entire area.

An inconspicuous observation, discernible in Fig. 6 when comparing
the OC-NR method to the NC-NR method, is that even the charging of e-
bikes can yield positive effects on the redistribution of bikes throughout
the city.
5.3. Comparison with the e-hailing system

In this section, we compare the performance of the e-micromobility
sharing system with the proposed rebalancing and recharging system
against an e-hailing system considered as the other modes. To this end, an
e-hailing system is modeled in the simulation, and the results of the
shared e-micromobility system are compared with the performance of
this system with 3,000 vehicles. The speed of e-hailing vehicles is



Fig. 6. Spatio-temporal distribution of location of e-bikes in various methods: (a) NC-NR, (b) OC-NR, (c) OC-OR, and (d) the proposed MBRP method. The color shows
the level of charge.

Table 6
Pricing setup of the e-hailing system.

Parameter Description Unit Value

ct Driver's commission of each ride %/ride 75
f t0 Initial pay $ 3

f t1 Trip variable fare $/km 2.17
ϕ Acceptable distance km 1

Note: All values are sourced from Gu et al. (2024), Sun et al. (2020), and Zhou
et al. (2023).
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assumed to be 45 km/h. The experiment setup and the pricing mecha-
nism of this system are presented in Table 6. The attributes of e-hailing
vehicle n at time τ are as < xt;τn ;yt;τn ; st;τn >, where xt;τn ; yt;τn indicate two bi-
dimensional location of e-hailing vehicle n at time τ, and st;τn denotes the
status of e-hailing vehicle n at time τ (0 if e-hailing vehicle is occupied or
dispatched to pick up a passenger, and 1 otherwise).

The e-hailing system operates through the interaction between pas-
sengers, the platform, and e-hailing vehicles. Initially, e-hailing vehicles
are distributed randomly throughout the city. When passenger K requests
a ride via the platform, the system matches them with the closest idle e-
hailing vehicle within an acceptable distance (ϕ). According to their
choice model (introduced in Eq. (4)), the passenger may either accept the
matched e-hailing vehicle or choose an alternative mode of trans-
portation. In the modeled e-hailing system, an e-hailing vehicle not
allocated or dispatched to pick up a passenger will remain at its current
location (the destination of the previous trip) until it is matched with
another passenger. The total income of the system includes an initial
payment for each successful trip and a variable fare based on the total
distance that the passenger travels. The costs associated with this system
include the drivers’ commissions for each ride, which is the percentage of
income from e-hailing online systems that are offered to drivers.

Table 7 presents the comparison of the results between the simulated
11
e-hailing system and the shared e-micromobility system utilizing the
proposed integrated rebalancing and recharging method. Results in
Table 7 highlight a substantial disparity in profitability between the e-
bike sharing system employing the proposed integrated rebalancing
method and the e-hailing system. Despite the e-hailing system earning a
higher income due to its higher fares, the operating costs, including
drivers' commission of each ride (which is related to driver's income, fuel
cost, depreciation cost of the e-hailing vehicle for driver) result in a lower
overall profit compared to the e-bike sharing system with MBRP.



Table 7
Results comparison of the performance of the shared e-micromobility system
with the proposed rebalancing method and the e-hailing system throughout an
operating day (average of four simulations).

Proposed e-micromobility
sharing system

E-hailing
system

Number of successful trips 28,636.5 28,220.6
Distance traveled per trip (km) 5.10 7.35
Average distance walked by
passengers (km)

0.152 0.00

Average distance derived to pick
up passengers (km)

0.00 0.55

Total income ($) 195,129.11 547,014.00
Total operating and incentivization
cost ($)

16,789.67 410,260.50

Total profit ($) 178,339.44 136,753.50

E. Emami, M. Ramezani Communications in Transportation Research 4 (2024) 100155
6. Conclusions and future research

This study has formulated an integrated operator-based and user-
based rebalancing problem in a shared e-micromobility system, consid-
ering the attributes of each e-bike. The integrated rebalancing system
employs platform-owned trucks to relocate and recharge e-bikes, while
users are also encouraged to participate in rebalancing through in-
centives. This incentivization reduces the cost of renting an e-bike, with
users only required to pay an initial unlock fee. The objective is to
minimize the total cost of rebalancing and the number of unmet demands
while maximizing system's profit, accounting the distance traveled by
rented e-bikes.

The numerical results demonstrate that the proposed method can
increase the number of successful rentings and their travel distances.
Despite incurring certain operational costs, the system will experience an
overall increase in profits due to the fulfillment of more demands and
users traveling longer distances. We compared the operation and prof-
itability of the proposed e-bike sharing system to an e-hailing system. The
results show that with an efficient operating system, including recharging
and rebalancing, the e-bike sharing system can fulfill a comparable
number of demands with lower operating costs.

Future research should take into account time- and location-varying
incentivization strategies (Jiao and Ramezani, 2022) to potentially in-
crease platform profit and the likelihood of users accepting rebalancing
tasks. Moreover, an extension of this paper will involve investigating the
optimal incentive strategy needed to eliminate truck-based rebalancing,
aiming for a more sustainable e-bike sharing system. Future research can
study incentivization through loyalty programs. Another avenue for
future research could involve the management of battery charging at
designated docks or charging stations. This addition would introduce a
new layer of complexity, making the overall formulation mimic more
comprehensively the operations of the e-micromobility fleet. Another
potential direction for future research could involve determining the
required charge levels to meet anticipated demand. This would ensure
that e-bikes rebalanced through user-based strategies are adequately
equipped to serve future demand. Future research on e-bike sharing
systems could explore the use of learning methods to optimize reba-
lancing activities (Yang and Ramezani, 2022).

Replication and data sharing

The related codes used in this study can be found at https://www.nyc.
gov/site/tlc/about/tlc-trip-record-data.page.
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