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Background: Shared Autonomous Vehicle Systems s o

What are Shared Autonomous Vehicle (SAV) Systems? = A AV ..
) T platformy~7yjp ™
B A large number of AVs are shared by the society. Dlspatchlng /¥ request

B They provide the optimized route and ridesharing matching.  / \ .
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What could the SAV systems contribute to transportation planning?

B A SAV system can provide travelers with time-efficient and flexible journeys.
u planners with cost-efficient infra. design
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Background: SAV Infrastructure Design 5 s

Requirements for SAV infrastructure design planning
Incorporating SAV operations

SAV operations Strategic SAV planning

B SAV dispatching and routing B Road network design
B \ehicle-traveler assignment W Parking location
B Ride-sharing matching B SAV fleet sizing

Trade-off relations operational costs 4

B Immediate response to trip requests (e.g. traveler’s
needs sufficient fleet size of SAVs. travel time)
B Ensuring the feasibility of smooth SAV
operation requires significant
investments in infrastructure resources.

A set of
the pareto solutions

>

strategic costs

mP Multi-objective optimization framework (e.g., infrastructure cost)




Background: SAV Infrastructure Design >

Requirements for SAV infrastructure design planning
Incorporating demand uncertainties cost

Trip request
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B Demand uncertainty can emphasize the importance of

capturing the trade-off relations. /\/\\ /\/
B Future trip requests can only be predicted stochastically. .,
B Trip requests are time-varying. _j \/

mP (Multi-stage) stochastic programming
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Promising Management Strategies for Uncertain Demand 7 :

On-demand and pre-booked trip requests

<On-demand requests> <Pre-booked requests>

B Travelers send their trip requests B Travelers send their trip requests
(includirég origin and destination) (including origin, destination, )
at their desired departure time. :

Decisions
\ UPINN A
Fix
i

How much V:\
will be needed?

How should v
be operated?

How many vy

will be needed?

X . o’°¢ . o -
& [Infra. planning stage] & [Fleet-sizing stage] & [Operation stage]



Promising Management Strategies for Uncertain Demand 8 s

On-demand and pre-booked trip requests

<On-demand requests> <Pre-booked requests>
B Travelers send their trip requests B Travelers send their trip requests
(including origin and destination) (including origin, destination, desired departure time)
at their desired departure time. in advance.
- Decisions Decisions |
A o~
A | e !
i ] o s

How should v
be operated?

How much V:\
will be needed?

How many vy

will be needed?

e’ ¢ . e’°¢ . - N .
& [Infra. planning stage] & [Fleet-sizing stage] & [Operation stage]

Infrastructure design incorporating operations
with on-demand and pre-booked requests




“Methodological Challenges 9 :

Previous studies on stochastic & dynamic optimization
e.g., Reinforcement Learning, Approximate Dynamic Programming, or Customized heuristic algorithm

<Strong points> <Weak points>
B Address large-scale optimization problems. | B Not generally have optimality guarantees.
B Finds approximate solutions in real time. B Hard to find (general) policy implications.

Strategic-level and operational-level decision-making

» Real-time (operational-level) decision-making requires approaches to find good
solutions quickly. Finding better solutions is all that is required.

» Strategic-level decision making (e.g., infrastructure planning) requires careful

consideration, i.e, finding elegant solutions.
(e.g., global optimality, explainability, and generality )

- Infrastructure investment is expensive.
- Infrastructure construction is irreversible. Flexible changes are difficult.

- Accurate estimation of all model parameters is impossible.



Research Objective 10 0

Research Objective

B For infrastructure design incorporating SAV operations
with uncertain on-demand and pre-booked requests,
O we develop an optimization framework with optimality guarantees, and
O we derive theoretical properties of the problem.

Contributions

B We formulate multi-stage stochastic linear problems (MSSLPs).
O They can be solved by multi-stage Benders decomposition with guaranteed convergence.
O Multi-objective optimization can be transformed into weighted sum single-objective one.

B We derive theoretical properties leveraging the linearity of the problem.
O Ride-sharing does not increase expected strategic and operational costs, simultaneously.
O Pre-booking does not increase expected strategic and operational costs, simultaneously.

The introduction of ride-sharing or pre-booking always leads to a Pareto-efficient SAV system.



Problem Statement



- System Specification 12 o

Network
B Directed graph (e.g., Road network).

Planning horizon
B Discrete and finite.

Plannin ,

horizon

Platform

B Centralized (single) decision-maker,
B Decides infra. design, fleet size, and operation.

SAVS

B Travel on the road network in an optimized manner.

Travelers
B Travel only by SAVs




System Specification: Platform 13 g
B (Continuous) decision variables

- Node and link capacities « Infrastructure planning

- The number of SAVs < Fleet sizing

- SAV and traveler dynamic flows < Routing and ride-sharing matching
B Objective functions: multi-objective optimization problem

- Total travel time of travelers T operational costs ] ; -

- Total distance traveled by SAVs D (T + D) areto solutions

- The number of SAVs N

- Total infrastructure costs C N
B Demand information strategic costs (C + N)

- Probability distributions are available when infrastructure planning,
- Pre-booked trip requests are available when fleet sizing, and
- On-demand trip requests are available when SAV routing and matching.



~ System Specification: Planning Horizon

B Planning horizon: 7, = {0, ..., T}
- Infrastructure planning stage: {0}
- Fleet-sizing stage: {1}
- SAV operation stages: T = {2, ..., T}

Pre-booked requests On-demand requests

0} ) 2} 3} U}

infra. Fleet- SAV R SAV SAV
planning sizing operation operation operation

pre-bookec on-demana on-demana
request request request

unit time (e.g., 5 min.)
SAV operation stages (e.g., 1 hour)

|
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planning horizon



~ System Specification: Planning Horizon

B Planning horizon: 7, = {0, ..., T}
- Infrastructure planning stage: {0}
- Fleet-sizing stage: {1} i
- SAV operation stages: T = {2, ..., T}

Pre-booked requests On-demand requests

0}
infra.
. |
planning . |
| : |
| I |
| I |
| I |
| I |
| I |
| I |
: 1< >:
| SAV operation stages (e.g., 1 hour) .

planning horizon



~ System Specification: Planning Horizon

B Planning horizon: 7, = {0, ..., T}
- Infrastructure planning stage: {0}
- Fleet-sizing stage: {1}
- SAV operation stages: T = {2, ..., T}

Pre-booked requests On-demand requests

0} )
infra. Fleet-
. .. I
planning siZIng | '
| : |
| pre-bookeo ! |
! request ; !
| I |
| I |
| [ I
: 1< >:
| SAV operation stages (e.g., 1 hour) .

planning horizon



~ System Specification: Planning Horizon

B Planning horizon: 7, = {0, ..., T}

- SAV operation stages: T = {2, ..., T}

Pre-booked requests On-demand requests

{0} {1} {2} {3} {T}
infra. Fleet- SAV R SAV SAV
planning sizing : operation |, operation operation
. : : .
; pre-bookec ! | |
! request ; ; !
l < 5! l

1~ r e
: 1 unit time (e.g., 5 min.) :
1< >
: SAV operation stages (e.g., 1 hour) :

planning horizon



~ System Specification: Travelers & SAVs 18 :

Travelers

B Travelers send trip requests to SAV platforms.
- Each request includes origin, destination, departure time, and latest arrival time.

B Probability distributions are given, and the sample space is finite.
B Requests are satisfied only by SAVs.
B Travelers follow optimized routes indicated by the platform.

SAVS

B SAVs provide transportation services to travelers with ridesharing.
B The capacity of each SAV is pre-determined and homogenous.
B SAVs run on a road network under link and node capacity constraints.

- Links have traffic capacity and free-flow travel time.
- Nodes have traffic (storage) capacity.

B SAVs follow the optimized route indicated by the platform.




Formulation
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~ System Specification: Time-expanded Network 20

time step t + 2
: move

static flow

A road network A time-expanded network

. t
Flow constraints (examples) Xij  SAV flow
) - g kt
1 . yg;{,ig Pre-booked traveler flow
Flow conservation laws zj Xji = 2}. Xij Ysi; On-demand traveler flow
k  Departure time index
Link/node capacity constraints X < Wi s Destination node index
Hij  Traffic capacity
Vehicle capacity constraints z (yS TR u) = qu P Vehicle capacity (given)




Formulation: Notations 21 5

: Routing and ridesharing

List of variable notations

matching for SAVs-and
travelers notation  definition
SAV flow |- :rfj 7 flow of SAVs that start traveling link ij € £ on time step t € T
Traveler ﬂOW - yffj, ﬁf’fj flow of pre-booked/on-demand travelers who start traveling link i7 € £ on time step ¢ € T".
destination node s € §, and departure time step k € K
ARt ﬁff Cumulative number of pre-booked /on-demand traveler departures on time step t € T*,
with origin node r € R, destination node s € §, and departure time step £ €
. Dkt f)fjt Cumulative number of pre-booked/on-demand traveler arrivals on time step ¢t € T*,
Infra. plannlng with destination node s € 8§, and departure time step k € K
Traffic ca paC|ty -y traffic capacity of link ij € L
Tt total travel time of travelers on time step ¢ € 7 (including waiting time on nodes)
The number Dt total distance traveled by SAVs on time step t € T
of SAVs — N total number of SAVs
C total cost of infrastructure construction

Fleet sizing




Formulation: Objective Function Reelenlalidbles

Total infrastructure cost C= Z cij(uig — 1ij™) =
ORI
: D AN
Fleet size N=) xj node” e
- 1
l
TOtaI travel tlme Of travelers z Tt Schematic diagram of the fleet size decision
tel2..1] Dependent on realizations
Tt = Z tiy (Ve + 9ers) of pre-booked requests
ij,k,s
Total distance traveled by SAVs Z Dt
telz,.T] Dependent on realizations
z di,-xfj of on-demand requests
iji%],k,s
I:?ri F_,:e}t_ Ei}v L 22, Cij  unit cost of tij link free-flow travel time
oy % — e e expanding capacity tij waiting time for one time step
pre-booked on-demanda on-demand . .
Wi current capacity d;j link travel distance




Formulation: Objective Function

Decision variables

O
. mln t=1 X
Total infrastructure cost C = Z cij(taj = 1 ‘f//
(0
Fleet size N=) x} D;:gg”;y C;
1
TOtaI travel tlme Of travelerS z Tt Schematic diagram of the fleet size decision
tel2.T] Dependent on realizations
Tt = Z tiy (Ve + 9ers) of pre-booked requests
ij,k,s
Total distance traveled by SAVs Z Dt
velz,.. Tl Dependent on realizations
z dijx;; of on-demand requests
Multi-objective formulation SEETEE
[MSSP-SAV] Cij  unit cost of tij link free-flow travel time
min C, E[N], E[T], E[D] expanding capacity t;j waiting time for one time step
s.t. constraints (e.g., capacity constraints) Mij " current capacity dij link travel distance




Theoretical properties
& solution methods



Reformulation to Single-objective Optimization 25 g

-

A Polyhedral feasible domain

Multi-objective formulation
[MSSP-SAV] _
Q A set of
min C, E[N],E[T], E[D] = the pareto
_ _ _ _ + solutions
s.t. linear constraints (e. g., capacity constraints) = » /
B [MSSP-SAV] is solved when its Pareto frontier =S \‘
(a set of the Pareto efficient solutions) is derived. <<
B A solution is Pareto-efficient* when any of the S| —a)/a
objective function values cannot be decreased >
without increasing the other(s). C + E[N]
Sinqle_oblectlve reformulation * The definition of a Pareto-efficient solution in

[MSSP-SAV-WS]

stochastic programs can be seen in Dowson et al. (2022).

mina(C + E[N]) + (1 — a)(E|[T] + E[D])

s.t. linear constraints (e. g., capacity constraints)

a weighted parameter (0 < a < 1)
a = 0: minimization of E[T] + E[D]
a = 1: minimization of C + E[N]




Reformulation to Dynamic Programming Equations 26 :

z*': decision variable vector
Eltl = (&1, ..., &: stochastic demand process

Nested reformulation of [MSSP-SAV-WS] X' (271, &"): feasible region given

past decisions zt~1 and realizations &

On-demand requests

min F°(z°) +E°| min F' "¢+ E! min F2(22 ¢ +E*|...+E"! min FT(z", ¢! )]]” ;
20 0 21e X1 (50, gl ZQEXZ(zlﬁ) — zTEA”T(zT—l,ﬂ) —
. - . aC ift=20
Infra. planning Fleet sizing SAV operations where Ft =1 aN ift=1 vt
(1 — a)(Tt + DY) otherwise

Stochastic Dual Dynamic Programming (SDDP)

B SDDP can yield the optimal solution to MSSPs*
with guaranteed convergence under
- Feasible region ! is a non-empty, unbounded, and convex,
) . . -
The objective function F* is convex, * The sufficient condition of the global

- The stochastic process {&3, ..., €T} is Markov, and convergence can be seen in Guigues (2016)
- The number of realizations of {&2, ..., &'} is finite. and Dowson (2020).




* We consider a probability space (Q,F, P), ’

TheorEtlcal prOperties andwe let{¢,0} =F°cFlc...cFT =F be 27 ’

sub sigma-algebras of F that form a filtration.

Theorem 1.

For all p > p > 0 and for all Pareto-efficient solutions in [MSSP-SAV] with p = p,
there exists more weakly efficient solutions in [MSSP-SAV] with p = p.

B p =1 represents peer-to-peer matching, whereas p > 1 represents ride-share matching.

B Ride-sharing can reduce strategic and operational costs simultaneously if SAV systems are
properly designed and operated.

Theorem 2*.

Forall F1 o F1 2 @, where Ft corresponds to the information available through time ¢,
and for all Pareto-efficient solutions in [MSSP-SAV] with F1 = F1, there exists more
weakly efficient solutions in [MSSP-SAV] with F1 = F1,

B F! = FO represents all trip requests are on-demand, whereas F! = F represents the opposite (i.e.,
pre-booked).

B Pre-booking options can reduce strategic and operational costs simultaneously if SAV systems are
properly designed and operated.



Numerical experiments



Numerical Experiments: Settings 29 :

Numerical experiments with actual LY .

travel data from New York City (NYC) RSy ’ T
were conducted. £ : A : Y.
The NYC taxi data from 8:00 to 9:00 on el W /5
2019-04-01 (Monday) in Midtown L7 o o N
Manhattan was inputted as expected /SN Generation demand Attraction demand

) Travelers’ demand (generated from the NYC taxi data)
values of travelers’ demand.

The expected total travelers’ demand

was 4,320. = m
The proportion of pre-booked Manhattan | /\/\
requests to passenger demand, called Neighborhood .
) Tabulation Areas
reserved rate p, was given as follows: &

p = 0.0,0.25,0.5,0.75, and 1.0.

Time-dependent Travelers'’ Land value
The network parameters (e~g°1 travel demand (generated from  (http://www.radicalcartography.ne
t|me) were set according tO SeO & the NYC taxi data) t/index.html?manhattan-value)

Asakura (2022). Network



Numerical Experiments: Settings 30 :

B Travelers’ demand was aggregated with a 30 min departure time aggregation width.
B Travelers’ demand scenarios was sampled from multivariate uniform distributions.

B We considered 50 samples for pre-booked requests, 50 samples for on-demand
requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00).
The total number of scenarios was 503=125,000.

420 :

/ a'd ™ 200 |3
N &50 samples

380 2
)
E = 1800
El =2
3 £
5 3601 2
= o
<
£ £
%’ N § o
= o
= -
z3 g
El =
=t =

N
50 samples?:k 50 samples H

8:30-

1000

___A
AM 8:00 AM §:05 AM 8:10 AM 8:15 AM 8:20 AM 8 Ziﬁmi\M IE‘% AM 8:35 AM 8:40 AM 8:45 AM 8:50 AM 8:55 (AM 8%5;};{){#?;‘3?‘:0—000) (A:Ingn(ld(lt;q;:;l Oflii:rgnzdot;%:;l
© Travel demand type
Time-dependent Travelers’ demand Input Travelers’ demand scenarios

(generated from the NYC taxi data) (example: reserved rate p = 0.5)



Numerical Experiments: Settings 31 :

B Travelers’ demand was aggregated with a 30 min departure time aggregation width.
B Travelers’ demand scenarios was sampled from multivariate uniform distributions.

B We considered 50 samples for pre-booked requests, 50 samples for on-demand
requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00).

The total number of scenarios was 503=125,000.

420 T

( Y ™ l; 0 | r—I
sambples
N 50 samples Salpres—
4007 2000 - -
380 = /
;;) , -Tg 1000
A |
AM 8:00 AM §:05 AM 8:10 AM 8:15 AM 8:20 AM 8 Zinmi\M 8:30 AM 8:35 AM 8:40 AM 8:45 AM 8:50 AM 8:55 (AM 82:3:;‘3‘3‘2{;‘:\2”;‘;0_0:00] OE‘[;"{:I“;“OC'OEQ;‘(T]“ 0["::1“;“1%;‘15'[‘;]\‘
© Travel demand type
Time-dependent Travelers’ demand Input Travelers’ demand scenarios

(generated from the NYC taxi data) (example: reserved rate p = 0.0)



Numerical Experiments: Settings 32 :

B Travelers’ demand was aggregated with a 30 min departure time aggregation width.

B Travelers’ demand scenarios was sampled from multivariate uniform distributions.

B We considered 50 samples for pre-booked requests, 50 samples for on-demand
requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00).
The total number of scenarios was 503=125,000.

420 :

( Y i 1700 {

400 4
/ 1600

380 ;
o e

o 500
E g

< s

- -

) 360 4 'g

£ £ 1400
o LT3

= =

b [T}

P

K E

5 = 1300
E E;

i =

8:30-

A\

AM 8:00 AM §:05 AM 8:10 AM 8:15 AM 8:20 A.\JI.S Ziﬁmi\M IE‘% AM 8:35 AM 8:40 AM 8:45 AM 8:50 AM 8:55 (AM 8:[;:g:g:{r“z)kf&fi:\:![u;i;()-‘):ﬂ(j] O?,;'i;“;nodoi;q;ﬁ;t OF:;ngig%tsqél;;l
© Travel demand type
Time-dependent Travelers’ demand Input Travelers’ demand scenarios

(generated from the NYC taxi data) (example: reserved rate p = 0.25)



Numerical Experiments: Settings 33 :

B Travelers’ demand was aggregated with a 30 min departure time aggregation width.
B Travelers’ demand scenarios was sampled from multivariate uniform distributions.

B We considered 50 samples for pre-booked requests, 50 samples for on-demand
requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00).

The total number of scenarios was 503=125,000.

420 .
( Y. ™) :
N ii 50 samples
400 4 3000
380 i / \
2500
E /W / / E
-‘Eﬂ 1 V E‘ 2000
500 R n c g m n I
AM 8:00 AM §:05 AM 8:10 AM 8:15 AM 8:20 AM 8 Zil‘im;\M IE‘% AM 8:35 AM 8:40 AM 8:45 AM s:ﬁs:ss (AM 82:3:;’53‘;)“2{;‘:\2“;‘;0_0:00] O?:;'i;“;nf)df)i;q;j&;t 0["::;“;’;%;‘16‘;]“
Travel demand type
Time-dependent Travelers’ demand Input Travelers’ demand scenarios

(generated from the NYC taxi data) (example: reserved rate p = 0.75)



Numerical Experiments: Settings 34 :

B Travelers’ demand was aggregated with a 30 min departure time aggregation width.

B Travelers’ demand scenarios was sampled from multivariate uniform distributions.

B We considered 50 samples for pre-booked requests, 50 samples for on-demand
requests (AM 8:00-8:30), and 50 samples for on-demand requests (AM 8:30-9:00).
The total number of scenarios was 503=125,000.

420 T

' | T a ' i} 50 samples

400 4 /

380 :
L 3

E] g

) 360 4 'g

= -4

-

- T 2000
e E

e =

8:30-

1000
01 ; . \ u

: ___A
AM 8:00 AM §:05 AM 8:10 AM 8:15 AM 8:20 AM 8 Zinmi\M 8:30 AM 8:35 AM 8:40 AM 8:45 AM 8:50 AM 8:55 (AM 82:3:;’53‘;)“?;‘:\2![”;5;0_0:00] ()E‘I;'i;“;“[;ioi;‘l;‘g;t 0["::;“;’;%;‘16‘;]\‘
© Travel demand type
Time-dependent Travelers’ demand Input Travelers’ demand scenarios

(generated from the NYC taxi data) (example: reserved rate p = 1.0)



Numerical Experiments: Convergence

Upper and lower bounds

10 10°
k p=3a=05 \ p=4a=0.5
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Number of iterations Number of iterations
Upper bounds

8

p=00 p=025p=0.50p=0.75 p=1.0

Lower bounds

p=00 p=025p=0.50p=0.75 p=1.0

B The optimal solution can be obtained with a sufficient iterations.

B Note that to obtain the optimal solution in some cases (e.g., p = 0.75), it may take a few

days, although the solutions in the cases of p = 0.0 and 1.0 converge within 24 hours.

25000



Numerical Experiments: Pareto solutions

Total travel time T + Total travel distance D
=

a=1.0

p=025]

400000 \ \
350000

).75

Total travel time T

L~
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200000 -
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Total infrastructure cost C +
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Total infrastructure cost C + Fleet size N

B By comparing p = 3 to p = 4, the Pareto-improvement by ridesharing, which is
theoretically guaranteed by Theorem 1, was evident.

B |n the cases of priority on strategic costs (o = 1.0), investments in infrastructures and
SAV fleets are reduced, resulting in a greater variance in operating costs.

80000



Numerical Experiments: Infrastructure pattern 37 s

Priority on operation costs <:> Priority on strategic costs




Numerical Experiments: Flow pattern

Traveler

Priority on operation costs <:> Priority on strategic costs



Numerical Experiments: Flow pattern

Traveler

Priority on operation costs <:> Priority on strategic costs



Numerical Experiments:
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B A slight Pareto improvement
by pre-booking options,
theoretically guaranteed by
Theorem 2, is suggested.
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Numerical Experiments:
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Numerical Experiments: Pre-booking incentives 42 :

ncentive for How to realize pre-booking SAV system?
-booked t :
RIEPOOREATEAN=2 B A system design that forces travelers to make

reservations will lead to a decrease in their utility.

| /ith
- dedicated SAVs, B To facilitate travelers to pre-book their trips, we
pvd introduce dedicated SAVs which provide only pre-
£ booked travelers with pick up and drop off services.

ler

B |n the SAV system with dedicated SAVs, average
travel time of pre-booked travelers becomes lower
than on-demand counterparts.

Total Travel Time per ondemand trave
4} w wn

Rt / N » The introduction of dedicated
| / vehicles is a promising incentive
yvéithout_ : Incentive for strategy to encourage travelers
dedlciated:SAVS on-demand requests to pre-book their trips.
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Summary



Summary & Future works 44 :

B This study formulates an SAV system design planning and operations

under demand uncertainty as a multi-stage stochastic linear
problem.

B The linearity provides us with the following advantages:
O SDDP can yield the optimal solution with guaranteed convergence.
O Applying the weighted sum method, we can obtain Pareto solutions.

B Future work focuses on ML-based SDDP to solve large-scale problems.
O ML-based SDDP learns an outer approximation of the value function instead of
learning the optimal policy.
O Leveraging the structure of the value function (convex piecewise linear),
- The solution is guaranteed to be optimal with sufficient iterations, and
- The computational efficiency is better than simply learning the optimal policy.
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Append IX ConStra | ntS * To avoid the complexity of notation, let ¢;; = 1. 46 :

* Note that accent marks are omitted because

the constraints related to pre-booked and on-
demand travelers are similar.

Flow Conservation Constraints

SAV flow conservation Yol a2 el = al +6(T t)a
JEO; JET
. kt—1 N ot kit s oo kit
Traveler flow conservation Yy 60Dk AR =yl 4+ 6(s. i)y
j"EC’Ji jEI«!'

Demand Constraints

Cumulative departures A = AT 4 M
Cumulative arrivals D' = DEL 4yt
Demand attraction constraints D¥t =" A

rcik

Capacity Constraints

Link and node capacity constraints z;; < j;;

Vehicle capacity constraints > e < prl
k.s
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