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4Background: Shared Autonomous Vehicle Systems

◼ A large number of AVs are shared by the society.

◼ They provide the optimized route and ridesharing matching.

What are Shared Autonomous Vehicle (SAV) Systems?

What could the SAV systems contribute to transportation planning?

SAV

platform Trip
requestDispatching

source: Waymosource: Toyota

◼ A SAV system can provide travelers with time-efficient and flexible journeys.

◼ planners with cost-efficient infra. design

commute by

private vehicles 

commute by

private vehicles 

CBD

Pick-up and 
drop-off

Pick-up and 
drop-off

CBD



5Background: SAV Infrastructure Design

Requirements for SAV infrastructure design planning

Incorporating SAV operations

SAV operations

◼ SAV dispatching and routing

◼ Vehicle-traveler assignment

◼ Ride-sharing matching

◼ Road network design

◼ Parking location

◼ SAV fleet sizing

Strategic SAV planning

Trade-off relations

◼ Immediate response to trip requests 

needs sufficient fleet size of SAVs. 

◼ Ensuring the feasibility of smooth SAV 

operation requires significant 

investments in infrastructure resources.
strategic costs

(e.g., infrastructure cost)

operational costs

(e.g., traveler’s 

travel time)

A set of
the pareto solutions

Multi-objective optimization framework



6Background: SAV Infrastructure Design

Requirements for SAV infrastructure design planning

Incorporating demand uncertainties
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◼ Demand uncertainty can emphasize the importance of 

capturing the trade-off relations.

◼ Future trip requests can only be predicted stochastically.

◼ Trip requests are time-varying.

(Multi-stage) stochastic programming
NYC-taxi trip data



7Promising Management Strategies for Uncertain Demand

On-demand and pre-booked trip requests

<On-demand requests> <Pre-booked requests>
◼ Travelers send their trip requests 

(including origin and destination) 
at their desired departure time.

◼ Travelers send their trip requests 
(including origin, destination, desired departure time) 
in advance.

How many 
will be needed?

[Infra. planning stage]

How much 
will be needed?

How should 
be operated?

[Fleet-sizing stage] [Operation stage]

DecisionsDecisions



8Promising Management Strategies for Uncertain Demand

On-demand and pre-booked trip requests

<On-demand requests> <Pre-booked requests>
◼ Travelers send their trip requests 

(including origin and destination) 
at their desired departure time.

◼ Travelers send their trip requests 
(including origin, destination, desired departure time) 
in advance.

Infrastructure design incorporating operations 

with on-demand and pre-booked requests

How many 
will be needed?

[Infra. planning stage]

How much 
will be needed?

How should 
be operated?

[Fleet-sizing stage] [Operation stage]

DecisionsDecisions



9Methodological Challenges

Previous studies on stochastic & dynamic optimization
e.g., Reinforcement Learning, Approximate Dynamic Programming, or Customized heuristic algorithm

<Strong points> <Weak points>

◼ Address large-scale optimization problems.

◼ Finds approximate solutions in real time.

◼ Not generally have optimality guarantees.

◼ Hard to find (general) policy implications.

➢ Real-time (operational-level) decision-making requires approaches to find good 

solutions quickly. Finding better solutions is all that is required.

➢ Strategic-level decision making (e.g., infrastructure planning) requires careful 

consideration, i.e., finding elegant solutions.

Strategic-level and operational-level decision-making

(e.g., global optimality, explainability, and generality )

- Infrastructure investment is expensive.

- Infrastructure construction is irreversible. Flexible changes are difficult.

- Accurate estimation of all model parameters is impossible.



10Research Objective

◼ For infrastructure design incorporating SAV operations 

with uncertain on-demand and pre-booked requests, 
 we develop an optimization framework with optimality guarantees, and

 we derive theoretical properties of the problem.

◼ We formulate multi-stage stochastic linear problems (MSSLPs).
 They can be solved by multi-stage Benders decomposition with guaranteed convergence.

 Multi-objective optimization can be transformed into weighted sum single-objective one.

◼ We derive theoretical properties leveraging the linearity of the problem.
 Ride-sharing does not increase expected strategic and operational costs, simultaneously.

 Pre-booking does not increase expected strategic and operational costs, simultaneously.

Research Objective

Contributions

The introduction of ride-sharing or pre-booking always leads to a Pareto-efficient SAV system.



Problem Statement



12System Specification

Network

Platform
Planning 

horizon

SAVs Travelers

Network

◼ Directed graph (e.g., Road network).

Planning horizon

◼ Discrete and finite.

Platform

◼ Centralized (single) decision-maker,

◼ Decides infra. design, fleet size, and operation.

SAVs

◼ Travel on the road network in an optimized manner.

Travelers

◼ Travel only by SAVs



13System Specification: Platform

◼ (Continuous) decision variables

- Node and link capacities                    ← Infrastructure planning

- The number of SAVs                           ← Fleet sizing

- SAV and traveler dynamic flows         ← Routing and ride-sharing matching

◼ Objective functions: multi-objective optimization problem

- Total travel time of travelers        𝑇

- Total distance traveled by SAVs   𝐷

- The number of SAVs                    𝑁

- Total infrastructure costs             𝐶

◼ Demand information 

- Probability distributions are available when infrastructure planning,

- Pre-booked trip requests are available when fleet sizing, and

- On-demand trip requests are available when SAV routing and matching.

strategic costs (𝐶 + 𝑁)

operational costs

(𝑇 + 𝐷)
Pareto solutions



14System Specification: Planning Horizon

infra.

planning
⋯

{0}

SAV

operation

{𝑇}

on-demand

request

planning horizon

SAV

operation

{3}

on-demand

request

Fleet-

sizing

{1}

pre-booked

request

on-demand

request

SAV operation stages (e.g., 1 hour)

SAV

operation

{2}

unit time (e.g., 5 min.)

◼ Planning horizon: 𝒯0 = 0,… , 𝑇
- Infrastructure planning stage: {0}

- Fleet-sizing stage: {1}

- SAV operation stages: 𝒯 = 2,… , 𝑇
Pre-booked requests On-demand requests



15System Specification: Planning Horizon

infra.

planning

{0}

planning horizon

SAV operation stages (e.g., 1 hour)

◼ Planning horizon: 𝒯0 = 0,… , 𝑇
- Infrastructure planning stage: {0}

- Fleet-sizing stage: {1}

- SAV operation stages: 𝒯 = 2,… , 𝑇
Pre-booked requests On-demand requests
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infra.

planning

{0}

planning horizon

Fleet-

sizing

{1}

pre-booked

request

SAV operation stages (e.g., 1 hour)

◼ Planning horizon: 𝒯0 = 0,… , 𝑇
- Infrastructure planning stage: {0}

- Fleet-sizing stage: {1}

- SAV operation stages: 𝒯 = 2,… , 𝑇
Pre-booked requests On-demand requests



17System Specification: Planning Horizon

infra.
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⋯

{0}

SAV
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{𝑇}

on-demand
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planning horizon

SAV

operation

{3}

on-demand

request

Fleet-

sizing

{1}

pre-booked

request

on-demand

request

SAV operation stages (e.g., 1 hour)

SAV

operation

{2}

unit time (e.g., 5 min.)
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- Fleet-sizing stage: {1}

- SAV operation stages: 𝒯 = 2,… , 𝑇
Pre-booked requests On-demand requests



18System Specification: Travelers & SAVs

◼ Travelers send trip requests to SAV platforms.

- Each request includes origin, destination, departure time, and latest arrival time.

◼ Probability distributions are given, and the sample space is finite. 

◼ Requests are satisfied only by SAVs. 

◼ Travelers follow optimized routes indicated by the platform.

Travelers

◼ SAVs provide transportation services to travelers with ridesharing.

◼ The capacity of each SAV is pre-determined and homogenous.

◼ SAVs run on a road network under link and node capacity constraints.

- Links have traffic capacity and free-flow travel time.

- Nodes have traffic (storage) capacity.

◼ SAVs follow the optimized route indicated by the platform.

SAVs



Formulation



20System Specification: Time-expanded Network

A road network A time-expanded network

static flow

𝑥12 dynamic flow

𝑥12
𝑡

Flow constraints (examples)

Flow conservation laws

Link/node capacity constraints

Vehicle capacity constraints


𝑗
𝑥𝑗𝑖
𝑡−1 =

𝑗
𝑥𝑖𝑗
𝑡

𝑥𝑖𝑗
𝑡 ≤ 𝜇𝑖𝑗


𝑘,𝑠
(𝑦𝑠,𝑖𝑗

𝑘,𝑡 + ො𝑦𝑠,𝑖𝑗
𝑘,𝑡 ) ≤ 𝜌𝑥𝑖𝑗

𝑡

SAV flow

On-demand traveler flow

Vehicle capacity (given)

Traffic capacity

𝑥𝑖𝑗
𝑡

𝜇𝑖𝑗

ො𝑦𝑠,𝑖𝑗
𝑘,𝑡

𝜌

Pre-booked traveler flow𝑦𝑠,𝑖𝑗
𝑘,𝑡

Destination node index

Departure time index𝑘
𝑠



21Formulation: Notations

List of variable notations

SAV flow →

Traveler flow →

Traffic capacity →

The number

of SAVs →

Routing and ridesharing 

matching for SAVs and 

travelers

Infra. planning

Fleet sizing



22Formulation: Objective Function

Total infrastructure cost 

Fleet size

Total travel time of travelers 

Total distance traveled by SAVs

𝑇 = 

𝑡∈[2,…,𝑇]

𝑇𝑡

𝑇𝑡 = 

𝑖𝑗,𝑘,𝑠

𝑡𝑖𝑗(𝑦𝑠,𝑖𝑗
𝑘,𝑡 + ො𝑦𝑠,𝑖𝑗

𝑘,𝑡 )

𝐶 =

𝑖𝑗

𝑐𝑖𝑗 𝜇𝑖𝑗 − 𝜇𝑖𝑗
min

𝑁 =

𝑖

𝑥0𝑖
1

𝐷 = 

𝑡∈[2,…,𝑇]

𝐷𝑡

𝐷𝑡 = 

𝑖𝑗,𝑖≠𝑗,𝑘,𝑠

𝑑𝑖𝑗𝑥𝑖𝑗
𝑡

Decision variables

0

Dummy
node

𝑥03
1

Schematic diagram of the fleet size decision

𝑡 = 1

unit cost of 

expanding capacity

link travel distance

𝑐𝑖𝑗

𝑑𝑖𝑗

link free-flow travel time𝑡𝑖𝑗

waiting time for one time step𝑡𝑖𝑗

current capacity𝜇𝑖𝑗
min

Dependent on realizations 

of pre-booked requests

Dependent on realizations 

of on-demand requests



23Formulation: Objective Function

Total infrastructure cost 

Fleet size

Total travel time of travelers 

Total distance traveled by SAVs

𝑇 = 

𝑡∈[2,…,𝑇]

𝑇𝑡

𝑇𝑡 = 

𝑖𝑗,𝑘,𝑠

𝑡𝑖𝑗(𝑦𝑠,𝑖𝑗
𝑘,𝑡 + ො𝑦𝑠,𝑖𝑗

𝑘,𝑡 )

𝐶 =

𝑖𝑗

𝑐𝑖𝑗 𝜇𝑖𝑗 − 𝜇𝑖𝑗
min

𝑁 =

𝑖

𝑥0𝑖
1

𝐷 = 

𝑡∈[2,…,𝑇]

𝐷𝑡

𝐷𝑡 = 

𝑖𝑗,𝑖≠𝑗,𝑘,𝑠

𝑑𝑖𝑗𝑥𝑖𝑗
𝑡

Decision variables

0

Dummy
node

𝑥03
1

Schematic diagram of the fleet size decision

𝑡 = 1

unit cost of 

expanding capacity

link travel distance

𝑐𝑖𝑗

𝑑𝑖𝑗

link free-flow travel time𝑡𝑖𝑗

waiting time for one time step𝑡𝑖𝑗

current capacity𝜇𝑖𝑗
min

Dependent on realizations 

of pre-booked requests

Dependent on realizations 

of on-demand requests

Multi-objective formulation

min𝐶, 𝔼[𝑁], 𝔼[𝑇], 𝔼[𝐷]

s. t. constraints (e. g. , capacity constraints)

[MSSP-SAV]



Theoretical properties    

& solution methods



25Reformulation to Single-objective Optimization

𝐶 + 𝔼[𝑁]

𝔼
𝑇

+
𝔼
[𝐷
]

Polyhedral feasible domain

A set of
the pareto 
solutions

1 − 𝛼 /𝛼

min𝐶, 𝔼[𝑁], 𝔼[𝑇], 𝔼[𝐷]

s. t. linear constraints (e. g. , capacity constraints)

Multi-objective formulation

min𝛼(𝐶 + 𝔼 𝑁 ) + (1 − 𝛼)(𝔼 𝑇 + 𝔼[𝐷])

s. t. linear constraints (e. g. , capacity constraints)

Single-objective reformulation

[MSSP-SAV-WS]

◼ [MSSP-SAV] is solved when its Pareto frontier 

(a set of the Pareto efficient solutions) is derived. 

◼ A solution is Pareto-efficient* when any of the 

objective function values cannot be decreased 

without increasing the other(s).

[MSSP-SAV]

* The definition of a Pareto-efficient solution in 

stochastic programs can be seen in Dowson et al. (2022).

weighted parameter (0 ≤ 𝛼 ≤ 1)𝛼

𝛼 = 0: minimization of 𝔼 𝑇 + 𝔼 𝐷

𝛼 = 1: minimization of 𝐶 + 𝔼 𝑁



26Reformulation to Dynamic Programming Equations

Nested reformulation of  [MSSP-SAV-WS]

Infra. planning Fleet sizing SAV operations

Pre-booked requests On-demand requests

𝐹1(𝔃1, 𝝃[1])
(𝔃0, 𝝃[1])

𝒛𝒕: decision variable vector

𝝃[𝒕] = {𝝃𝟏, … , 𝝃𝒕}: stochastic demand process
𝝌𝒕(𝒛𝒕−𝟏, 𝝃𝒕 ): feasible region given 

past decisions 𝒛𝒕−𝟏 and realizations 𝝃𝒕

𝐹𝑡 = ቐ

𝛼𝐶 𝑖𝑓 𝑡 = 0
𝛼𝑁 𝑖𝑓 𝑡 = 1

1 − 𝛼 𝑇𝑡 + 𝐷𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∀𝑡.where

◼ SDDP can yield the optimal solution to MSSPs*

with guaranteed convergence under 
- Feasible region 𝝌𝑡 is a non-empty, unbounded, and convex, 

- The objective function 𝐹𝑡 is convex, 

- The stochastic process {𝝃1, … , 𝝃𝑇} is Markov, and

- The number of realizations of {𝝃1, … , 𝝃𝑇} is finite.

Stochastic Dual Dynamic Programming (SDDP)

* The sufficient condition of the global 

convergence can be seen in Guigues (2016) 

and Dowson (2020).



27Theoretical properties

Theorem 1. 

For all ො𝜌 > 𝜌 > 0 and for all Pareto-efficient solutions in [MSSP-SAV] with 𝜌 = 𝜌, 

there exists more weakly efficient solutions in [MSSP-SAV] with 𝜌 = ො𝜌.

Theorem 2*. 

For all ℱ1 ⊃ ෨ℱ1 ⊇ ∅, where ℱ𝑡 corresponds to the information available through time 𝑡, 
and for all Pareto-efficient solutions in [MSSP-SAV] with ℱ1 = ෨ℱ1, there exists more 

weakly efficient solutions in [MSSP-SAV] with ℱ1 = ℱ1.

* We consider a probability space (Ω,ℱ, 𝑃), 
and we let ∅, Ω = ℱ0 ⊂ ℱ1 ⊂ ⋯ ⊂ ℱ𝑇 = ℱ be 

sub sigma-algebras of ℱ that form a filtration. 

◼ 𝜌 = 1 represents peer-to-peer matching, whereas 𝜌 > 1 represents ride-share matching.

◼ Ride-sharing can reduce strategic and operational costs simultaneously if SAV systems are 

properly designed and operated.

◼ ℱ1 = ℱ0 represents all trip requests are on-demand, whereas ℱ1 = ℱ represents the opposite (i.e., 

pre-booked).

◼ Pre-booking options can reduce strategic and operational costs simultaneously if SAV systems are 

properly designed and operated.



Numerical experiments



29Numerical Experiments: Settings

Manhattan 

Neighborhood 

Tabulation Areas

Travelers’ demand (generated from the NYC taxi data)

Generation demand Attraction demand

Land value 
(http://www.radicalcartography.ne

t/index.html?manhattan-value)

Network

Time-dependent Travelers’ 
demand (generated from 

the NYC taxi data)

◼ Numerical experiments with actual 

travel data from New York City (NYC) 

were conducted.

◼ The NYC taxi data from 8:00 to 9:00 on 

2019-04-01 (Monday) in Midtown 

Manhattan was inputted as expected 

values of travelers’ demand.

◼ The expected total travelers’ demand 

was 4,320.

◼ The proportion of pre-booked 

requests to passenger demand, called 

reserved rate 𝑝, was given as follows: 

𝑝 = 0.0, 0.25, 0.5, 0.75, and 1.0.

◼ The network parameters (e.g., travel 

time) were set according to Seo & 

Asakura (2022). 



30Numerical Experiments: Settings

Time-dependent Travelers’ demand 

(generated from the NYC taxi data)

Input Travelers’ demand scenarios

(example: reserved rate 𝑝 = 0.5)

◼ Travelers’ demand was aggregated with a 30 min departure time aggregation width.

◼ Travelers’ demand scenarios was sampled from multivariate uniform distributions.  

◼ We considered 50 samples for pre-booked requests, 50 samples for on-demand 

requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00). 

The total number of scenarios was 503=125,000.

8:00-8:30 8:30-9:00

50 samples

50 samples 50 samples



31Numerical Experiments: Settings

Time-dependent Travelers’ demand 

(generated from the NYC taxi data)

Input Travelers’ demand scenarios

(example: reserved rate 𝑝 = 0.0)

◼ Travelers’ demand was aggregated with a 30 min departure time aggregation width.

◼ Travelers’ demand scenarios was sampled from multivariate uniform distributions.  

◼ We considered 50 samples for pre-booked requests, 50 samples for on-demand 

requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00). 

The total number of scenarios was 503=125,000.

8:00-8:30 8:30-9:00

50 samples 50 samples



32Numerical Experiments: Settings

Time-dependent Travelers’ demand 

(generated from the NYC taxi data)

Input Travelers’ demand scenarios

(example: reserved rate 𝑝 = 0.25)

◼ Travelers’ demand was aggregated with a 30 min departure time aggregation width.

◼ Travelers’ demand scenarios was sampled from multivariate uniform distributions.  

◼ We considered 50 samples for pre-booked requests, 50 samples for on-demand 

requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00). 

The total number of scenarios was 503=125,000.

8:00-8:30 8:30-9:00
50 samples

50 samples
50 samples



33Numerical Experiments: Settings

Time-dependent Travelers’ demand 

(generated from the NYC taxi data)

Input Travelers’ demand scenarios

(example: reserved rate 𝑝 = 0.75)

◼ Travelers’ demand was aggregated with a 30 min departure time aggregation width.

◼ Travelers’ demand scenarios was sampled from multivariate uniform distributions.  

◼ We considered 50 samples for pre-booked requests, 50 samples for on-demand 

requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00). 

The total number of scenarios was 503=125,000.

8:00-8:30 8:30-9:00

50 samples

50 samples 50 samples



34Numerical Experiments: Settings

Time-dependent Travelers’ demand 

(generated from the NYC taxi data)

Input Travelers’ demand scenarios

(example: reserved rate 𝑝 = 1.0)

◼ Travelers’ demand was aggregated with a 30 min departure time aggregation width.

◼ Travelers’ demand scenarios was sampled from multivariate uniform distributions.  

◼ We considered 50 samples for pre-booked requests, 50 samples for on-demand 

requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00). 

The total number of scenarios was 503=125,000.

8:00-8:30 8:30-9:00

50 samples



35Numerical Experiments: Convergence

𝒑 = 𝟎. 𝟎

Lower bounds

𝒑 = 𝟎. 𝟐𝟓 𝒑 = 𝟎. 𝟓𝟎 𝒑 = 𝟎. 𝟕𝟓 𝒑 = 𝟏. 𝟎𝒑 = 𝟎. 𝟎

Upper bounds

𝒑 = 𝟎. 𝟐𝟓 𝒑 = 𝟎. 𝟓𝟎 𝒑 = 𝟎. 𝟕𝟓 𝒑 = 𝟏. 𝟎

𝜌 = 3, 𝛼 = 0.5 𝜌 = 4, 𝛼 = 0.5

◼ The optimal solution can be obtained with a sufficient iterations.

◼ Note that to obtain the optimal solution in some cases (e.g., 𝑝 = 0.75), it may take a few 

days, although the solutions in the cases of 𝑝 = 0.0 and 1.0 converge within 24 hours.



36Numerical Experiments: Pareto solutions

𝜶 = 𝟏. 𝟎

𝜶 = 𝟎. 𝟕𝟓

𝜶 = 𝟎. 𝟎

𝑝 = 0.25 𝑝 = 0.50 𝑝 = 0.75

𝝆 = 𝟑

𝝆 = 𝟒

Expected value
Scenarios

◼ By comparing 𝜌 = 3 to 𝜌 = 4, the Pareto-improvement by ridesharing, which is 

theoretically guaranteed by Theorem 1, was evident.

◼ In the cases of priority on strategic costs (𝛼 = 1.0), investments in infrastructures and 

SAV fleets are reduced, resulting in a greater variance in operating costs.



37Numerical Experiments: Infrastructure pattern

𝛼 = 0.0

𝜌 = 3

𝜌 = 4

𝛼 = 0.5 𝛼 = 1.0

Priority on operation costs Priority on strategic costs



38Numerical Experiments: Flow pattern

𝛼 = 0.0 𝛼 = 0.5 𝛼 = 1.0

SAV

Traveler

Priority on operation costs Priority on strategic costs



39Numerical Experiments: Flow pattern

𝛼 = 0.0 𝛼 = 0.5 𝛼 = 1.0

SAV

Traveler

Priority on operation costs Priority on strategic costs



40Numerical Experiments: Pareto solutions

𝒑 = 𝟎. 𝟐𝟓

𝒑 = 𝟏. 𝟎

𝜶 = 𝟎. 𝟎

𝐶 + 𝑁 𝑇 + 𝐷

𝐶 𝑇𝑁 𝐷

◼ A slight Pareto improvement 

by pre-booking options, 

theoretically guaranteed by 

Theorem 2, is suggested.



41Numerical Experiments: Pareto solutions

𝒑 = 𝟎. 𝟐𝟓

𝒑 = 𝟏. 𝟎

𝜶 = 𝟎. 𝟎

𝐶 + 𝑁 𝑇 + 𝐷

𝐶 𝑇𝑁 𝐷

◼ A slight Pareto improvement 

by pre-booking options, 

theoretically guaranteed by 

Theorem 2, is suggested.

𝜶 = 𝟏. 𝟎

𝐶 𝑁



42Numerical Experiments: Pre-booking incentives

Incentive for 

pre-booked requests

Incentive for 

on-demand requests

with

dedicated SAVs

without 

dedicated SAVs

◼ A system design that forces travelers to make 

reservations will lead to a decrease in their utility.

◼ To facilitate travelers to pre-book their trips, we 

introduce dedicated SAVs which provide only pre-

booked travelers with pick up and drop off services.

◼ In the SAV system with dedicated SAVs, average 

travel time of pre-booked travelers becomes lower 

than on-demand counterparts.

The introduction of dedicated 

vehicles is a promising incentive 

strategy to encourage travelers 

to pre-book their trips.

How to realize pre-booking SAV system?
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◼ This study formulates an SAV system design planning and operations 

under demand uncertainty as a multi-stage stochastic linear 

problem.

◼ The linearity provides us with the following advantages:
 SDDP can yield the optimal solution with guaranteed convergence.

 Applying the weighted sum method, we can obtain Pareto solutions.

◼ Future work focuses on ML-based SDDP to solve large-scale problems.
 ML-based SDDP learns an outer approximation of the value function instead of 

learning the optimal policy.

 Leveraging the structure of the value function (convex piecewise linear), 

- The solution is guaranteed to be optimal with sufficient iterations, and

- The computational efficiency is better than simply learning the optimal policy.
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46Appendix: Constraints

SAV flow conservation

Traveler flow conservation

Cumulative departures

Cumulative arrivals

Demand attraction constraints

Link and node capacity constraints

Vehicle capacity constraints

* To avoid the complexity of notation, let 𝑡𝑖𝑗 = 1.

* Note that accent marks are omitted because 

the constraints related to pre-booked and on-

demand travelers are similar. 
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