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A B S T R A C T

With the prosperity of sharing economy, more part-time and freelance suppliers (i.e., drivers)
join on-demand mobility services. Because of suppliers’ autonomy and behavioural heterogene-
ity, the platform cannot ensure that suppliers will accept a dispatch order. One approach to
mitigate this supply uncertainty is to provide suppliers with personalized menus of dispatch
recommendations. A key issue then is to determine which dispatch orders (that can be passenger
or goods services) should be allocated into the assortment menu of each supplier. This paper
probabilistically models the suppliers’ order acceptance and choice behaviour, including a
decline option. We propose two assortment optimization problems, disjoint and joint menus,
to maximize the expected number of matches. We show that the objective function of the
disjoint menu assortment problem is monotone non-decreasing submodular. In contrast, the
objective function of the joint menu assortment problem is non-monotone and non-submodular.
Accordingly, we present a standard greedy (SG) algorithm to solve the disjoint assortment
problem, and 𝛾∗-greedy and local search (LS) algorithms for the joint assortment problem. By
bundling orders into consolidated routes, this paper extends the proposed menu assortment
methods to the context of meal delivery services. A case study is presented based on the real-
world demand in the Manhattan road network. The results show that drivers’ autonomy to
decline the dispatch orders creates substantial coexistence of idle drivers and unmatched orders
in the market. The proposed menu assortment methods curb such matching friction. Moreover,
the numerical results demonstrate that the proposed algorithms significantly outperform the
traditional dispatching policies applied in practice, e.g., one-to-one matching, in terms of
platform efficiency, e.g., achieving more matches, customers’ experiences, e.g., reducing waiting
time, and benefits for drivers, e.g., tapering off the income inequality among drivers.

. Introduction

Enabled by the recent technological advances and substantial growth of sharing economy, a plethora of on-demand mobility
ervices, such as ride-hailing (e.g., Uber and Lyft), meal delivery (e.g., Grubhub and Uber Eats), and crowd-sourced logistics
e.g., Deliv and Cargomatic), have reshaped mobility systems worldwide (Dandl et al., 2021; Beojone and Geroliminis, 2021;
lisoltani et al., 2021; Fielbaum et al., 2022). Recent market research valued the global ride-hailing market at USD 113 billion

n 2020, anticipating reaching USD 230 billion by 2026. The global online meal delivery market is estimated at USD 22 billion in
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2020 and is expected to reach USD 49 billion by 2026 (Research and Markets, 2022). These services enable individual customers
(e.g., passenger travelling, meal, and grocery delivery, shipping) match and transact with independent transportation suppliers
(e.g., drivers, couriers, and mail carriers) (Wang and Yang, 2019; Sampaio et al., 2019; Nourinejad and Ramezani, 2020; Yang and
Ramezani, 2022; Jiao and Ramezani, 2022). At the same time, these services allow suppliers to find temporary employment, generate
extra income, and increase economic productivity. Dispatching (matching) approaches bridging the customer and supplier sides are
crucial to forming the quality of customers’ experience and the distribution of suppliers’ income (Yan et al., 2020; Xu et al., 2020b).
A natural objective of dispatching approaches is to maximize the total number of matches (responses). To this end, the platform
would collect available suppliers, request orders periodically, and make dispatch decisions based on various optimization objective
functions, constraints, and algorithms.

A prominent feature of transportation network companies (TNC) is leveraging underutilized or excess resources from trans-
ortation suppliers, while the companies do not own these resources. It characterizes a sharing economy with freelance drivers
haring their assets (e.g., vehicle, motorcycle, and van) to serve demand requests. In contrast to fixed labour contracts offered in
he traditional taxi or freight industry, suppliers in on-demand mobility services are organized through more flexible arrangements.
conomic Development Research Group (EDR Group) found that nearly 87% of Uber drivers had another job (income source) when
hey were working as a ride-hailing driver (Group, 2018). Sui et al. (2019) point out that Didi Chuxing has attracted a variety
f regular car owners in addition to licenced taxis in China, and allows them to service request trips (i.e., Didi Express) in their
wn time. Ramezani et al. (2022) also show that part-time drivers make up 85% of the total supply of Didi Chuxing in Chengdu.
herefore, suppliers in on-demand mobility services are viewed as micro-freelancers and self-employed drivers. Suppliers can make
orking decisions (i.e., working at their preferred time and area) and have heterogeneous market-behavioural patterns (e.g., being

ull-time or part-time, being single-homing or multi-homing) based on their earnings and characteristics (Xu et al., 2020a; Ashkrof
t al., 2020; de Ruijter et al., 2022; Ramezani et al., 2022; Fielbaum and Tirachini, 2021; Jiao and Ramezani, 2024).

Once suppliers decide to work and select their working time and area, they receive request orders dispatched (or recommended)
rom platforms. Suppliers might have different preferences (utilities) for different orders. To maximize their utility, they can choose
hether to accept or decline their received dispatch orders (Ashkrof et al., 2021). Suppliers’ order acceptance behaviour can

ignificantly influence the system performance of on-demand mobility services. As evidence, Xu et al. (2018b) report that over
0% of the ride-hailing requests of Didi Chuxing in Shanghai in 2018 were aborted and received no response from drivers. Hence,
t is essential to consider suppliers’ order acceptance behaviour and address how to dispatch orders to achieve optimal system
erformance.

The authority and the ownership of existing on-demand mobility services (e.g., ride-hailing and crowd-sourcing logistics) remain
entralized in terms of management, control, and access (Wang and Yang, 2019; Ramezani and Valadkhani, 2023; Valadkhani
nd Ramezani, 2023). They strive to maximize profit and satisfy the requirement of their customers. To this end, the centralized
ustomer-centric dispatching approaches (e.g., Agatz et al., 2011, 2012; Baldacci et al., 2004; Pelzer et al., 2015; Dickerson et al.,
017; Özkan and Ward, 2020; Lyu et al., 2019; Xu et al., 2018a; Yang et al., 2020b; Qin et al., 2021) are adopted to prioritize
he customers’ interests (e.g., minimizing the response time and pickup time); however typically without considering the suppliers’
illingness to accept the dispatch order. In particular, the platforms apply various information-disclosure policies that share limited
rders’ information with drivers. In general, order fare and final destination are not shown to drivers before they accept the order.
s an example, Uber dispatches orders to drivers without displaying the orders’ destination and penalizes the drivers with low
cceptance rates (e.g., deprioritizes them in future dispatching rounds) (Cook, 2015). This partial blind policy aims to avoid price-
ased and destination-based discrimination (Smart et al., 2015) and achieve a high dispatching efficiency. However, it deprives
uppliers of autonomy by forcing them to accept the dispatch order, which may lead to dissatisfaction and distrust that can, in turn,
nfluence suppliers’ behaviour, especially in accepting orders (Rosenblat and Stark, 2016; Wang et al., 2019, 2021; Ashkrof et al.,
021, 2020).

The aforementioned dispatching policy sparks increasing labour relation tension and worldwide strikes due to the dissatisfaction
f drivers with their pay and working conditions from the ride-hailing companies (Isobel Asher Hamilton, 2019). Special attention
hould be devoted to the suppliers with this mandatory dispatching policy; some freelance suppliers would be reluctant to participate
n the market for lack of flexibility and autonomy. They may reject (decline) the order assigned to them. The drivers’ autonomy
o decline the dispatch orders leads to substantial simultaneous coexistence of idle drivers and unmatched orders in the market,
ndicating a matching friction between passengers and drivers. Therefore, this paper considers the autonomy and self-interest
ehaviours of the supply side for designing an effective and efficient dispatching strategy.

A many-to-many dispatching approach can hedge against the restriction of suppliers’ autonomy by allowing suppliers to receive
ultiple orders to choose from Einav et al. (2016) and Fradkin (2017). Mofidi and Pazour (2019), Yang et al. (2019a), Horner

t al. (2021), and Ausseil et al. (2022) have demonstrated that judiciously sharing a portion of orders among multiple suppliers
s beneficial for maximizing platforms’ efficiency and enhancing suppliers’ and passengers’ experiences. This approach requires
roviding suppliers with a menu of orders to choose from, including a decline option. Naturally, increasing the number of orders

listed in the menu of individual suppliers increases the chances that they find and select an acceptable order. Notwithstanding, with
limited knowledge of suppliers’ order acceptance behaviour, this approach can lead to new challenges: (i) some popular (i.e., high
utility) orders might receive duplicate selections from drivers, and others receive none, resulting in collisions as only one driver can
be finally matched. These collisions tend to deteriorate the platform’s efficiency, as the platform could have naturally increased the
number of matching by redirecting some of these drivers to other orders. (ii) Drivers perhaps spend a long time for decision-making
(i.e., selecting a desirable order) after scrolling through a long list of orders. (iii) Behavioural heterogeneity of the supply side makes
2 
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the value of the decline option differ from one driver to another, such that the platform cannot predetermine how drivers choose an
rder from their dispatch menus against their decline option.

Motivated by the above discussion, this paper introduces a centralized assortment optimization that offers each driver a tailored
ispatch menu in a monopoly on-demand mobility market. The assortment problem is often encountered in retail and supply chain
anagement (for example see Pentico (1974), Hinxman (1980) and Davis et al. (2014)). It requires a delicate balance between
roviding a broader selection of products with limited inventory for each item and offering a more focused range of options with
igher inventory levels for each individual product. In the on-demand mobility market, where suppliers are granted autonomy
o select or decline dispatch orders, each customer order can be likened to a product offered to suppliers for their selection. The
bjective is to determine a specific subset (i.e., dispatch menu) of orders for each supplier to maximize the number of successful
atches. Distinct from the general assortment problem, each customer order offered to suppliers in our problem has a stock of

ne, indicating that it is available for matching only once, even if multiple suppliers select the same order. This unique feature
ntroduces inter-driver competition when solving the menu assortment problem: (i) customer orders that receive an excessive number
f selections are undesirable, and (ii) suppliers declining the dispatch menu are also undesirable. Consequently, solving this menu
ssortment problem is challenging because the final matching is determined jointly by the platform’s dispatch decisions and the
uppliers’ interdependent choices. Assume the platform aims to maximize the expected number of matches (i.e., responses). Using
priori knowledge of drivers’ order acceptance preferences, we propose two menu assortment problems: disjoint menus, where the
rivers are assigned disjoint sets of orders, and joint menus, where the drivers may share orders in their menus. These personalized
ispatch menus are recommended to drivers over a given batching window, and orders will be assigned based on the drivers’ actual
elections.

We model that the utility of suppliers to accept a dispatch order is valued in preferences of order types (e.g., passenger trip, food
elivery, and parcel), fare, pickup time, and order’s destination. The choice behaviour of suppliers is modelled stochastically and
inearly proportional to the utilities of orders in their menus and the utility of the decline option. To avoid cross-driver interference

and choice collisions, the disjoint menu assortment is proposed to reach the assortment solution without the additional systematic
coordination after suppliers’ selection. While the disjoint menu assortment is shown to be only sensible for the scenario of the high-
value orders (Ashlagi et al., 2022), it becomes increasingly ineffective in the opposite scenarios with a mixture of high- and low-value
orders. To achieve better system performance, the joint menu assortment is modelled as a many-to-many assortment problem. The
novelty behind the joint model is to maximize the expected number of matches by reducing the collision cost (i.e., situations where
the selections of multiple suppliers are duplicated and concentrated on a few high-value orders) and increasing the probability of
responding to low-value orders (i.e., listing high-value orders in menus of a few drivers while exposing low-value orders to as many
drivers as possible). While the proposed menu assortment methods focus on the single-choice scenario (drivers are only allowed to
select at most one order (i.e., item) from their menu), our proposed methods have broader implications for both the shared-mobility
and the crowd-sourcing sector. By bundling multiple orders into a single route, our proposed methods optimize the menu assortment
problem by modelling each bundle (i.e., route) as a single item in the menu. Our major contributions are as follows:

• We introduce a formulation for solving a broad class of menu assortment problems in on-demand mobility services to
maximize the number of realized matches. The problem is grouped into three categories: one-to-one dispatching, disjoint
menu assortment, and joint menu assortment.

• We analyse the objective function’s submodularity over disjoint and joint menu assortment problems. We show that the
objective function of the disjoint model is monotone non-decreasing submodular, while the objective function of the joint
model is non-monotone and non-submodular.

• Relying on the property of submodularity proved above, we present two algorithms, standard greedy (SG) and local search (LS),
to solve the disjoint and joint menu assortment problems, respectively. The SG algorithm produces an assortment solution at
least 1∕2 of the optimal solution in the worst case, while the LS algorithm achieves 1∕(3+𝜀) in the worst case (𝜀 is an arbitrary
non-negative number).

• According to the theoretical properties of the homogeneous case of the problem, we also develop a heuristic algorithm named
𝛾∗-greedy for the joint menu assortment problem. The numerical experiments show 𝛾∗-greedy algorithm is capable of reaching
the best compromise between computational efficiency and solution quality.

• We propose an application and extension of menu assortment methods specifically tailored for meal delivery operations. By
leveraging cluster-based order bundling techniques, our methods dynamically create optimized menus whose items consist
of different bundles. Implementing our menu assortment methods result in improved system efficiency, enhanced customer
satisfaction, and improved resource utilization.

he layout of this paper is organized as follows. We formally describe the problem and discuss the assumptions in Section 2. Section 3
ntroduces a general matching model for on-demand mobility services where a menu of orders is offered to drivers, and formulates
he disjoint and joint menu assortment models. In Section 4, 𝛾∗-greedy algorithm is first developed based on the analysis of the
omogeneous case, and then the disjoint and joint menu assortment problem are solved by standard greedy (SG) and local search
LS) algorithms, respectively. According to the data from Manhattan, New York, Section 5 evaluates the performance of the proposed
ethods and extends these methods to include order bundling in meal delivery. Concluding remarks are given in Section 6.
3 
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Fig. 1. Schematic framework of the centralized dispatch menu assortment system.

2. Problem description

We consider the interactions among three participants in a monopoly mobility on-demand market, including the platform, drivers,
and customers (as illustrated in Fig. 1): (i) Platform collects the information of requesting customers (orders) and available idle
drivers over a given batching time window. At the end of the window (e.g., every 10 s), the platform employs a centralized approach
to offer each driver a personalized dispatch menu. After receiving the response of drivers (who might choose not to accept any orders,
the decline option), the platform determines the optimal driver–order matching pairs and notifies drivers and customers. (ii) Drivers
participate in the platform and park (or cruise) when being idle. Once receiving the personalized dispatch menu from the platform,
the drivers have the autonomy to select a request order (if any) from the menus or can opt to decline. After knowing the matching
from the platform, the assigned drivers follow the platform’s routing guide to service the corresponding order. At the same time,
the unassigned drivers wait in the market for opportunities in the subsequent matching intervals. (iii) Customers request an order
(e.g., passenger trip or meal delivery) on the platform. One of the following three outcomes occurs after the menus assortment and
drivers’ selections: a customer’s order can be selected by multiple drivers, only one driver, and no drivers. When a customer is
selected by at least one driver, this results in a successful match. Otherwise, they will be considered for matching in the following
matching intervals until their patience is exhausted and they cancel their request and leave the market.

We assume each order has a set of attributes such as order type (e.g., passenger trip, food delivery, and parcel), fare, and
destination location. Each driver–order pair also has a specific pick-up time. These attributes constitute the utility of order 𝑜 for
driver 𝑑, 𝑢𝑑,𝑜, as follows:

𝑢 =

constant
⏞⏞⏞
𝛽 +

order type
⏞⏞⏞
𝛽 ⋅ 𝐼 +

order fare
⏞⏞⏞
𝛽 ⋅ 𝑓 −

pickup time
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛽 ⋅ 𝜏(𝑙 , 𝑙org) +

value of the order’s destination
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛽 ⋅ 𝑉 (𝑙dest) (1)
𝑑,𝑜 0,𝑑 1,𝑑 𝑜 2,𝑑 𝑜 3,𝑑 𝑑 𝑜 4,𝑑 𝑜

4 
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where 𝐼𝑜 is the type of order 𝑜, 𝑓𝑜 represents order 𝑜’s fare (e.g., priced based on the travel distance and travel time), and 𝜏(𝑙𝑑 , 𝑙
org
𝑜 )

ndicates the pick-up time from driver 𝑑’s current location, 𝑙𝑑 , to order 𝑜’s origin, 𝑙org
𝑜 . 𝑉 (𝑙dest

𝑜 ) is the spatial value function of order
’s destination, 𝑙dest

𝑜 , such that higher 𝑉 (⋅) indicates the area is a hotspot to being matched with subsequent orders (Chen et al., 2021;
amedmoghadam et al., 2019; Ramezani and Nourinejad, 2018). Finally, 𝛽0,𝑑 , 𝛽1,𝑑 , 𝛽2,𝑑 , 𝛽3,𝑑 , and 𝛽4,𝑑 are preference parameters of
river 𝑑. There are four main factors considered in the utility function: (i) order type: drivers prefer a type of order with higher
onvenience (e.g., easier to park) and less uncertainty (e.g., less waiting or preparation time at the order’s origin). (ii) Order fare:
rders with a higher fare will naturally attract the driver to accept them. (iii) Pickup time: a longer pickup time reduces the driver’s
illingness to choose the order. (iv) Order destination: orders whose destination are in hotspot regions will be more probable to be

elected by drivers. Driver 𝑑 also has a decline utility for ignoring all orders in their dispatch menu, denoted by 𝑢c
𝑑 , which can be

stimated using historical behavioural data of driver 𝑑.
The problem described in this section can be naturally fitted to shared-mobility (e.g., ride-sharing, ride-pooling, and logistic-

haring) services. Constrained by time windows or detour distances, multiple passengers (meal or parcel orders) can be combined
nto a bundle serviced by one route. The bundle generation approaches have already been well-studied as variants of the vehicle
outing problem (VRP) (Mancini and Gansterer, 2022) and the ride-sharing matching problem (Masoud and Jayakrishnan, 2017b,a;
hang and Masoud, 2021; Alisoltani et al., 2022; Tafreshian and Masoud, 2020). We can directly employ these techniques to collect
ll feasible bundles. Then each bundle (i.e., route) can be viewed as an item in the driver menu with a set of attributes (e.g., total
are, pick-up time to the first point of the route, and value of the last drop-off location) to rebuild the utility function. Hence, we
ave expanded the menu assortment problem to include an order bundling mechanism in meal delivery in Section 5.4.

The defining characteristics and assumptions of the menu assortment problem are: (i) Each driver is assumed to select at most
ne item out of their menu. (ii) The occupied vehicles will not receive a new dispatch menu before they finish the currently assigned
rip. (iii) The platform has prior knowledge of the aggregated driver selection behaviour, which is achieved by estimating average
expected) values of 𝛽0,𝑑 , 𝛽1,𝑑 , 𝛽2,𝑑 , 𝛽3,𝑑 , 𝛽4,𝑑 , and 𝑢c

𝑑 of all drivers from historical data. (iv) As a tie-breaker rule in case multiple
rivers select one order, the order will be assigned to the nearest driver among those who select the order.

. Problem formulation

At every matching instance, the platform should decide on a menu assortment problem: ‘what dispatch menus to be offered to
ach driver?’. Given a set 𝑂 of available (unmatched) orders and a set 𝐷 of idle drivers collected between two successive matching
nstances, an assortment solution is a subset 𝑋 of 𝐷 × 𝑂. An element in solution 𝑋 is a driver–order pair, (𝑑, 𝑜) ∈ 𝑋 meaning that
rder 𝑜 ∈ 𝑂 is listed in the menu of driver 𝑑 ∈ 𝐷. Note that pair (𝑑, 𝑜) does not mean driver 𝑑 will be dispatched to service order 𝑜.
or subset 𝑋, we denote 𝑂𝑑 (𝑋) = {𝑜 ∶ (𝑑, 𝑜) ∈ 𝑋} to be the menu (i.e., set of orders) that driver 𝑑 ∈ 𝐷 can select from. Similarly,
𝑜(𝑋) = {𝑑 ∶ (𝑑, 𝑜) ∈ 𝑋} is the set of drivers who have 𝑜 in their dispatch menus.

Drivers are assumed rational utility maximizers without a commitment to the platform and make decisions independently of
ther drivers. Therefore, we assume probability 𝑝𝑑,𝑜(𝑋) that order 𝑜 is chosen by driver 𝑑 ∈ 𝐷 from the choice set 𝑂𝑑 (𝑋) ∪ {c},
hich is the union of the orders in the dispatch menu and the decline option c, is:

𝑝𝑑,𝑜(𝑋) =
𝑢𝑑,𝑜

𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑋) 𝑢𝑑,𝑜
,∀𝑑 ∈ 𝐷,∀𝑜 ∈ 𝑂𝑑 (𝑋), (2)

and 𝑝𝑑,c(𝑋) is: the probability that driver 𝑑 ∈ 𝐷 declines the dispatch menu

𝑝𝑑,c(𝑋) =
𝑢c
𝑑

𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑋) 𝑢𝑑,𝑜
,∀𝑑 ∈ 𝐷. (3)

3.1. General model

For a solution 𝑋, we denote that order 𝑜 ∈ 𝑂 is associated with a matching probability P𝑜(𝑋) meaning that order 𝑜 is selected
by at least one of the drivers in 𝐷𝑜(𝑋). The expected number of matches P(𝑋) is the sum of order matching probabilities with 𝑋 as
the solution of the dispatch menu assortment optimization,

P(𝑋) =
∑

𝑜∈𝑂
P𝑜(𝑋). (4)

We assume that the choice models of drivers (driver–order and decline utilities) are known to the platform. The platform designs
a dispatch menu for individual drivers to maximize the expected number of matches P(𝑋). Formally, we define the menu assortment
problem as follows:

maxP(𝑋) (5)

|𝐷𝑜(𝑋)| ≤ 𝑎,∀𝑜 ∈ 𝑂 (6)

|𝑂𝑑 (𝑋)| ≤ 𝑏,∀𝑑 ∈ 𝐷. (7)

The constraint in Eq. (6) describes that each order should be listed in the menus of 𝑎 drivers at most. The constraint in Eq. (7) limits
the maximum size of menus to be less or equal to 𝑏 (excluding the decline alternative) for each driver.
5 
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Different values of 𝑎 and 𝑏 shape various menu assortment problems: (i) the dispatch menus are disjoint if an order is only
offered to at most one driver (𝑎 = 1). Otherwise, the menus are joint such that an order can be listed in the menus of multiple
rivers simultaneously (𝑎 > 1). (ii) The platform may dispatch one order to each driver (𝑏 = 1) or display a dispatch menu to each

driver (𝑏 > 1). In summary, we investigate the following three menu assortment problems:

• One-to-one dispatching (𝑎 = 1, 𝑏 = 1), where each driver is assigned at most one order. This is the common practice studied
in the literature.

• Disjoint menu assortment (𝑎 = 1, 𝑏 ≥ 1), where drivers are assigned disjoint dispatch menus, i.e., 𝑂𝑑1 (𝑋) ∩ 𝑂𝑑2 (𝑋) = ∅,
∀𝑑1, 𝑑2 ∈ 𝐷 and 𝑑1 ≠ 𝑑2. In particular, one-to-one dispatching is a special disjoint case if 𝑏 = 1.

• Joint menu assortment (𝑎 > 1, 𝑏 > 1), where multiple drivers may share the same orders in their menus. In particular, any
solution 𝑋 is feasible as long as it satisfies constraints (6) and (7), including one that assigns disjoint menus.

he feasible solution space of the problem in Eq. (5) is exponentially large with the number of orders |𝑂| and drivers |𝐷|. Hence,
e relax the constraint in Eq. (7) by assuming an infinite menu size (𝑏 = +∞).

The above menu assortment problem captures the primary dynamics and trade-offs encountered by a platform when offering
rivers dispatch menus to maximize the number of expected matches. The essential step to facilitate successful matching is
ncouraging drivers to select an order in their dispatch menus. To this end, offering high-value and more orders to drivers increases
he chances of them finding an acceptable order over their decline option. However, this increases the chances that multiple drivers
elect similar high-value orders. Therefore, there is a trade-off between encouraging drivers’ selection and decreasing duplicate
elections (see Section 4.1, which is the homogeneous case).

There are no duplicate selections in the disjoint menu assortment; independent drivers will be matched with their selected order.
owever, the disjoint menu assortment model is sometimes counterproductive because the number of drivers assigned a non-empty
enu (i.e., containing at least one order) can be small especially during a high-supply low-demand time. In contrast, the joint menu

ssortment increases the number of non-empty menus while it inherently creates a collision when multiple drivers select the same
rder. Hence, the joint menu assortment model requires a tie-breaker rule to coordinate duplicate selections to achieve the final
atching.

.2. Disjoint menus assortment model

If the menus offered to individual drivers are disjoint (𝑎 = 1), matching probability P𝑜(𝑋) of order 𝑜 is the selection probability
f the driver who have 𝑜 in their dispatch menu,

P𝑜(𝑋) =
∑

𝑑∈𝐷𝑜(𝑋)
𝑝𝑑,𝑜(𝑋). (8)

Without the selection collision in the disjoint menus, individual drivers will get a match as long as they select an order from
heir dispatch menus. We introduce a selection probability P𝑑 (𝑋), ∀𝑑 ∈ 𝐷 that driver 𝑑, ∀𝑑 ∈ 𝐷 does not decline the dispatch menu

as

P𝑑 (𝑋) = 1 − 𝑝𝑑,c(𝑋) =
∑

𝑜∈𝑂𝑑 (𝑋)
𝑝𝑑,𝑜(𝑋) =

∑

𝑜∈𝑂𝑑 (𝑋) 𝑢𝑑,𝑜
𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑋) 𝑢𝑑,𝑜
,∀𝑑 ∈ 𝐷 (9)

Next, the problem in Eqs. (5)–(7) can be expressed as a many-to-one matching problem:

maxP(𝑋) =
∑

𝑜∈𝑂
P𝑜(𝑋) =

∑

𝑑∈𝐷
P𝑑 (𝑋) =

∑

𝑑∈𝐷

∑

𝑜∈𝑂𝑑 (𝑋) 𝑢𝑑,𝑜
𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑋) 𝑢𝑑,𝑜
(10)

|𝐷𝑜(𝑋)| ≤ 1,∀𝑜 ∈ 𝑂. (11)

Eq. (10) shows that the objective of the disjoint menus assortment is equivalent to maximizing the sum of selection probabilities
over all drivers. Constraint in Eq. (11) guarantees that order 𝑜 is included in at most one dispatch menu of drivers.

3.3. Joint menus assortment model

Consider the problem in Eqs. (5)–(7) allows orders to be overlapping (𝑎 = ∞) among multiple dispatch menus. Matching
probability P𝑜(𝑋) of order 𝑜 is the probability that order 𝑜 is selected by at least one driver from 𝐷𝑜(𝑋):

P𝑜(𝑋) = 1 −
∏

𝑑∈𝐷𝑜(𝑋)

[

1 − 𝑝𝑑,𝑜(𝑋)
]

= 1 −
∏

𝑑∈𝐷𝑜(𝑋)

𝑢c
𝑑 +

∑

𝑜′∈𝑂𝑑 (𝑋)∕{𝑜} 𝑢𝑑,𝑜′

𝑢c
𝑑 +

∑

𝑜′∈𝑂𝑑 (𝑋) 𝑢𝑑,𝑜′
. (12)

𝑑∈𝐷𝑜(𝑋)
[

1 − 𝑝𝑑,𝑜(𝑋)
]

represents the probability that none of the drivers in 𝐷𝑜(𝑋) choose order 𝑜, where 1 − 𝑝𝑑,𝑜(𝑋) =
𝑢c
𝑑+

∑

𝑜′∈𝑂𝑑 (𝑋)∕{𝑜} 𝑢𝑑,𝑜′
𝑢c
𝑑+

∑

𝑜′∈𝑂𝑑 (𝑋) 𝑢𝑑,𝑜′
. Note that 1 − 𝑝𝑑,𝑜(𝑋) depends on the other orders, i.e., 𝑜′ ∈ 𝑂𝑑 (𝑋)∕{𝑜}, listed in the menus of these drivers

∈ 𝐷𝑜(𝑋). Eq. (12) suggests increasing the number of orders in 𝑂𝑑 (𝑋) would result in a higher value of 1 − 𝑝𝑑,𝑜(𝑋).
Thus, the joint menus assortment is a many-to-many matching problem without constraint:

maxP(𝑋) =
∑

P𝑜(𝑋) =
∑

(

1 −
∏ 𝑢c

𝑑 +
∑

𝑜′∈𝑂𝑑 (𝑋)∕{𝑜} 𝑢𝑑,𝑜′

𝑢c +
∑

𝑢 ′

)

. (13)

𝑜∈𝑂 𝑜∈𝑂 𝑑∈𝐷𝑜(𝑋) 𝑑 𝑜′∈𝑂𝑑 (𝑋) 𝑑,𝑜
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4. Analysis and solutions of disjoint and joint menu assortment problems

In this section, we start with an analysis of homogeneous cases (Section 4.1). According to some definitions and mathematical
reliminaries (see Appendix A. Mathematical Preliminaries), we propose algorithms with analytical approximation bounds to design
isjoint (Section 4.2) and joint (Section 4.3) dispatch menus.

.1. Homogeneous cases

Consider 𝑚 orders and 𝑛 drivers in the system. We assume utilities between driver–order pairs are homogeneous, 𝛾𝑢c, where 𝑢c is
the decline utility and the same for all 𝑛 drivers. Given a menu assortment solution 𝑋, 𝛾 > 0 is the ratio between choice probabilities
of arbitrary order and the decline option:

𝑝𝑑,𝑜(𝑋)
𝑝𝑑,c(𝑋)

=
𝑢𝑑,𝑜
𝑢c = 𝛾. (14)

We introduce PDisjoint and PJoint to denote the objective functions of the disjoint and joint models, respectively. Given solution
𝑋Disjoint for the disjoint model, we have the objective from Eq. (10)

PDisjoint(𝑋Disjoint) =
∑

𝑑∈𝐷
P𝑑 =

∑

𝑑∈𝐷

|𝑂𝑑 (𝑋Disjoint)|𝛾𝑢c

𝑢c + |𝑂𝑑 (𝑋Disjoint)|𝛾𝑢c =
∑

𝑑∈𝐷

|𝑂𝑑 (𝑋Disjoint)|𝛾
1 + |𝑂𝑑 (𝑋Disjoint)|𝛾

(15)

here |𝑂𝑑 (𝑋Disjoint)| (0 ≤ |𝑂𝑑 (𝑋Disjoint)| ≤ 𝑚∕𝑛) is the number of orders in the menu of driver 𝑑.
Given solution 𝑋Joint for the joint menu model, we have the objective from Eq. (13)

PJoint(𝑋Joint) =
∑

𝑜∈𝑂
P𝑜 =

∑

𝑜∈𝑂

⎛

⎜

⎜

⎝

1 −
∏

𝑑∈𝐷𝑜(𝑋Joint)

(

𝑢c + (|𝑂𝑑 (𝑋Joint)| − 1)𝛾𝑢c

𝑢c + |𝑂𝑑 (𝑋Joint)|𝛾𝑢c

)

⎞

⎟

⎟

⎠

=
∑

𝑜∈𝑂

⎛

⎜

⎜

⎝

1 −
∏

𝑑∈𝐷𝑜(𝑋Joint)

(

1 + (|𝑂𝑑 (𝑋Joint)| − 1)𝛾
1 + |𝑂𝑑 (𝑋Joint)|𝛾

)

⎞

⎟

⎟

⎠

.

(16)

here |𝑂𝑑 (𝑋Joint)| (0 ≤ |𝑂𝑑 (𝑋Joint)| ≤ 𝑚) is the number of orders in the menu of driver 𝑑.
Let the menu of each driver be homogeneous with 𝑦 (1 ≤ 𝑦 ≤ 𝑚) orders (|𝑂𝑑 | = 𝑦,∀𝑑 ∈ 𝐷), and let each order be listed in the

menu of 𝑦 (1 ≤ 𝑦 ≤ 𝑛) drivers (|𝐷𝑜| = 𝑦,∀𝑜 ∈ 𝑂). Thus, 𝑋Joint in the homogeneous case determines the value of 𝑦, signifying how
many orders should be included in the driver menu or how many drivers can have the order in their menu.

PJoint = 𝑚 − 𝑚(1 −
𝛾

1 + 𝑦𝛾
)𝑦, (17)

we compute the first-order derivative:

dPJoint

d𝑦
= −𝑚

d(1 − 𝛾
1+𝑦𝛾 )

𝑦

d𝑦
= −𝑚(1 −

𝛾
1 + 𝑦𝛾

)𝑦
d ln(1 − 𝛾

1+𝑦𝛾 )𝑦

d𝑦

= −𝑚(1 −
𝛾

1 + 𝑦𝛾
)𝑦
(

d𝑦
d𝑦

ln(1 −
𝛾

1 + 𝑦𝛾
) +

d ln(1 − 𝛾
1+𝑦𝛾 )

d𝑦
𝑦

)

= −𝑚(1 −
𝛾

1 + 𝑦𝛾
)𝑦
(

ln(1 −
𝛾

1 + 𝑦𝛾
) + 𝑦 1

1 − 𝛾
1+𝑦𝛾

d(1 − 𝛾
1+𝑦𝛾 )

d𝑦

)

= −𝑚(1 −
𝛾

1 + 𝑦𝛾
)𝑦
(

ln(1 −
𝛾

1 + 𝑦𝛾
) + 𝑦

1 + 𝑦𝛾
1 + 𝑦𝛾 − 𝛾

𝛾2

(1 + 𝑦𝛾)2

)

= −𝑚(1 −
𝛾

1 + 𝑦𝛾
)𝑦
(

ln(1 −
𝛾

1 + 𝑦𝛾
) +

𝛾2𝑦
(1 + 𝑦𝛾 − 𝛾)(1 + 𝑦𝛾)

)

.

(18)

Since 𝑦 must be an integer and fall within the constrained range Z ∩ [1,min{𝑚, 𝑛}], finding 𝑦∗ to achieve the maximum value of
PJoint can be highly challenging. To simplify the problem, we examine two conditions of dPJoint

d𝑦
over the specified domain. First,

f
(

ln(1 − 𝛾
1+𝑦𝛾 ) +

𝛾2𝑦
(1+𝑦𝛾−𝛾)(1+𝑦𝛾)

)

> 0, ∀𝑦 ∈ Z ∩ [1,min{𝑚, 𝑛}], then we have dPJoint

d𝑦 < 0, meaning 𝑦 = 1 is the optimal solution for the

oint menu problem. Conversely, if
(

ln(1 − 𝛾
1+𝑦𝛾 ) +

𝛾2𝑦
(1+𝑦𝛾−𝛾)(1+𝑦𝛾)

)

< 0, we have dPJoint

d𝑦 > 0, ∀𝑦 ∈ Z ∩ [1,min{𝑚, 𝑛}], which shows that
𝑦 = min{𝑚, 𝑛} is the optimal solution for the joint menu problem.

There are three cases with different numbers of drivers and orders considered.
(1) Balanced case (𝑚 = 𝑛): The optimal solution 𝑋Disjoint* of the disjoint model is straightforward and unique: partitioning 𝑚 orders
into 𝑛 menus of drivers. That is only one order in the menu of each driver.

PDisjoint(𝑋Disjoint*) =
𝑚𝛾

=
𝑛𝛾

. (19)

1 + 𝛾 1 + 𝛾
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Fig. 2. Given 𝑛 ranging from 2 to 20, 𝛾∗ is solved from Eq. (24). We can see 𝛾∗ approaches 1.71 (i.e., 𝑒 − 1) as 𝑛 → +∞.

According to Eq. (18), the optimal solution of the joint model cannot be solved or analysed directly. We introduce 𝑋Joint,Global that
lists all orders in the menu of every driver as the solution of joint model.

PJoint(𝑋Joint,Global) = 𝑚
[

1 − (
𝑢c + (𝑚 − 1)𝛾𝑢c

𝑢c + 𝑚𝛾𝑢c )𝑛
]

= 𝑛 − 𝑛(
𝑢c + (𝑛 − 1)𝛾𝑢c

𝑢c + 𝑛𝛾𝑢c )𝑛

= 𝑛 − 𝑛(
(𝑛 − 1)𝛾 + 1

1 + 𝑛𝛾
)𝑛 = 𝑛 − 𝑛(1 −

𝛾
1 + 𝑛𝛾

)𝑛
(20)

2) Over-supplied case (𝑛 > 𝑚): The optimal solution 𝑋Disjoint* of the disjoint model is partitioning 𝑚 orders into 𝑚 menus of
rivers, and

PDisjoint(𝑋Disjoint*) =
𝑚𝛾
1 + 𝛾

. (21)

he expected number of matches of 𝑋Joint,Global is

PJoint(𝑋Joint,Global) = 𝑚 − 𝑚(1 −
𝛾

1 + 𝑚𝛾
)𝑛 (22)

(3) Under-supplied case (𝑛 < 𝑚): According to the monotonicity and submodularity proved in Propositions 2 and 3, the optimal
solution 𝑋Disjoint* is

PDisjoint(𝑋Disjoint*) = 𝑛 ⋅
𝑚
𝑛 𝛾

1 + 𝑚
𝑛 𝛾

=
𝑚𝑛𝛾

𝑛 + 𝑚𝛾
. (23)

The formulation of expected number of matches for 𝑋Joint,Global is consistent with Eq. (22).
By setting the numbers of expected matches of 𝑋Disjoint* and 𝑋Joint,Global equal, we have Eqs. (24), (25), and (26) for the balanced,

ver-supplied, and under-supplied cases, respectively.

𝑛 − 𝑛(1 −
𝛾

1 + 𝑛𝛾
)𝑛 −

𝑛𝛾
1 + 𝛾

= 0 (24)

𝑚 − 𝑚(1 −
𝛾

1 + 𝑚𝛾
)𝑛 −

𝑚𝛾
1 + 𝛾

= 0 (25)

𝑚 − 𝑚(1 −
𝛾

1 + 𝑚𝛾
)𝑛 −

𝑚𝑛𝛾
𝑛 + 𝑚𝛾

= 0. (26)

There exists a cut-off ratio 𝛾∗ delineating the optimality of 𝑋Disjoint* and 𝑋Joint,Global. Note that 𝛾 > 𝛾∗ indicates the number of
expected matches of 𝑋Disjoint* is higher than that of 𝑋Joint,Global, while 𝛾 ≤ 𝛾∗ indicates the converse.

Theorem 1. The cut off ratio 𝛾∗ approaches 𝑒 − 1 as 𝑛 limits infinity in the balanced case.

Proof. We can solve Eq. (24) for any given 𝑛 and find the cut-off ratio between the optimal objective values of 𝑋Disjoint* and
Joint,Global. Interestingly, when 𝑛 approaches infinity, the limit of the left part of Eq. (24) is

lim
(

1 − (1 −
𝛾

)𝑛 −
𝛾

)

= 1 −
𝛾

− lim 𝑒𝑛 ln (1−
𝛾

1+𝑛𝛾 ). (27)

𝑛→+∞ 1 + 𝑛𝛾 1 + 𝛾 1 + 𝛾 𝑛→+∞
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Let 𝑘 = 1∕𝑛, according to L’Hôpital’s rule, Eq. (27) is equivalent to

lim
𝑛→+∞

(

1 − (1 −
𝛾

1 + 𝑛𝛾
)𝑛 −

𝛾
1 + 𝛾

)

= 1 −
𝛾

1 + 𝛾
− lim

𝑘→0
𝑒
1
𝑘 ln ( 𝑘+𝛾−𝑘𝛾𝑘+𝛾 )

= 1 −
𝛾

1 + 𝛾
− lim

𝑘→0
𝑒

−𝛾2
(𝑘+𝛾−𝑘𝛾)(𝑘+𝛾)

= 1 −
𝛾

1 + 𝛾
− 𝑒−1

(28)

Finally, we could show that 𝛾∗ = 𝑒 − 1 when 𝑛 → +∞. This shows that the cut-off ratio 𝛾∗ approaches 𝑒 − 1 with more orders and
more drivers in the system (see Fig. 2). □

According to Eqs. (25) and (26), the cut-off ratio 𝛾∗ of the over-supplied and under-supplied cases are presented in Fig. 3 as
matrices of blue-red and black-lightorange colour tones, respectively. We observe that 𝛾∗ is above 𝑒−1 in both two cases. Specifically,
Fig. 3(a) shows a strong negative correlation between 𝛾∗ and 𝑚 and a positive correlation between 𝛾∗ and 𝑛, indicating that as 𝑚
increases or 𝑛 decreases, 𝛾∗ tends to decrease. An intriguing observation also arises in the top-right of Fig. 3(a): in over-supplied
scenarios with a sharper supply–demand ratio, 𝛾∗ becomes exceedingly large (e.g., surpassing 1 000 000 for 𝑚 = 2, 𝑛 = 20). In contrast,
Fig. 3(b) suggests that an increasing trend and a decreasing trend of 𝛾∗ with respect to 𝑚 and 𝑛 exist in the under-supplied case.

The analysis of above three cases indicates 𝑋Disjoint* is effective if the demand consists of high-value (𝛾 > 𝛾∗) orders, otherwise,
𝑋Joint,Global can achieve a higher performance. In addition, 𝛾∗ changes with the number of orders and drivers in the system. Inspired
y the discussion of 𝛾∗, we introduce 𝛾∗-greedy algorithm in Algorithm 1 for the joint menu model considering heterogeneous drivers
nd orders. We introduce utility ratio 𝛾𝑑,𝑜 for ∀𝑑 ∈ 𝐷, ∀𝑜 ∈ 𝑂

𝛾𝑑,𝑜 =
𝑢𝑑,𝑜
𝑢𝑑,c

. (29)

Built on the foundation of Theorem 1, Algorithm 1 aims to solve the joint menu assortment by iteratively finding the maximum
𝑑,𝑜 among the driver–order pairs. The algorithm 1 comprises of the following four steps:

• Initialization (line 1): Algorithm 1 sets solution set 𝑋 as ∅, generates two set 𝑂′ and 𝐷′ to duplicate 𝑂 and 𝐷, and finds
driver–order pair (𝑑∗, 𝑜∗) with the maximum 𝛾.

• Disjoint dispatching (lines 2-7): If 𝛾𝑑∗ ,𝑜∗ > 𝛾∗, Algorithm 1 updates 𝑋 by including 𝑥𝑑∗ ,𝑜∗ , then order 𝑜∗ and driver 𝑑∗ are removed
from 𝑂′ and 𝐷′, respectively, and driver–order pair (𝑑∗, 𝑜∗) will be found from remaining orders 𝑂′ and drivers 𝐷′. Since 𝑜∗

is uniquely matched with 𝑑∗ in 𝑋, and vice versa, we call this process ‘‘Disjoint dispatching ’’. This process will be continued
until 𝛾𝑑∗ ,𝑜∗ ≤ 𝛾∗.

• Global dispatching (lines 8-12): Algorithm 1 continues to update 𝑋 by listing every order in remaining set 𝑂′ into the menu of
every driver in 𝐷.

• Output : Algorithm 1 outputs the final solution 𝑋.

Recognizing that the computation time of the joint menu assortment may scale exponentially with a high volume of request orders
nd idle drivers, the purpose of the 𝛾∗-greedy algorithm is to strike a balance between solution quality and computational efficiency.
he time complexity of this algorithm is O(|𝑂|

2 × |𝐷|). Note that although the 𝛾∗-greedy algorithm originates from mathematical
indings (𝛾∗ = 𝑒 − 1) of the homogeneous case, it reveals a fundamental pattern existing in both homogeneous and heterogeneous
ases: the disjoint model outperforms in scenarios abundant with high-value orders (if 𝛾𝑑,𝑜 > 𝛾∗), while the joint model performs
etter in scenarios dominated by low-value orders (if 𝛾𝑑,𝑜 < 𝛾∗). However, due to the increased complexity of the heterogeneous case
ith varying utilities and menu sizes, finding the 𝛾∗ becomes challenging and impractical. Hence, we adopt 𝛾∗ = 𝑒 − 1 to maintain

implicity in the algorithm. As a supplementary material in Appendix E. Adaptive 𝛾∗-greedy algorithm, we also propose an adaptive
lgorithm by computing 𝛾∗ according to different numbers of drivers and orders. The numerical results further offer compelling
vidence supporting the choice of 𝛾 = 𝑒 − 1 in the 𝛾∗-greedy algorithm.

.2. Disjoint menus algorithm

In this section, we show that selection probability P𝑑 (𝑋), ∀𝑑 ∈ 𝐷 satisfies the following propositions:

roposition 1. P𝑑 (𝑋), ∀𝑑 ∈ 𝐷 are a normalized function that P𝑑 (∅) = 0.

roposition 2. P𝑑 (𝑋), ∀𝑑 ∈ 𝐷 are monotone non-decreasing.

roof. Given two arbitrary subsets 𝑆 and 𝑇 , and 𝑆 ⊆ 𝑇 ⊆ X, we have

P𝑑 (𝑆) =

∑

𝑜∈𝑂𝑑 (𝑆) 𝑢𝑑,𝑜
𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑆) 𝑢𝑑,𝑜
,P𝑑 (𝑇 ) =

∑

𝑜∈𝑂𝑑 (𝑇 ) 𝑢𝑑,𝑜
𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑇 ) 𝑢𝑑,𝑜
(30)

We know that 𝑂𝑑 (𝑆) ⊆ 𝑂𝑑 (𝑇 ) ⊆ 𝑂 for arbitrary driver 𝑑. Thus, we have ∑

𝑜∈𝑂𝑑 (𝑆) 𝑢𝑑,𝑜 ≤
∑

𝑜∈𝑂𝑑 (𝑇 ) 𝑢𝑑,𝑜 for 𝑑 ∈ 𝐷. According to the
𝑎 ≤ 𝑎+𝑐 for any real positive numbers 𝑎 < 𝑏, and 𝑐, we can complete the proof of P (𝑆) ≤ P (𝑇 ). □
fact that 𝑏 𝑏+𝑐 𝑑 𝑑
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Fig. 3. Heatmap chart of 𝛾∗ with different 𝑚 orders and 𝑛 drivers. (a) the over-supplied case and (b) the under-supplied case.

Algorithm 1 𝛾∗-greedy algorithm
Input: 𝑂, 𝐷
Output: 𝑋

1: 𝑋 = ∅, 𝑂′ = 𝑂, 𝐷′ = 𝐷, 𝛾∗ = 𝑒 − 1, (𝑑∗, 𝑜∗) = argmax(𝑑,𝑜){𝛾𝑑,𝑜}
2: while 𝛾𝑑∗ ,𝑜∗ > 𝛾∗ do
3: 𝑋 ← 𝑋 ∪ {𝑥𝑑∗ ,𝑜∗}
4: 𝑂′

← 𝑂′∖{𝑜∗}
5: 𝐷′

← 𝐷′∖{𝑑∗}
6: (𝑑∗, 𝑜∗) = argmax(𝑑,𝑜){𝛾𝑑,𝑜}
7: end while
8: for 𝑜 ∈ 𝑂′ do
9: for 𝑑 ∈ 𝐷 do

10: 𝑋 ← 𝑋 ∪ {𝑥𝑑,𝑜}
11: end for
12: end for
10 
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Proposition 3. P𝑑 (𝑋), ∀𝑑 ∈ 𝐷 are submodular.

Proof. First we consider function 𝐹 (𝑦) = 𝑦
𝑐+𝑦 where 𝑦 is a non-negative continuous variable and 𝑐 is a non-negative constant

independent of 𝑦. We have:
d𝐹 (𝑦)
d𝑦

= 𝑐
(𝑐 + 𝑦)2

> 0 (31)
(

d2𝐹 (𝑦)
d𝑦2

)

=
−2𝑐(𝑐 + 𝑦)
(𝑐 + 𝑦)4

< 0 (32)

Thus we show 𝐹 (𝑦) is a concave function. Given two arbitrary subsets 𝑆 and 𝑇 that 𝑆 is contained in 𝑇 , 𝑆, 𝑇 ⊆ X, and a feasible
driver–order pair (𝑖, 𝑗), (𝑖, 𝑗) ∉ 𝑆, (𝑖, 𝑗) ∉ 𝑇 , we have

• If 𝑖 is not 𝑑,

P𝑑 (𝑇 ∪ {(𝑖, 𝑗)}) − P𝑑 (𝑇 ) = 0 (33)

P𝑑 (𝑆 ∪ {(𝑖, 𝑗)}) − P𝑑 (𝑆) = 0 (34)

• If 𝑖 is 𝑑,

P𝑑 (𝑇 ∪ {(𝑖, 𝑗)}) − P𝑑 (𝑇 ) = P𝑑 (𝑇 ∪ {(𝑑, 𝑗)}) − P𝑑 (𝑇 )

=

∑

𝑜∈𝑂𝑑 (𝑇 ) 𝑢𝑑,𝑜 + 𝑢𝑑,𝑗
𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑇 ) 𝑢𝑑,𝑜 + 𝑢𝑑,𝑗
−

∑

𝑜∈𝑂𝑑 (𝑇 ) 𝑢𝑑,𝑜
𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑇 ) 𝑢𝑑,𝑜

(35)

P𝑑 (𝑆 ∪ {(𝑖, 𝑗)}) − P𝑑 (𝑆) = P𝑑 (𝑆 ∪ {(𝑑, 𝑗)}) − P𝑑 (𝑆)

=

∑

𝑜∈𝑂𝑑 (𝑆) 𝑢𝑑,𝑜 + 𝑢𝑑,𝑗
𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑆) 𝑢𝑑,𝑜 + 𝑢𝑑,𝑗
−

∑

𝑜∈𝑂𝑑 (𝑆) 𝑢𝑑,𝑜
𝑢c
𝑑 +

∑

𝑜∈𝑂𝑑 (𝑆) 𝑢𝑑,𝑜

(36)

According to concavity of 𝐹 (𝑦), we shall have:

P𝑑 (𝑇 ∪ {(𝑖, 𝑗)}) − P𝑑 (𝑇 ) ≤ P𝑑 (𝑆 ∪ {(𝑖, 𝑗)}) − P𝑑 (𝑆) (37)

Therefore, we show P𝑑 (𝑋), ∀𝑑 ∈ 𝐷 are submodular. □

Proposition 1 means that when orders are not shown to drivers 𝑑, ∀𝑑 ∈ 𝐷, matching probabilities P𝑑 (𝑋), ∀𝑑 ∈ 𝐷 are zero.
Proposition 2 means that matching probabilities P𝑑 (𝑋), ∀𝑑 ∈ 𝐷 are nondecreasing as more orders are included in the menu of
drivers. As a result of Propositions 1 and 2, matching probabilities P𝑑 (𝑋), ∀𝑑 ∈ 𝐷 will always be nonnegative. Proposition 3 is the
submodularity, which indicates that less marginal probability can be brought by adding a new order in the dispatch menu of 𝑑,
∀𝑑 ∈ 𝐷.

Our analysis shows that the disjoint menus assortment problem is a submodular maximization problem under a partition matroid
constraint, which is a variant of Problem (1.2) in Fisher et al. (1978). Maximizing a submodular function under a matroid constraint
is a member of the class of NP-hard problems (Vondrák, 2007). In particular, approximation ratios with lower bounds, compared to
the optimal solution, are generally used to measure the performance of the algorithms. Under a uniform matroid constraint, some
papers presented an improved approximation ratio of (1 − 1∕𝑒) using the greedy-based algorithms (Fisher et al., 1978; Nemhauser
t al., 1978). For the submodular maximization problem under a partition matroid constraint, the standard greedy algorithm
SG) (Conforti and Cornuéjols, 1984) is widely employed to solve the problem with an approximation ratio of 1∕2 and is detailed

in Algorithm 2:

• Initialization (line 1): Algorithm 2 initializes solution set 𝑋0 = ∅ and feasible solution space 𝑉 0 = X.
• Addition (lines 2–7): Algorithm 2 updates solution set 𝑋𝑘+1 by adding element 𝑥 ∈ 𝑉 𝑘 with the maximum marginal objective

improvement P(𝑋𝑘 ∪ {𝑥}) − P(𝑋𝑘) sequentially. Then Algorithm 2 constructs 𝑉 𝑘+1 consisting of driver–order pairs satisfying
the constraints in Eq. (11).

• Output (line 8): Algorithm 2 outputs the final solution 𝑋𝑘.

The time complexity of this algorithm is O(|𝑂|

2×|𝐷|). The algorithm has the following performance guarantee, proved in Conforti
nd Cornuéjols (1984):

heorem 2. Assume Propositions 1, 2, and 3 hold. Let 𝑋∗ be an optimal solution of the problem in Eq. (10), and 𝑋SG be the solution
roduced by SG algorithm. Then the approximation ratio can be derived from the total curvature 𝑐P

𝑟(𝑋SG) ∶=
P(𝑋SG)
P(𝑋*)

≥ 1
𝚌P + 1

(38)

In the worst case (𝚌 = 1), the algorithm achieves objective function at least 1/2 of the optimal value.
P

11 
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Algorithm 2 Standard Greedy (SG) Algorithm
Input: 𝑂, 𝐷
Output: 𝑋𝑘

1: 𝑘 = 0, 𝑋0 = ∅, 𝑉 0 = X
2: while 𝑉 𝑘 ≠ ∅ do
3: 𝑥𝑘 = argmax𝑥∈𝑉 𝑘 (P(𝑋𝑘 ∪ {𝑥}) − P(𝑋𝑘))
4: 𝑋𝑘+1 ← 𝑋𝑘 ∪ {𝑥𝑘}
5: 𝑉𝑘+1 ← {𝑥 ∈ X∕𝑋𝑘+1 ∶ {𝑥} satisfies Eq. (11)}
6: 𝑘 ← 𝑘 + 1
7: end while
8: 𝑋SG ← 𝑋𝑘

Fig. 4. Suppose there are two drivers and two orders, utilities between arbitrary driver–order pair and the decline utilities of two drivers are assumed to be
homogeneous and equal to 1. We introduce two examples of appending (𝑑2 , 𝑜1) into sets 𝑆 and 𝑇 in (a) and (b). Note that 𝑆 ⊆ 𝑇 . In (a), 𝑆 = ∅ and 𝑇 = {(𝑑1 , 𝑜1)},
P(𝑇 ∪ {(𝑖, 𝑗)}) − P(𝑇 ) = 0.25 < P(𝑆 ∪ {(𝑖, 𝑗)}) − P(𝑆) = 0.5. In (b), 𝑆 = {(𝑑1 , 𝑜1)} and 𝑇 = {(𝑑1 , 𝑜1), (𝑑1 , 𝑜2)}, P(𝑇 ∪ {(𝑖, 𝑗)}) − P(𝑇 ) = 0.33 > P(𝑆 ∪ {(𝑖, 𝑗)}) − P(𝑆) = 0.25.

4.3. Joint menus algorithm

In this section, we show that objective function P(𝑋) in Eq. (13) satisfies the following propositions:

Proposition 4. P(𝑋) is non-monotone.

Proof. Given arbitrary feasible sets 𝑆 and 𝑆 ∪ {(𝑖, 𝑗)}, 𝑆 ⊆ X, and 𝑆 ∪ {(𝑖, 𝑗)} ⊆ X, we have

P(𝑆 ∪ {(𝑖, 𝑗)}) − P(𝑆) = P𝑗 (𝑆 ∪ {(𝑖, 𝑗)}) − P𝑗 (𝑆) +
∑

𝑜∈𝑂𝑖(𝑆)

(

P𝑜(𝑆 ∪ {(𝑖, 𝑗)}) − P𝑜(𝑆)
)

(39)

where P𝑗 (𝑆 ∪ {(𝑖, 𝑗)}) − P𝑗 (𝑆) is the change of P𝑗 after inserting (𝑖, 𝑗) into 𝑆, and (P𝑜(𝑆 ∪ {(𝑖, 𝑗)}) − P𝑜(𝑆)) is the change of matching
probabilities of orders (excluding 𝑗) existing in driver 𝑖’s current menu 𝑂𝑖(𝑆),

P𝑗 (𝑆 ∪ {(𝑖, 𝑗)}) − P𝑗 (𝑆) =
𝑢𝑖,𝑗

𝑢c
𝑖 +

∑

𝑜∈𝑂𝑖(𝑆) 𝑢𝑖,𝑜 + 𝑢𝑖,𝑗
×

∏

𝑑∈𝐷𝑗 (𝑆)

[

1 − 𝑝𝑑,𝑗 (𝑆)
]

≥ 0, (40)

P𝑜(𝑆 ∪ {(𝑖, 𝑗)}) − P𝑜(𝑆) =

(

𝑢𝑖,𝑜
𝑢c
𝑖 +

∑

𝑜′∈𝑂𝑖(𝑆) 𝑢𝑖,𝑜′ + 𝑢𝑖,𝑗
−

𝑢𝑖,𝑜
𝑢c
𝑖 +

∑

𝑜′∈𝑂𝑖(𝑆) 𝑢𝑖,𝑜′

)

×
∏

𝑑′∈𝐷𝑜(𝑆)

[

1 − 𝑝𝑑′ ,𝑜(𝑆)
]

≤ 0 (41)

Eq. (40) indicates that matching probability of order 𝑗 increases with the number of drivers whose dispatch menu includes 𝑗.
However, Eq. (41) points out that matching probabilities of order 𝑜, ∀𝑜 ∈ 𝑂𝑖(𝑆) decreases if we introduce 𝑗 into 𝑖’s dispatch menu
𝑂𝑖(𝑆). When we revisit Eq. (39), we could show that P(𝑆 ∪ {(𝑖, 𝑗)}) − P(𝑆) is not always negative or positive, which depends on the
specific values of 𝑢𝑖,𝑗 , 𝑢𝑖,𝑜,∀𝑜 ∈ 𝑂𝑖(𝑆), and 𝑆. Hence, P(𝑋) is non-monotone. □

Proposition 5. P(𝑋) is neither submodular nor supermodular.
12 
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Proof. Fig. 4 illustrates two examples of appending (𝑑2, 𝑜1) into 𝑆 and 𝑇 , we can see that P(𝑇 ∪{(𝑖, 𝑗)})−P(𝑇 ) ≤ P(𝑆 ∪{(𝑖, 𝑗)})−P(𝑆)
r P(𝑇 ∪ {(𝑖, 𝑗)}) − P(𝑇 ) ≥ P(𝑆 ∪ {(𝑖, 𝑗)}) − P(𝑆) cannot simultaneously hold in two examples. Hence, P(𝑋) is neither submodular nor
upermodular. □

Proposition 4 means that the expected number of matches might fall down if we include more orders into the dispatch menus of
rivers. Proposition 5 means that the objective of the joint menus assortment does not possess submodularity nor supermodularity.
o solve the non-monotone non-submodular maximization problem in Eq. (13), we present a local search algorithm (Feige et al.,
011) in Algorithm 3. We begin with the definition of approximate local optimum 𝜆.

efinition 1 (Approximate Local Optimum). Given a set function 𝑓 ∶ 2X → 𝑅, set 𝑆 ⊆ X is called (1 + 𝜆)-approximate local optimum
f

𝑓 (𝑆 ∩ {𝑠}) ≤ (1 + 𝜆) × 𝑓 (𝑆),∀𝑠 ∈ 𝑆 (42)

𝑓 (𝑆 ∪ {𝑠}) ≤ (1 + 𝜆) × 𝑓 (𝑆),∀𝑠 ∉ 𝑆 (43)

Algorithm 3 executes four steps:

• Initialization (line 1): Algorithm 3 initializes solution set 𝑋0 with finding the driver–order pair to maximize the objective
function.

• Addition (lines 2–5): Algorithm 3 constructs the solution set 𝑋𝑘+1 of iteration 𝑘+ 1 by selecting element 𝑥 ∈ X∖𝑋𝑘 to add into
𝑋𝑘+1 if 𝑥 satisfies P(𝑋𝑘 ∪ {𝑥}) ≥ (1 + 𝜆)P(𝑋𝑘).

• Deduction (lines 6–9): Algorithm 3 updates solution set 𝑋𝑘+1 of iteration 𝑘 + 1 by removing 𝑥 ∈ 𝑋𝑘 satisfying P(𝑋𝑘 ∩ {𝑥}) ≥
(1 + 𝜆)P(𝑋𝑘).

• Output (line 10): Algorithm 3 selects the final solution between 𝑋𝑘 and X∖𝑋𝑘 achieving the higher objective.

Algorithm 3 Local Search (LS) Algorithm
Input: 𝑂, 𝐷, 𝜆
Output: 𝑋𝑘

1: 𝑘 = 0, 𝑋0 = {𝑥 ∶ 𝑥 = argmax𝑥P({𝑥}),∀𝑥 ∈ X}
2: while there exists 𝑥 ∈ X∖𝑋𝑘 such that P(𝑋𝑘 ∪ {𝑥}) ≥ (1 + 𝜆)P(𝑋𝑘) do
3: 𝑋𝑘+1 ← 𝑋𝑘 ∪ {𝑥}
4: 𝑘 ← 𝑘 + 1
5: end while
6: if there exists 𝑥 ∈ 𝑋𝑘 such that P(𝑋𝑘∖{𝑥}) ≥ (1 + 𝜆)P(𝑋𝑘) then
7: 𝑋𝑘 ← 𝑋𝑘∖{𝑥}
8: Go back to the while loop in line 2
9: end if

10: 𝑋LS ← argmax{P(𝑋𝑘),P(X∖𝑋𝑘)}

The time complexity of Algorithm 3 is O(|𝑂|

2 × |𝐷|

2). The performance guarantee of Algorithm 3 is given by:

heorem 3. Given a positive number 𝜀 > 0, 𝑐P ∈ [0, 1), and 𝛼 ∈ [0, 1], let 𝑋LS be the returned solution of Algorithm 3 and let 𝑋∗ be any
ptimum solution of the problem in Eq. (13). The approximation ratio can be proved:

𝑟(𝑋LS) ∶=
P(𝑋LS)
P(𝑋*)

≥ 𝛼2

3 + 𝜀𝛼2
. (44)

In the worst case (𝛼 = 1), the algorithm achieves at least 1∕(3 + 𝜀) of the optimal objective value.

Proof. Consider an optimal solution 𝑋*, and 𝜆 ∈ (0, 1). If Algorithm 3 terminates, the solution 𝑋LS obtained at the end is a
(1 + 𝜆)-approximate local optimum. By Definition 1, we have

P(𝑋LS∖{𝑠}) ≤ (1 + 𝜆)P(𝑋LS)

P(𝑋LS ∪ {𝑠}) ≤ (1 + 𝜆)P(𝑋LS).
(45)

Using Definition 6 and arbitrary driver–order pair 𝑠, 𝑠 ∈ 𝑋LS∖𝑋*, we have

(1 − 𝑐P) ⋅ (P(𝑋LS ∪𝑋*) − P(𝑋LS ∪𝑋*∖{𝑠})) ≤ P(𝑋LS) − P(𝑋LS∖{𝑠}). (46)

Gathering these inequalities, we get

2(1 + 𝜆)P(𝑋LS) + P(𝑋LS) − P(𝑋LS∖{𝑠}) ≥ P(𝑋LS∖{𝑠}) + P(𝑋LS ∪ {𝑠}) + (1 − 𝑐P) ⋅ (P(𝑋LS ∪𝑋*) − P(𝑋LS ∪𝑋*∖{𝑠}))
LS LS * LS * (47)
≥ P({𝑠}) + P(𝑋 ) + (1 − 𝑐P) ⋅ (P(𝑋 ∪𝑋 ) − P(𝑋 ∪𝑋 ∖{𝑠}))
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Fig. 5. Average number of demand arrivals per minute of the first two weeks in December 2020.

Thus, we have,

2(1 + 𝜆)P(𝑋LS) ≥ P({𝑠}) + P(𝑋LS∖{𝑠}) + (1 − 𝑐P) ⋅ (P(𝑋LS ∪𝑋*) − P(𝑋LS ∪𝑋*∖{𝑠})) (48)

Given 𝜆 = 𝛼2𝜀
(1−𝑐P)⋅|𝑂|⋅|𝐷|

for Inequality (48), Yang et al. (2019b) proved that P(𝑋LS) ≥ 𝛼2

3+𝜀𝛼2 ⋅ P(𝑋*). □

5. Numerical experiments

In this section, we examine the performance of the proposed algorithms and demonstrate the benefits of dispatch menu
assortment. All the experiments are conducted in a simulation environment in which Manhattan island is considered. The road
network of Manhattan is extracted from OpenStreetMap, which comprises 6533 nodes and 10,206 directed links (road segments),
including streets, highways, bridges, and tunnels. The adjacency matrix, the shortest paths, and the shortest travel times are pre-
calculated and stored in look-up tables. It is assumed that vehicles travel at the same speed of 8.5 [m/s] in each road segment.
The experiments are conducted for four hours (evening peak) between 05:00 PM and 09:00 PM, including the first 30 min (05:00
PM–05:30 PM) as a warm-up period for the network to be populated with demand and supply.

5.1. Demand and supply

The demand data consist of passenger trips and food trips. Passenger trips are obtained from taxi datasets in December 2020
from Yellow Cab’s website.1 The key data fields include the origin and destination geocoordinates (latitude and longitude), order
are, and order request time stamp. Trips with abnormal geocoordinates, e.g., outside the spatial boundary, and with unrealistic
istance, e.g., shorter than 0.32 [km] or longer than 15 [km], are eliminated from the data. Then origins and destinations are
rojected to the closest nodes of the road network. Each passenger is assigned a matching patience time stochastically drawn from
truncated Gaussian distribution in the range of 0.5 [min] to 1 [min] with a mean of 0.75 [min] and a standard deviation of

.25 [min]. In addition, Appendix B. Synthesizing food orders details the process of generating food trips from 477 real-world
estaurants in Manhattan. Each food requester is also assigned a matching patience time stochastically drawn from a truncated
aussian distribution in the range of 5 [min] to 10 [min] with a mean of 7.5 [min] and a standard deviation of 2.5 [min]. Fig. 5

hows the number of arriving orders on average per minute for the first two weeks in December 2020. The graph illustrates a
onsiderable time-varying pattern of the arriving trip demand.

The values of 𝐼𝑜 (see Eq. (1)) are transformed from nominal codes (i.e., passenger or food) into numerical codes (i.e., 1 or 0)
efore they are used for utility estimation. This transformation is because a food trip often entails higher uncertainty considering
he preparation time and parking time (Sungur et al., 2010). In addition, we show the histograms of fare per passenger trip and
ood trip in Fig. 6. We can observe that over 90% of fares of the trip and food orders are less than 16.0 and 7.4 [USD], respectively.

Fig. 7 shows the origin–destination heat-maps of passenger and food orders. The passenger pickup areas are spread in Manhattan,
hile the food delivery pickups are mainly around the midtown area at Penn Station and Times Square, and on the South West Side.
his is expected since the geographical locations of selected restaurants are mainly distributed in the centre and the south. Since
housands of nodes are considered in the road network, we adopt a space discretization method to partition the Manhattan network
nto zones with 672 similar hexagons with an approximately 340 [m] diagonal length to evaluate the value of trip destinations.
he spatial values of order destinations 𝑉 (𝑙dest

𝑜 ) are measured by the normalized count of (historical) pickups in each hexagon. Note
that the value of 𝑉 (𝑙dest

𝑜 ) is uniformly scaled between 0 and 1. An order whose destination is in a more dense pickup hexagon has
a higher 𝑉 (𝑙dest

𝑜 ).
Two hundred drivers are initially generated in the road network at 05:00 PM randomly. The number and location of new arriving

drivers are assumed to be stochastic and time-varying to replicate an erratic realistic feature in the first hour (05:00 PM–06:00 PM).

1 https://www1.nyc.gov/site/tlc/about/tlc-request-record-data.page.
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Fig. 6. Distributions of fares of trip and food orders.

Fig. 7. Heatmap of origins and destinations of passenger and food orders in test data. Dark coloured hexagons indicate the most origins or destinations; light
coloured hexagons indicate moderate origins or destinations, and other areas indicate minor or no origins or destinations. (e) corresponds to the distribution of
the initial positions of incoming drivers in the road network. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

The new drivers’ arriving rate is sampled from uniform discrete distributions with ranges between 1 and 5 [veh] per minute from
05:00 PM–06:00 PM. As depicted in Fig. 7(e), the initial positions (i.e., red dots) of arriving drivers are sparsely distributed all over
the Manhattan network (i.e., blue links).

5.2. Simulation setup

Fig. 8 presents three phases in the simulation process with a ten-second rolling time window. In the first phase, Assortment,
the demand, supply, and a set of priori known preference parameters are given to the menu assortment methods to determine
personalized dispatch menus for each driver. We considered four benchmark methods stated in the following, including joint as
well as disjoint menu assortment algorithms for comparison.

1. Global menu, lists all available (unmatched) orders in the menus of every idle driver.
2. Local menu, lists available (unmatched) orders in the menu of specific drivers who are within a circle centred at the order’s

origin. The radius of the circle is set to 3 [km].
3. One-to-one MTPT, is commonly employed in order dispatching literature by solving the maximum weight bipartite matching

problem to minimize the total pick-up time (MTPT) of orders. Orders 𝑂 and drivers 𝐷 are abstracted as two sets of
vertices, where each edge between driver 𝑑 and order 𝑜 has a weight of 1∕𝜏(𝑙𝑑 , 𝑙

org
𝑜 ). To reduce computational complexity, a

dispatching radius (Yang et al., 2020a) is employed to eliminate edges whose pick-up distance exceeds 3 [km]. We employ
the Kuhn–Munkres (KM) algorithm (Munkres, 1957) to solve the bipartite matching.

4. One-to-one MTSP, is the same as One-to-one MTPT except that its objective function is to maximize the total selection
probability (MTSP) of drivers, i.e., the weight is set to 𝑢𝑑,𝑜∕(𝑢𝑑,𝑜 + 𝑢c

𝑑 ) on the edge between driver 𝑑 and order 𝑜.

According to the drivers’ order acceptance behaviour experiments conducted in Ashkrof et al. (2021) and Hong et al. (2020), the
assortment algorithms assume the priori known preference parameters of individual drivers are homogeneous with values selected
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Fig. 8. Simulation phases of the experiments.

Table 1
The preference parameters of individual drivers in the Selection phase. 𝜇, 𝜎, 𝑎, and 𝑏 denote mean,
variance, minimum and maximum of the truncated Gaussian (TG) distributions, respectively.
Parameters 𝜇 𝜎 𝑎 𝑏

𝛽0,𝑑 0.0 0.5 −0.5 0.5

𝛽1,𝑑 2.0 0.5 1.5 2.5

𝛽2,𝑑 3.2 0.2 3.0 3.4

𝛽3,𝑑 0.6 0.1 0.5 0.7

𝛽4,𝑑 8.0 1.0 7.0 9.0

𝑢𝑑
c 15.0 5.0 10.0 20.0

as 𝛽0,𝑑 = 0.0, 𝛽1,𝑑 = 2.0, 𝛽2,𝑑 = 3.2, 𝛽3,𝑑 = 0.6, 𝛽4,𝑑 = 8.0, and 𝑢c
𝑑 = 15.0, ∀𝑑 ∈ 𝐷. 𝛽0,𝑑 = 0.0 indicates the constant term is disregarded,

𝛽1,𝑑 = 2.0 suggests the value of marginal preference of trip orders over food orders, 𝛽2,𝑑 = 3.2 indicates the utility of the fare,
𝛽3,𝑑 = 0.6 is the operational cost per minute, which considers the fuel cost and value of time for drivers (Association et al., 2012),
and 𝛽4,𝑑 = 8.0 is the preference for order destination, which is assumed to be the upper quartile of order fares. Given 𝛽0,𝑑 , 𝛽1,𝑑 ,
𝛽2,𝑑 , 𝛽3,𝑑 , and 𝛽4,𝑑 , we have investigated the average value of driver–order utilities and ultimately chose the rounded integer, 15, as
decline utility (𝑢c

𝑑 = 15, ∀𝑑 ∈ 𝐷) for each driver.
In the second phase (see Fig. 8), Selection, drivers’ actual selections are determined by the individual driver’s choice simulation.

At the beginning of the simulation, each driver 𝑑, 𝑑 ∈ 𝐷 is assigned a set of individual preference parameters 𝛽0,𝑑 , 𝛽1,𝑑 , 𝛽2,𝑑 , 𝛽3,𝑑 ,
𝛽4,𝑑 , and 𝑢𝑑

c sampled from truncated Gaussian (TG) distributions, see Table 1. Consequently, different drivers have distinct sets of
individual preference parameters. At each dispatching window (every 10 s), once driver 𝑑 receives a dispatch menu 𝑂𝑑 (𝑋∗) from
the Assortment phase, the utility of driver 𝑑 for servicing order 𝑜 ∈ 𝑂𝑑 (𝑋∗), �̃�𝑑,𝑜, is

�̃�𝑑,𝑜 =

constant
⏞⏞⏞
𝛽0,𝑑 +

order type
⏞⏞⏞
𝛽1,𝑑 ⋅ 𝐼𝑜 +

order fare
⏞⏞⏞
𝛽2,𝑑 ⋅ 𝑓𝑜 −

pickup time
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛽3,𝑑 ⋅ 𝜏(𝑙𝑑 , 𝑙

org
𝑜 ) +

value of the order’s destination
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛽4,𝑑 ⋅ 𝑉 (𝑙dest

𝑜 ) . (49)

Note that 𝛽0,𝑑 , 𝛽1,𝑑 , 𝛽2,𝑑 , 𝛽3,𝑑 , and 𝛽4,𝑑 are individual preference parameters of driver 𝑑, which are different from the homogeneous
preference parameters used by the platform in the Assortment phase. Following this, driver 𝑑 making actual choices among orders
in 𝑂𝑑 (𝑋∗) using a logit probability, as:

𝑝𝑑,𝑜(𝑋∗) =
exp(�̃�𝑑,𝑜)

exp(�̃�c
𝑑 ) +

∑

𝑜′∈𝑂𝑑 (𝑋∗) exp(�̃�𝑑,𝑜′ )
,∀𝑜 ∈ 𝑂𝑑 (𝑋∗),∀𝑑 ∈ 𝐷 (50)

where �̃�c
𝑑 is also an individual preference parameter different from the homogeneous one used by the platform.

In the last phase, Operation, the platform collects the drivers’ actual selections and assigns orders to the nearest responded driver.
Assigned drivers head for the origins of orders to pick up the passenger or food, while idle drivers park at their current position to
wait for the subsequent matching epoch (i.e., after 10 [s]). Occupied vehicles take the passenger or food to their destination by the
shortest path, and then they will become idle after they drop off the passenger or the food order. Passengers or food requesters will
cancel the order if not being matched within their matching patience. Individual drivers are also assumed to be impatient and will
leave the system once they receive no match over 60 [min]. Finally, we report the system performance.

We use first two weekdays (i.e., 10 days) in December 2020 as the test data and report eight evaluation metrics:

1. Avg. Match. The average number of orders that are successfully served per test day.
2. Avg. Cancellation. The average number of orders that are cancelled per test day.
3. Avg. Match time. The average response time to orders from requesting (arriving in the network) to being matched.
4. Avg. Pick-up time. The average pick-up time of orders from being responded (matched) to being picked up. It is worth

mentioning this is equal to the average deadheading time for vehicles.
5. Avg. Occupied rate. The average occupied rate per vehicle, defined as the ratio of the time spent on serving orders to the

total operating time of the vehicle.
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Table 2
The results of different assortment methods during 05:30 pm–09:00 pm (averaged over 10 test days). The numbers in the parentheses are the average response
rate and the average cancellation rate of the platform. Note that the sum of the response and cancellation rates might be less than 100 percent. This is because
some orders may still wait in the system at 09:00 pm.

Methods Avg. Avg. Avg. Avg. Avg. Avg. Daily Avg.
match cancellation match pick-up occupied leaving driver revenue CPU

time [s] time [s] rate vehicles time [s]

Mean [USD] Std [USD]

Global menu 4081.0 (65.8%) 2113.0 (34.1%) 47.8 206.8 61.2% 22.6 129.7 41.3 0.0
Local menu 4194.0 (67.6%) 1973.0 (31.8%) 50.8 190.3 66.5% 58.3 130.8 51.9 0.0
One-to-one MTPT 4429.0 (71.4%) 1716.0 (27.7%) 57.4 93.5 67.6% 100.3 120.5 72.0 0.1
One-to-one MTSP 4453.0 (71.8%) 1724.0 (27.8%) 38.2 197.6 66.4% 43.8 136.8 47.5 0.1
SG for disjoint menu 4506.0 (72.6%) 1696.0 (27.3%) 35.7 277.7 61.0% 15.1 139.5 18.5 0.9
LS for joint menu 4693.0 (75.7%) 1510.0 (24.3%) 28.3 253.9 62.6% 15.8 143.4 20.7 7.8
𝛾∗-greedy for joint menu 4542.0 (73.2%) 1660.0 (26.8%) 34.2 265.0 61.2% 16.2 140.0 17.9 0.1

6. Avg. Leaving vehicles. The average number of leaving vehicles per test day.
7. Daily driver revenue. The mean and standard deviation (Std) of daily revenue of individual drivers within testing days.
8. Avg. CPU time. The average calculation time of the menu assortment per optimization interval (i.e., 10 [s]) per test day.

rom the perspective of the platform operator, Avg. Match, Avg. Cancellation, and Avg. Match time are the measurements of system
fficiency. Avg. Leaving vehicles measures the ability to maintain the drivers’ participation in the system. Avg. Pick-up time and
vg. Occupied rate measure the satisfaction levels of customers and drivers, respectively. Assume the amount that the platform
ays the drivers is 100% percentage of the total paid by customers, Daily individual revenue assesses monetary earnings per day
or drivers in the system. Avg. CPU time measures the computation time of the menu assortment methods. The experiments are
onducted on a MacBook Pro with an Apple M1 chip and 8 GB RAM.

.3. Dispatch menu algorithms performance

Table 2 summarizes the numerical results of the seven menu assortment methods, where parameter 𝜆 = 0.001 is fine-tuned based
n multiple rounds of testing (see Appendix C. Parameter tuning) for the LS algorithm (Algorithm 3). LS for the joint menu achieves
he highest number of matches, the lowest number of cancellations, and the shortest match time. 𝛾∗-greedy for joint menu (Algorithm
) provides the second most matches, the second least number of cancellations, and the second shortest match time. However, it
an be observed that the averaged CPU time of the LS algorithm scales up dramatically to 7.8 [s], due to the exponential nature of
he algorithm. In contrast, the 𝛾∗-greedy algorithm performs efficiently with a computation time of 0.1 [s]. The average numbers of
atches and cancellations, and the average match time of the SG algorithm are also better than those of the other four benchmark

trategies. It is evident from the results that the proposed menu assortment methods can boost the system efficiency by offering the
ispatch menus to individual drivers. Offering a menu for the drivers, however, might have a number of side effects like increasing
he order pick-up time. However, Table 2 shows that the pick-up time of the passengers only increases within reasonable bounds
less than 5 [min]). This acceptable increase can be explained by the fact that the passenger pick-up time is the factor partially
onsidered in the driver’s choice behaviour (see Eq. (49)).

It is also worth noticing that one-to-one MTPT method yields a significantly shorter pick-up time than other methods do. This is
xpected, as one-to-one MTPT method involves a customer-centric objective to minimize the pick-up time of all the matched orders.
n contrast, one-to-one MTSP method integrates driver-centric and customer-centric goals simultaneously. As a result, one-to-one
TSP method can achieve more promising results in terms of platform efficiency and customers’ and drivers’ satisfaction. However,

oth methods raise the issue of reducing driver participation in the system. This is because the total number of drivers with non-
mpty menus is limited. This low driver participation discourages long-term suppliers’ loyalty. As a result, the average numbers of
eaving vehicles of one-to-one MTPT and MTSP methods explode to 100.3 [veh.] and 43.8 [veh.] per test day, respectively.

Fig. 9 displays the average number of drivers’ selections and the average number of drivers with no dispatching (an empty menu)
er ten seconds over testing days. There are three types of outcome for drivers’ selections, (i) matching (i.e., green), the selection
s matched after the platform’s assignment, (ii) duplicate (i.e., blue), the selection is unmatched since at least another driver has
hosen the same order, and (iii) decline (i.e., red), the driver declines the dispatch menu. A noticeable observation in Fig. 9 is that
he global menu achieves the most selections (i.e., the sum of blue and green). This is because increasing the number of orders
resented into the menus of individual drivers increases the chances of finding an acceptable order instead of declining. It can be
lso seen that the number of duplicates rises dramatically and reaches high proportions of total selections. This is because the global
enu method inherently creates collisions, i.e., drivers will select only a few high-value (high-utility) orders. Fig. 9 suggests that

he global menu method leads to the highest collision cost in the menu assortment, which deteriorates the system efficiency and
he experience of customers and drivers. To hedge against the collision cost, one-to-one MTPT and MTSP methods list each order
nto one dispatch menu and also limit the menu size to one. Evidently, both methods lead to no duplicates of driver selections (see
ig. 9). It can be seen in Fig. 9 that the number of drivers with no dispatching accounts for a significant proportion of the total

vailable supply, while the number of selections is scarce over testing hours.
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Fig. 10 shows the average numbers of waiting (unmatched) orders and idle drivers before the execution of dispatching in the
arket. Note that the sum of the numbers of no dispatching, duplicate, matching, and decline in Fig. 9 is the number of idle
rivers (i.e., red line) in Fig. 10. The matching friction between customers and drivers can be observed in global menu, local menu,
ne-to-one MTPT, and one-to-one MTSP methods: large numbers of waiting orders and idle drivers co-exist in the market. This is
ue to the collisions in global menu and local menu methods, and the low driver participation (dispatch acceptance) in one-to-one
TPT and one-to-one MTSP methods. In contrast, the uniform distributions of waiting orders and idle drivers can be observed in SG,

S, and 𝛾∗-greedy algorithms, which shows a period (05:30 PM to 08:00 PM) of maximizing supply utilization, and a period (08:00
M to 09:00 PM) of achieving the highest order fulfilment. This demonstrates that the proposed three menu assortment methods
ignificantly reduce the matching friction in the market. Fig. 11 displays the average and cumulative numbers of drivers who left
he market. A notable feature in this figure is that drivers continuously leave the market from 05:30 PM to 08:30 PM with local
enu, one-to-one MTPT, and one-to-one MTSP methods, which provides evidence for the previous claim that these three methods
ould avert drivers (supply) from the market. In contrast, only a small percentage of drivers (less than 20) start to leave the market

only after 8:30 PM with our proposed menu-based algorithms. This demonstrates the effectiveness of our proposed algorithms in
achieving higher driver retention compared to the local menu, one-to-one MTPT, and one-to-one MTSP methods. Fig. 12 presents
the average numbers of active drivers (including idle and occupied drivers) in the market. It can be seen that the numbers of drivers
matched and occupied with trip orders are significantly higher than that matched and occupied with food orders, which is consistent
with the assumption of the drivers’ choice preference in Table 1.

Fig. 13 presents the distribution of the daily revenue of each driver with different menu assortment methods. The standard
deviations (see Table 2) of the daily revenue of the global menu, local menu, one-to-one MTPT, and one-to-one MTSP methods
are higher than 40 [USD]. These considerable revenue discrepancies among individual drivers are due to the concentrative choices
(i.e., selecting high-utility orders) of drivers in the global menu and local menu methods, and the restrictive dispatching rules
(i.e., the menu size of at most 1 for each driver) of one-to-one MTPT and one-to-one MTSP methods. Such menu assortment methods
lead to high-income inequality and are unfair to individual drivers. Consequently, the average numbers of leaving vehicles of these
four methods are greater than 30 in Table 2. In contrast, the average driver revenue of the LS algorithm is higher than that of other
methods. The 𝛾∗-greedy and SG algorithms can also achieve promising and fair individual revenue distributions.

Fig. 14 shows the distributions of the menu size of different menu assortment methods. It shows the dispatch menus of global
menu and local menu methods contain approximately 55.7 orders and 3.8 orders on average. It also seems evident that one-to-one
MTPT and MTSP yield the smallest menu size, and most empty dispatch menus (0 or 1). In contrast, the three proposed menu
assortment algorithms allow flexible menu sizes for each driver. Although there is no restraint on the maximum size of the dispatch
menu (i.e., 𝑏 = ∞ in Eq. (7)), dispatch menus of the SG and LS algorithms can be narrowed down to a size of 1.9 and 0.6 orders
on average, respectively. 𝛾∗-greedy algorithm enlarges the menu size to allow the drivers to view on average 10.0 orders in their
ispatch menu.

.4. Extension to meal delivery bundling problem

In this section, a new experiment is conducted with the identical parameter setting and dataset to the previous experiment in
ection 5.3 to further investigate the performance of the proposed menu assortment methods with bundling meal orders. Practically
o better utilize supply capacity considering the reality of a limited number of suppliers in the market, meal orders can be bundled
here a single driver handles multiple orders in a single trip. When bundling order is considered, the proposed menu assortment
roblem can be divided into smaller, more manageable sub-problems as follow.
(i) Two-step cluster-based bundling: The basic idea is to prioritize the grouping of restaurants before meal orders. The approach

egins by creating a hexagonal grid over the network, effectively dividing the area into discrete spatial units. Each restaurant is
hen assigned to the hexagon that encompasses its location, forming distinct restaurant groups based on spatial closeness. Once
he restaurant groups are obtained, the delivery orders are extracted for each restaurant group in every matching instance. The
undamental idea of the next step is to create spatial-based clusters of meal orders with the same restaurant group. For every
estaurant group, the collected orders are bundled by Algorithm 4. Appendix D. Cluster-based bundling algorithm provides a detailed
reakdown of Algorithm 4 to consolidate multiple orders into one route.

Fig. 15 showcases an example of the cluster-based bundling approach. Fig. 15(a) presents the hexagonal grids generated over
anhattan, covering the locations of restaurants. Each restaurant (coloured circle point) is assigned to the hexagon that encompasses

ts location, establishing the initial grouping of restaurants within each hexagon. Fig. 15(b) displays a bundling example of one
elected restaurant group (hexagon), where each grey circle within the hexagon depicts a restaurant, and each square point
epresents a customer and is colour-coded according to the assigned bundle (cluster). This example identifies five distinct bundles
or the restaurant. The bundles exhibit clear boundaries, indicating distinct geographic proximity patterns among order destinations.
t is noteworthy that bundle 5 has two orders requiring multiple pickups and drop-offs when the courier carries out deliveries.
ii) Menu assortment optimization: Once the orders have been clustered into bundles, each bundle can be viewed as an item in
he driver menu. Then menu assortment optimization is required to determine which bundles should be listed in the menu of which
river. Each driver-bundle pair (𝑑, 𝑠) has a specific utility function for driver 𝑑,

𝑢 =

constant
⏞⏞⏞
𝛽 +

type
⏞⏞⏞
𝛽 ⋅ 𝐼 +

bundle fare
⏞⏞⏞
𝛽 ⋅ 𝑓 −

pickup time to the last restaurant
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛽 ⋅ 𝜏(𝑙 , 𝑙org) +

value of the last destination
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛽 ⋅ 𝑉 (𝑙dest) (51)
𝑑,𝑠 0,𝑑 1,𝑑 𝑠 2,𝑑 𝑠 3,𝑑 𝑑 𝑠 4,𝑑 𝑠
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Fig. 9. Average number of drivers’ selections at each matching instance (10 [s]) within 10 testing days.
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Fig. 10. Average numbers of waiting orders (passenger and food) and available idle drivers at each matching instance (10 [s]) within 10 testing days. Note
the matching friction (coexistence of waiting orders and idle vehicles) with global menu, local menu, one-to-one MTPT, and one-to-one MTSP methods. The
matching friction exists because of autonomy of drivers to not accept the platform dispatch orders. The menu assortment methods (joint and disjoint) curb this
friction.
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Fig. 11. Average number of drivers who left the market at each matching instance (10 [s]) over the 10 testing days. The second 𝑦-axis and curve depict the
cumulative number of leaving vehicles.
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Fig. 12. Average number of drivers at each matching instance (10 [s]) matched and occupied with food and passenger orders within 10 testing days.
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Fig. 13. Average distributions of daily revenue for each driver with the seven assortment methods. The bin width is 2 [USD].
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Fig. 14. Distributions of menu sizes of the seven assortment methods. The limits of 𝑥 and 𝑦 axes are different for visual purposes.
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Fig. 15. Example of bundling meal orders for a specific restaurant group (hexagon). (a) groups the restaurants across different hexagonal grids. Each data point
represents a restaurant, and the groups are distinguished by different colours. (b) visualizes five calculated bundles (clusters) in the example hexagon.

where 𝑓𝑠 represents the total fare charged on bundle 𝑠, which is assumed to be the sum of order fares (see Eq. (57)) in this bundle.
Note that routing problems are determined independently for the pick-up and drop-off stages of each bundle 𝑠. Travelling salesman
problem (TSP) are firstly used to optimize the pick-up sequences (restaurants) in bundle 𝑠, and then to determine the optimal
sequences of drop-off locations in bundle 𝑠. Both objectives of the two stages are set to minimize the total distance travelled. Hence,
𝜏(𝑙𝑑 , 𝑙

org
𝑠 ) is the pick-up time from driver 𝑑’s current location, 𝑙𝑑 , to the last visited restaurant of bundle 𝑠, 𝑙org

𝑠 . 𝑉 (𝑙dest
𝑠 ) is the spatial

value function of the last drop-off location of bundle 𝑠, 𝑙dest
𝑠 . Without loss of generality, the value of 𝐼𝑠 is assumed to be −1. This

assumption is justified based on the fact that bundle 𝑠 might have more pick-ups and drop-offs than a single meal order. Hence, we
account for a higher service time uncertainty in the bundling delivery problem. Consequently, the problem can be formulated as
Eqs. (5) to (7).

The experimental setup involved carefully selecting and manipulating parameters in the proposed bundling algorithm. Each
hexagon is assigned a unique index based on its resolution level in Uber H3 system,2 and the average edge length of each hexagon
is set to 0.53 [km]. The distance radius 𝜌 is set to 0.5 [km], reflecting the maximum distance between two arbitrary orders in
the same bundle (trip). MaxPts is set to 4 to represent the driver capacity for meal delivery. Consequently, two types (i.e., single
passenger trip and meal bundled trip) of menu items are considered in the menu assortment problem to measure the performance
of the proposed approaches.

Table 3 summarizes the numerical results of the seven menu assortment methods with the same parameter setting as Table 2.
In line with Table 2, Table 3 reveals that the proposed menu assortment methods (i.e., SG, LS, and 𝛾∗-greedy) achieve higher
numbers of matches, lower numbers of cancellations, and shorter match times compared other benchmark methods. This similar
observation in both experiments reinforces the validity and reliability of the previous findings, as it demonstrates the consistency
and robustness of the effects across different experimental conditions and settings. Another interesting observation is that the results
of Table 3 surpass the performance observed in Table 2 (e.g., higher matching rate, shorter matching time, and higher occupied
rate), indicating significant advancement in platform efficiency, and customers’ and drivers’ experience. This finding highlights the
compelling advantages of order bundling in meal delivery operations.

Fig. 16 shows the average numbers of waiting passengers, meal bundles, and idle drivers before the execution of menu dispatching
in the market. Despite efforts to consolidate multiple meal orders into bundles, a significant majority of the formed bundles exhibit
a single-order composition (i.e. bundles with one order). The prevalence of single-order bundles can be attributed to the value of
𝜌 and the demand intensity in the market. While some nuanced differences emerged in the magnitude or specific menu assortment

2 https://h3geo.org/.
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Table 3
The results of different assortment methods with bundling meal orders during 05:30 pm–09:00 pm (averaged over 10 test days).

Methods Avg. Avg. Avg. Avg. Avg. Avg. Daily Avg.
match cancellation match pick-up occupied leaving driver revenue CPU

time [s] time [s] rate vehicles time [s]

Mean [USD] Std [USD]

Global menu 4315.0 (70.7%) 1791.0 (29.3%) 30.9 199.6 67.0% 20.6 70.8 34.8 0.0
Local menu 4679.0 (76.6%) 1425.0 (23.3%) 29.7 197.0 73.4% 46.3 76.1 39.3 0.0
One-to-one MTPT 4593.0 (75.2%) 1496.0 (24.5%) 52.4 102.8 76.8% 77.3 64.3 41.5 0.1
One-to-one MTSP 4626.0 (75.8%) 1477.0 (24.2%) 35.8 174.8 75.1% 55.8 73.2 40.0 0.1
SG for disjoint menu 4722.0 (77.3%) 1383.0 (22.6%) 21.9 330.3 65.7% 12.1 80.0 24.9 0.7
LS for joint menu 4931.0 (80.8%) 1175.0 (19.2%) 21.7 276.9 68.2% 13.8 84.7 27.0 6.5
𝛾∗-greedy for joint menu 4724.0 (77.4%) 1382.0 (22.6%) 21.4 316.3 66.2% 8.2 80.4 26.6 0.2

methods, the overall trend of matching frictions in Fig. 16 closely aligns with that in Fig. 10, indicating a strong level of consistency
and validity.

6. Summary and future work

In traditional on-demand mobility markets, suppliers work as full-time employees of the platform and have to follow the order
ispatching instructions given by the platform. The prosperity of sharing economy attracts more freelance suppliers to join the
arket to share their transportation assets (e.g., vehicles). Consequently, the platform faces the challenge of dispatching request

rders to freelance suppliers; that is, the freelance suppliers serve their self-interest and might decline the instructions from the
latform according to their preferences.

This paper has proposed novel menu assortment approaches to provide freelance drivers a personalized dispatch menu to choose
rom. The approaches address the heterogeneity and autonomy of suppliers to choose among several dispatch orders and to have a
ecline option. The choice behaviour of suppliers is modelled probabilistically by considering their preferences for attributes such
s order type, fare, pick-up distance, and destination. We introduced two menu assortment problems: disjoint menus, where the
uppliers are assigned disjoint sets of orders, and joint menus, where the suppliers may share the same orders in their menus.
he analysis shows that the objective function of the disjoint model is monotone non-decreasing submodular, while the objective
unction of the joint model is non-monotone non-submodular. We present a standard greedy (SG) algorithm to solve the disjoint
ssortment problem, and 𝛾∗-greedy and local search (LS) algorithms for the joint assortment problem. Specifically, SG and LS can
olve disjoint and joint menu assortment with approximation ratios of 1∕2 and 1∕(3 + 𝜀) (𝜀 is an arbitrary non-negative number) in

the worst case, respectively. To maximize the utilization of delivery resources, this paper extends the proposed methods for meal
delivery services by consolidating multiple orders into one route.

Compared to traditional dispatching policies applied in practice, the proposed menu assortment method can reduce the matching
friction in the market according to our numerical results. The proposed methods can avoid the substantial simultaneous coexistence
of idle drivers and unmatched orders. In addition, the results suggests that the proposed algorithms can improve platform efficiency,
enhance customer experience, and provides benefits for suppliers by increasing their average daily income while increasing the
income equity among the suppliers.

Various extensions can be explored in the future. Suppliers’ order acceptance behaviour could change time by time, so it is
insightful to investigate this behaviour by capturing more dynamic aspects (e.g., arriving and leaving of suppliers) of the market
and considering more characteristics (e.g., multi-homing and working shift) of suppliers. Incorporating contextual factors such as
real-time demand conditions, surge pricing, and working hours (driver fatigue), one promising research direction is the development
of real-time prediction models that leverage streaming data and advanced learning techniques to forecast driver decline behaviour
nd utility on a per-order basis. Another research direction is to allow suppliers to select multiple orders; this could improve system
erformance, yet requires a more complicated menu assortment approach to solve the problem. Further, multiple ride-hailing
latforms may co-exist and compete with each other in many local markets. The presence of inter-platform competition (Zhang
nd Nie, 2021) and multi-homing passengers and drivers also impose a layer of complexity for the menu assortment problem.
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Fig. 16. Average numbers of waiting passengers, meal bundles, and available drivers at each matching instance (10 [s]) within ten testing days. The first 𝑦-axis
and histogram reflect the number of passengers and bundles, and the second 𝑦-axis and curve depict the number of available drivers.
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Appendix A. Mathematical preliminaries

This paper investigates the characteristics of the disjoint and joint menu assortment problems, either explicitly or implicitly,
nvolving the concept of submodularity. Submodularity reflects a diminishing returns property for a set function, stating that adding
n element to a smaller set increases the function value more than adding it to a larger set. For the sake of completeness, we start
y introducing the following definitions:

efinition 2 (Submodularity). A function 𝑓 ∶ 2X → R is submodular if for any two sets 𝑆 ⊆ 𝑇 ⊆ X, and an element 𝑥, 𝑥 ∈ X∖𝑇 ,

𝑓 (𝑆 ∪ {𝑥}) − 𝑓 (𝑆) ≥ 𝑓 (𝑇 ∪ {𝑥}) − 𝑓 (𝑇 ) (52)

where X is a ground set of elements, that is, X = 𝐷 × 𝑂.

Definition 3 (Supermodularity). A function 𝑓 ∶ 2X → R is supermodular if for any two sets 𝑆 ⊆ 𝑇 ⊆ X, and an element 𝑥, 𝑥 ∈ X∖𝑇 ,

𝑓 (𝑆 ∪ {𝑥}) − 𝑓 (𝑆) ≤ 𝑓 (𝑇 ∪ {𝑥}) − 𝑓 (𝑇 ). (53)

Definition 4 (Matroid). A matroid 𝑀 is a pair (X, 𝐼) where 𝐼 is a collection of subsets of X (that we call ‘independent’), satisfying
two axioms:

• for any set 𝑆 ⊆ X it must hold that 𝑆 ∈ 𝐼 , and for any set 𝑇 ∈ 𝑆 it must hold that 𝑇 ∈ 𝐼 .
• for any sets 𝑆, 𝑇 ∈ 𝐼 and |𝑇 | ≤ |𝑆|, it must hold that there exists an element 𝑠 ∈ 𝑆∖𝑇 such that 𝑇 ∪ {𝑠} ∈ 𝐼 .

In this paper, we are interested in two specific types of matroid: (i) uniform matroid, a uniform matroid is a matroid (X, 𝐼) such
that for a positive integer 𝑘, 𝐼 = {𝑆 ∶ 𝑆 ⊆ X, |𝑆| ≤ 𝑘}. Thus, the uniform matroid only constrains the cardinality of the feasible sets
in 𝐼 . (ii) Partition matroid, a partition matroid is a matroid (X, 𝐼) such that for a positive integer 𝑛, disjoint sets X1,X2,… ,X𝑛 and
positive integers 𝑘1, 𝑘2,… , 𝑘𝑛, X = X1 ∪ X2 ∪⋯ ∪ X𝑛 and 𝐼 = {𝑆 ∶ 𝑆 ⊆ X, |𝑆 ∩ X𝑖| ≤ 𝑘𝑖,∀𝑖 = 1,… , 𝑛}.

Definition 5 (Curvature). Consider matroid 𝐼 for X, and a nondecreasing submodular set function 𝑓 : 2X → R such that (without loss
of generality) for any element 𝑠 ∈ 𝑆, 𝑓 (𝑠) ≠ 0, and 𝑆 ⊆ X. The curvature measures how far 𝑓 is from submodularity or linearity.
Define curvature of 𝑓 over matroid 𝐼 as:

𝚌𝑓 = 1 − 𝑚𝑖𝑛
𝑠∈𝑆,𝑆∈𝐼

𝑓 (𝑆) − 𝑓 (𝑆∖{𝑠})
𝑓 (𝑠)

(54)

Note that the definition of curvature 𝚌𝑓 implies that 0 ≤ 𝚌𝑓 ≤ 1. Specifically, if 𝚌𝑓 = 0, it means for all the feasible sets 𝑆 ⊆ X,
𝑓 (𝑆) =

∑

𝑠∈𝑆 𝑓 (𝑠). In this case, 𝑓 is a linear (modular) function. In contrast, if 𝚌𝑓 = 1, then there exist a feasible 𝑆 ∈ 𝐼 and an
element 𝑠 ∈ 𝑋 such that 𝑓 (𝑆) = 𝑓 (𝑆∖{𝑠}). In this case, element 𝑠 is redundant for the contribution of the value of 𝑓 given the set
𝑆∖{𝑠}.

Definition 6 (Inverse Generalized Curvature). Given two subsets 𝑆 and 𝑇 that 𝑆, 𝑇 ⊆ X, and element 𝑠, 𝑠 ∈ 𝑆∖𝑇 , the inverse
generalized curvature (Bogunovic et al., 2018) of a non-negative function f is the smallest scalar 𝑐𝑓 ∈ [0, 1) such that

(1 − 𝑐𝑓 ) ≤
𝑓 (𝑆) − 𝑓 (𝑆∖{𝑠})

𝑓 (𝑆 ∪ 𝑇 ) − 𝑓 (𝑆 ∪ 𝑇 ∖{𝑠})
,∀𝑆, 𝑇 ⊆ X, 𝑠 ∈ 𝑆∖𝑇 (55)

and

𝑐𝑓 = 1 − min
∀𝑆,𝑇⊆X,𝑠∈𝑆∖𝑇

𝑓 (𝑆) − 𝑓 (𝑆∖{𝑠})
𝑓 (𝑆 ∪ 𝑇 ) − 𝑓 (𝑆 ∪ 𝑇 ∖{𝑠})

. (56)

The function 𝑓 (⋅) is submodular if 𝑐𝑓 = 0.

Appendix B. Synthesizing food orders

To examine the effectiveness of the proposed methods to address drivers heterogeneity in servicing different type of orders, the
numerical experiments include a set of synthetic food orders. We consider 447 real-world restaurants in Manhattan in this process.
Specifically, the arrival of food orders is assumed to follow a Poisson distribution with a rate of 3 orders per ten seconds. The
restaurant of each order is sampled probabilistically according to their normalized rating score.

The delivery distance of each order is sampled from a fitted gamma distribution (see Fig. 17). GrubHub has shared its order
data instance for on-demand meal delivery by transforming the geographic coordinates of customers and restaurants into UTM
(Universal Transverse Mercator) coordinates.3 We can leverage this dataset to estimate the delivery distance in real world. Because
the simulation is conducted during the evening peak hours, we extract the data within the time period from 05:00 pm to 09:00 pm.

3 https://github.com/grubhub/mdrplib.
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Fig. 17. Histogram and fitted distribution of food trip distances.

Fig. 18. Average objective values under different value of 𝜆.

The data are cleaned by removing outlier orders with a distance over the 99% range of the dataset. Fig. 17 shows the distribution of
the delivery distance and the fitted gamma distribution. The estimated shape and scale parameters of the fitted gamma distribution
are approximately 2.18 and 1.07, respectively. We observe that over 99% of the delivery distances are shorter than 7 [km] with a
very spread tail in the distribution.

Using a sampled order distance, the destination coordinate of each order is randomly selected from the points on the circle
centred at the restaurant location with a radius of the sampled delivery distance. Finally, the fare of each order is computed by the
rate from Uber Eats4:

food order fare =

pick-up fee
⏞⏞⏞
$2.5 +

drop-off fee
⏞⏞⏞
$3.0 +

distance unit fee
⏞⏞⏞
$0.4 ⋅food trip distance [km] (57)

Appendix C. Parameter tuning

Algorithm 3 contains parameter 𝜆, the value of which must be set before the algorithm is executed. To set the value of 𝜆,
we performed several experimental executions of Algorithm 3 using the data from Section 5.1. We consider six instances with ten
passenger trip orders and ten different numbers of drivers (i.e., 5, 10, 15, 20, 25, 30, 35, 40, 45, 50). Order fares, pick-up times, and
values of destination are sampled from the dataset. Driver–order utilities and decline utilities are generated based on the assumed
preference parameters in the Assortment phase. Consequently, Algorithm 3 is applied 10 times to each of the ten instances for 𝜆
values taken from {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1}.

4 https://blog.completepayroll.com/fees-earnings-and-the-financial-side-of-ubereats.
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Fig. 18 provides the average objective (i.e., the number of expected matches) obtained over the ten executions of each
onfiguration. We can observe that the objective values are compromised with larger 𝜆. Hence, The value of 𝜆 is set to 0.001,

which indicated the best performance for these instances.

Appendix D. Cluster-based bundling algorithm

Let �̂�𝑘 denotes the orders from restaurant group 𝑘. Then we can proceed with bundling the orders within the same restaurant
group (hexagon) by Algorithm 4. Algorithm 4 presents a distance-based clustering algorithm that incorporates a maximum cluster
size (i.e., driver capacity) constraint. The objective of the algorithm is to partition meal orders in �̂�𝑘 into clusters based on
geographical proximity while ensuring that no cluster exceeds a specified maximum size (i.e., driver capacity). Algorithm 4 starts
by collecting the coordinates (latitude and longitude) of the destination coordinates 𝐿𝑘 for orders in �̂�𝑘. The algorithm takes as
input a radius 𝜌 that defines the distance within which points are considered neighbours, and a maximum cluster size, MaxPts, that
restricts the number of points allowed in each cluster. Algorithm 4 returns a list of cluster labels that indicate the assigned cluster
for each order in �̂�𝑘.

Algorithm 4 Distance-Based Clustering with Maximum Cluster Size

Input: Destination coordinates 𝐿𝑘 of �̂�𝑘, Radius limit (𝜌), Maximum number of points (MaxPts)
Output: Optimal cluster label

1: Initialize cluster 𝑙𝑎𝑏𝑒𝑙𝑠 of 𝐿𝑘 as [−1,−1,… ,−1]
2: Initialize 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 ← 0
3: for 𝑖 ← 1 to length(𝐿𝑘) do
4: if 𝑙𝑎𝑏𝑒𝑙𝑠[𝑖] = −1 then
5: Find all points within radius 𝜌 around 𝐿𝑘[𝑖]
6: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← indices of points within radius 𝜌 of 𝐿𝑘[𝑖]
7: if length(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) > MaxPts then
8: Split large cluster into subclusters
9: 𝑠𝑢𝑏𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← Split large cluster using another clustering algorithm

10: for each 𝑠𝑢𝑏𝑐𝑙𝑢𝑠𝑡𝑒𝑟 in 𝑠𝑢𝑏𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
11: Assign points in subcluster to new cluster 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑛𝑑𝑒𝑥
12: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 + 1
13: end for
14: else
15: Assign all points in the neighborhood to the same cluster 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑛𝑑𝑒𝑥
16: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑛𝑑𝑒𝑥 + 1
17: end if
18: end if
19: end for
20: return 𝑙𝑎𝑏𝑒𝑙𝑠

Appendix E. Adaptive 𝜸∗-greedy algorithm

We pre-calculate the values of 𝛾∗ given range of 𝑚 and 𝑛 up to a maximum of 200, and store these values in a look-up table. This
tables allow for the adaptation of 𝛾∗ in Algorithm 5 to accommodate various combinations of 𝑚 and 𝑛. We denote the value of 𝛾∗
or a given 𝑚 and 𝑛 in the table as 𝛾∗(𝑚, 𝑛). We refer to this modified algorithm as the ‘Adaptive 𝛾∗-greedy’ algorithm to distinguish
t from the original version. The numerical results evaluated by the adaptive 𝛾∗-greedy are shown in Table 4.

Note that 𝛾∗ is derived from the homogeneous case but is utilized to address the heterogeneous case in the numerical experiments.
s a result, 𝛾∗ inherently carries a bias in both the 𝛾∗-greedy and the adaptive 𝛾∗-greedy. It is observed that the adaptive 𝛾∗-greedy
lgorithm exhibits a slightly worse performance compared to the original 𝛾∗-greedy algorithm in terms of both the number of
atches and matching time. This discrepancy is attributed to the values of 𝛾∗. It can be observed that the values of 𝛾∗ of the

adaptive 𝛾∗-greedy are significantly higher than 𝑒−1. This suggests that the adaptive 𝛾∗-greedy algorithm is more inclined to favour
the Global menu when determining the dispatch menus. In support of this, Fig. 19 depicts the menu sizes associated with the
𝛾∗-greedy and adaptive 𝛾∗-greedy algorithms. It is observed that the average menu size of the adaptive 𝛾∗-greedy algorithm exceeds
that of the 𝛾∗-greedy algorithm. In contrast, the 𝛾∗-greedy algorithm imposes a stricter condition (i.e., 𝛾∗ = 𝑒 − 1) to mitigate the
overuse of the Global menu.
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Algorithm 5 Adaptive 𝛾∗-greedy algorithm
Input: 𝑂, 𝐷
Output: 𝑋

1: 𝑋 = ∅, 𝑂′ = 𝑂, 𝐷′ = 𝐷
2: (𝑑∗, 𝑜∗) = argmax(𝑑,𝑜){𝛾𝑑,𝑜}
3: 𝑚 = |𝑂′

|, 𝑛 = |𝐷′
|

4: while 𝛾𝑑∗ ,𝑜∗ > 𝛾∗(𝑚, 𝑛) do
5: 𝑋 ← 𝑋 ∪ {𝑥𝑑∗ ,𝑜∗}
6: 𝑂′

← 𝑂′∖{𝑜∗}
7: 𝐷′

← 𝐷′∖{𝑑∗}
8: (𝑑∗, 𝑜∗) = argmax(𝑑,𝑜){𝛾𝑑,𝑜}
9: 𝑚 = |𝑂′

|, 𝑛 = |𝐷′
|

10: end while
11: for 𝑜 ∈ 𝑂′ do
12: for 𝑑 ∈ 𝐷 do
13: 𝑋 ← 𝑋 ∪ {𝑥𝑑,𝑜}
14: end for
15: end for

Table 4
The results of different assortment methods during 05:30 pm–09:00 pm (averaged over 10 test days). The numbers in the parentheses are the average response
rate and the average cancellation rate of the platform. Note that the sum of the response and cancellation rates might be less than 100 percent. This is because
some orders may still wait in the system at 09:00 pm.

Methods Avg. Avg. Avg. Avg. Avg. Avg. Daily Avg.
match cancellation match pick-up occupied leaving driver revenue CPU

time [s] time [s] rate vehicles time [s]

Mean [USD] Std [USD]

Global menu 4081.0 (65.8%) 2113.0 (34.1%) 47.8 206.8 61.2% 31.6 129.7 41.3 0.0
Local menu 4194.0 (67.6%) 1973.0 (31.8%) 50.8 190.3 66.5% 71.3 130.8 51.9 0.0
One-to-one MTPT 4429.0 (71.4%) 1716.0 (27.7%) 57.4 93.5 67.6% 126.3 120.5 72.0 0.1
One-to-one MTSP 4453.0 (71.8%) 1724.0 (27.8%) 38.2 197.6 66.4% 55.8 136.8 47.5 0.1
SG for disjoint menu 4506.0 (72.6%) 1696.0 (27.3%) 35.7 277.7 61.0% 15.1 139.5 18.5 0.9
LS for joint menu 4693.0 (75.7%) 1510.0 (24.3%) 28.3 253.9 62.6% 15.8 143.4 20.7 7.8
𝛾∗-greedy 4542.0 (73.2%) 1660.0 (26.8%) 34.2 265.0 61.2% 16.2 140.0 17.9 0.1
Adaptive 𝛾∗-greedy 4474.0 (72.1%) 1729.0 (27.9%) 37.1 228.2 61.2% 21.5 139.7 22.3 0.1

Fig. 19. Distributions of menu sizes of the 𝛾∗-greedy and the adaptive 𝛾∗-greedy algorithms.
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