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 A B S T R A C T

This paper introduces a novel approach for managing autonomous vehicles at signal-free 
intersections through a Communication-free Distributed Control Algorithm (CfDCA). Unlike central-
ized systems or communication-based decentralized methods, CfDCA relies solely on onboard 
sensors and in-vehicle decision-making to ensure efficient and collision-free navigation. The 
algorithm formulates intersection management as a distributed optimization problem with 
demonstrated safety logics and robustness to measurement errors. The algorithm combines a 
dynamic resource acquisition graph with a refined priority function and an adaptive tolerance 
mechanism to ensure efficient performance under varying traffic conditions. A stochastic tie-
breaking mechanism is proposed to handle rare cases of identical priorities, while deadlock 
prevention is guaranteed through strict priority ordering. Simulation experiments demonstrate 
that CfDCA reduces average delay and queue length and is able to achieve throughput higher 
than actuated signalized intersections and outperforms a first-come-first-served baseline in 
delay reduction. Additionally, the algorithm’s distributed design offers scalability and eliminates 
dependency on communication infrastructure.

1. Introduction

1.1. Background

Traditional urban traffic control systems, including traffic signals, roundabouts, and stop signs, have long been the cornerstone 
of intersection management. However, the emergence of Autonomous Vehicles (AVs) has prompted a reassessment of these 
conventional methods. AVs, equipped with advanced sensing and control capabilities, can achieve higher precision and reliability 
compared to human-driven vehicles. By following predictable trajectories and responding rapidly to dynamic traffic conditions, AVs 
present significant opportunities to reduce delays and improve the overall throughput of intersection operations (Mahmassani, 2016; 
Di and Shi, 2021).

Autonomous intersection management improves traffic flow and safety by coordinating AVs without traffic signals. Two main 
approaches exist: one uses intersection managers to assign space–time slots for vehicles (Levin et al., 2016), while the other lets 
vehicles decide cooperatively using real-time V2V and V2I data (Rios-Torres and Malikopoulos, 2016). The former depends on fixed 
infrastructure and faces risks like communication delays and single points of failure. The latter, by leveraging AV autonomy, reduces 
external control, pointing towards fully self-managed intersections.
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As deployment approaches 100% AVs, it becomes feasible to implement a distributed system characterized by fully decentralized 
and independent decision-making processes for each AV. This decentralized approach eliminates reliance on centralized infras-
tructure and mitigates communication dependencies, empowering individual AVs to navigate intersections safely and efficiently. 
To realize this potential, it is essential to thoroughly understand the operational characteristics of intersections with AV users, 
particularly in terms of throughput and delay.

To this end, it is essential to understand the operational limits of intersections, particularly the interaction between conflicting 
movements and overall capacity. The maximum capacity of an intersection with two conflicting movements occurs when vehicles 
are present only in one movement, allowing crossing at maximum flow with no friction or lost time. However, as inflow from a 
conflicting movement increases, the capacity decreases. This principle extends to multi-legged and multi-lane intersections, where 
the highest throughput is achieved by maximizing the flow of the largest set of non-conflicting movements.

These dynamics underscore the critical role of conflict zones in determining intersection performance. This is especially important 
under high-inflow scenarios, where optimizing the sequence and timing of vehicle crossings is key to maintaining throughput while 
avoiding congestion.

Effective distributed conflict resolution at conflict zones must adapt to varying inflow levels, especially in intersections exclusively 
serving AVs. This distributed conflict resolution approach is a central component of our method, Communication-free Distributed 
Control Algorithm (CfDCA), designed to adapt to varying inflow levels. In CfDCA, each AV independently manages its interactions 
with conflict zones based on local sensing information. When inflow is below capacity, the focus shifts to minimizing delay by 
resolving conflicts efficiently, whereas at higher inflow levels, the goal becomes maximizing throughput and balancing delays across 
movements. This understanding forms the foundation for developing the CfDCA.

1.2. Related works

1.2.1. Centralized intersection management approaches
Research in intersection management for AVs has emphasized reservation-based protocols and the optimization of AV trajecto-

ries (Dresner and Stone, 2008). These approaches typically rely on central controllers that gather extensive data from vehicles to 
prioritize and optimize their movements, aiming to minimize intersection delays. For example, Dresner and Stone (2008) proposed 
a reservation system in which vehicle reservations are processed, and permit distribution is prioritized based on policies such as 
first-come-first-served (Li et al., 2013; He et al., 2018).

Alternative strategies have been proposed to prioritize vehicles. Some studies have approached permit distribution as an auction, 
where vehicles bid for permits, and the system allocates this limited resource to the highest bidders (Carlino et al., 2013). These 
systems often rely on predefined rules rather than optimizing for system-level objectives. As a result, they can lead to suboptimal 
performance and, in some cases, are shown to be less effective than traditional traffic signals (Levin et al., 2016; Yu et al., 2019). The 
concept of reservation-based rules for optimizing intersection traffic has also been extended through protocols where intersection 
managers assign reservations to vehicles (Levin and Rey, 2017), thereby broadening the scope for optimization.

To address these limitations, researchers have explored centralized control mechanisms to optimize intersection performance 
(e.g. Yang et al. (2016), Medina et al. (2019), Kamal et al. (2014) and Mirheli et al. (2019)). These efforts also highlight the 
potential to improve safety by reducing and mitigating traffic crashes (Rios-Torres and Malikopoulos, 2016).

1.2.2. Communication-based distributed approaches
These methods face significant practical barriers, particularly the extensive communication requirements needed for real-

time implementation. Optimization-based approaches for managing signal-free intersections often enforce collision avoidance as 
a constraint while prioritizing operational efficiency, such as minimizing delays or maximizing throughput.

The integration of connected automated vehicle (CAV) information into intersection control strategies has been extensively 
studied. AV trajectories can be modified to optimize objectives such as increasing throughput and minimizing delay (e.g. Li and 
Wang (2006) and Lee and Park (2012)). Cooperative or distributed methods typically rely on constant communication between 
AVs when near an intersection, enabling them to optimize trajectories through local mutual agreements. For instance, Mirheli et al. 
(2019) proposed a decentralized optimization scheme in which each vehicle independently solves its own trajectory optimization 
problem, assuming that the decisions of other vehicles remain constant. A consensus between vehicle solutions is sought through 
an iterative communication process.

In less congested scenarios, decentralized or cooperative methods show promise by using direct vehicle-to-vehicle communi-
cation, but they often face real-world constraints. These approaches demand substantial bandwidth (Gholamhosseinian and Seitz, 
2022). Connected vehicles require robust communication protocols and capabilities to ensure reliable operation. Limited studies, 
such as Makarem and Gillet (2011) and Makarem and Gillet (2012), have investigated distributed methods where AVs share basic 
data, such as position, speed, and path, to avoid collisions. However, these studies often rely on restrictive physical assumptions, such 
as very low speeds or high acceleration and deceleration capabilities, which may not hold in real-world conditions. Consequently, 
although collision avoidance remains the primary goal in these approaches, efficiency is often compromised as the focus shifts to 
navigating intersections without deadlocks or collisions.
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1.2.3. Advanced control frameworks and extensions
Extending intersection management principles beyond conventional intersections, researchers have explored applications to other 

traffic scenarios. For instance, Mohebifard and Hajbabaie (2021) applied similar optimization concepts to single-lane roundabouts, 
demonstrating potential improvements in traffic flow. Similarly,  Naderi et al. (2023) developed a distributed control scheme 
for automated vehicles on large lane-free roundabouts that relies on vehicle-specific movement corridors and nonlinear feedback 
controllers. However, such studies typically rely on idealized conditions, which may not account for real-world challenges such as 
sensor inaccuracies.

In Hao et al. (2024), a hierarchical control framework bridges optimized global trajectories and AVs’ local planners to manage 
uncertainties and dynamic changes in real-world environments, acknowledging AVs’ sophisticated local planning capabilities 
rather than treating them as objects following predetermined trajectories. Hao et al. (2023) introduces a lane-allocation-free 
intersection management method with flexible routing for connected and automated vehicles through multiple arms. Both rely 
on vehicle-to-vehicle or vehicle-to-infrastructure communication, creating potential vulnerabilities.

1.2.4. Communication-free approaches and research gaps
It is crucial to distinguish between different types of assumptions in existing studies. Some assumptions are fundamental to the 

AV domain (such as lane discipline in lane-based environments and the presence of sensing capabilities). Others create practical 
implementation barriers (such as requiring perfect communication, centralized control, or unrealistic vehicle dynamics). While our 
proposed approach shares some fundamental assumptions with existing work, it specifically targets eliminating dependencies on 
communication and centralized control, whereas considering real-world physical constraints on acceleration and deceleration, which 
represent significant practical barriers to real-world implementation. Alternative approaches, such as flexible road space allocation 
and model predictive control for lane-free signal-free intersections (Malekzadeh et al., 2021; Naderi et al., 2025) offer different 
trade-offs by allowing more flexible vehicle movement patterns but typically requiring more computational resources.

The methods above largely depend on constant or near-constant communication. To address the challenges associated with 
communication loss in distributed systems, recent studies have proposed strategies to maintain operational efficiency. For in-
stance, Chen et al. (2021) introduced a cooperative cruising strategy for autonomous taxi fleets, leveraging historical trip data 
to optimize passenger pickups without relying on real-time communication. Their study highlights how distributed systems can 
function effectively in the absence of communication. To our knowledge, no previous study has considered real-time AV control at 
intersections in the absence of communications.

1.3. Contributions and paper structure

Centralized and communication-dependent methods face significant limitations, including the need for robust infrastructure, 
susceptibility to communication failures, and computational complexity of real-time optimization. These challenges highlight the 
necessity of a communication-free and distributed approach. Enabling each AV to navigate intersections using onboard sensors and 
local data independently eliminates dependency on external communication networks. This approach improves system robustness 
and scalability while simplifying the operational framework, making it more adaptable to varying traffic conditions and inflow 
levels. This underscores the need for a novel framework, such as the CfDCA, which addresses these limitations while leveraging AV 
capabilities.

This paper introduces the CfDCA, a method that enables AVs to navigate intersections safely and efficiently using data exclusively 
from their onboard sensors. The method assumes lane discipline, where each AV adheres to its designated path, simplifying conflict 
resolution and ensuring predictable vehicle behavior. For example, lane discipline aims to ensure that each AV strictly follows 
predefined paths, thereby preventing lateral maneuvers that could complicate conflict resolution. This assumption is particularly 
relevant as it reflects common design principles for structured intersection management, allowing the algorithm to focus on 
optimizing delay and throughput without accounting for complex lateral maneuvers.

The CfDCA addresses challenges arising from the absence of centralized control, such as the risk of deadlock, through strict 
priority ordering of vehicles. Strict priority ordering is enforced through a dynamic prioritization function, as described in later 
sections, ensuring predictable and collision-free vehicle movements. Moreover, CfDCA dynamically guides AVs on whether and how 
to proceed or adjust their speed to avoid collisions. The CfDCA achieves reduced delay and boosted throughput in both low- and 
high-inflow traffic conditions, all without requiring explicit or real-time communication.

To apply the CfDCA more effectively, this paper introduces a resource acquisition graph framework modeling AV–conflict zone 
interactions at intersections. AVs and conflict zones are vertices, with directed edges showing locally determined requirements and 
acquisitions based on onboard sensors. The model assumes strict lane discipline, with AVs following fixed paths to ensure clear and 
consistent conflict resolution.

Additionally, the CfDCA incorporates a refined priority function. The priority of each AV is calculated as the inverse of the time-
to-intersection, depending on the vehicle’s speed. This dynamic prioritization aims to ensure that faster-moving AVs are appropriately 
prioritized. Moreover, the algorithm minimizes unnecessary decelerations, thereby improving overall traffic flow efficiency.

This paper provides the theoretical framework for CfDCA, including formal mathematical demonstrations of its safety properties 
and deadlock prevention guarantees. Through simulations, we demonstrate CfDCA’s effectiveness across varying traffic inflows 
and its robustness to realistic measurement errors, while comparing its performance against both actuated signalized control and 
first-come-first-served (FCFS) distributed approaches.
3 
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Table 1
Table of nomenclature.
 Symbol Description Unit  
 𝑎 Acceleration m/s2 
 𝐴(𝑡, 𝑟𝑗 ) Acquisition function at time 𝑡 for conflict zone 𝑟𝑗 –  
  Active set, vehicles within 𝐷1 from the intersection –  
 𝑎max Maximum value of acceleration m/s2 
  Buffer set, vehicles in  but outside  –  
 𝛽 Sensitivity exponent of the tolerance function –  
 𝐶 A cycle in the dependency graph 𝐺 –  
 𝛿 Acceleration exponent in IDM model –  
 𝛥𝑡𝑖 Delay for each vehicle 𝑢𝑖 s  
 𝑑max Maximum value of deceleration m/s2 
 𝐷1 , 𝐷2 Distances upstream of the intersection Line of Entry required for CfDCA m  
  Set of directed edges in the graph, representing vehicle-to-conflict-zone requests –  
 𝑒𝑖𝑗 Directed edge from vehicle 𝑢𝑖 to conflict zone 𝑟𝑗 –  
 𝜖 Small threshold speed for prioritization m/s  
 𝐺 Graph representing the system as vertices and edges, 𝐺 = ( , ) –  
 ℎ Headway s  
 𝐼 Number of vehicles in the system –  
 𝐽 Number of conflict zones inside the intersection –  
 𝐾 Maximum consecutive time steps for tie-breaking fallback –  
 𝐿 Distance for a vehicle to clear the conflict zone m  
  Set of movements in the intersection –  
 (𝑖) Movement associated with vehicle 𝑢𝑖 –  
  Vehicles that have not yet reached the conflict zone –  
  Observation set, vehicles within 𝐷2 +𝐷1 from the intersection –  
 𝑃 [𝑗, 𝑖] Priority matrix element, priority of 𝑢𝑖 for 𝑟𝑗 –  
 𝑝(𝑖) Priority function of vehicle 𝑢𝑖 –  
 acquire Vehicles in  eligible for conflict zone acquisition –  
 require Vehicles in  requiring a conflict zone –  
 𝑟𝑗 A specific conflict zone –  
 𝑅[𝑗, 𝑖] Requirement matrix element, 1 if 𝑢𝑖 requires 𝑟𝑗 , 0 otherwise –  
 𝑠 Current space gap to leader vehicle m  
 𝑆LE AV’s distance to intersection Line of Entry m  
 𝑆LC AV’s distance to Line of Consideration m  
 𝑠∗ Desired minimum space gap to leader vehicle m  
 𝑠𝑖(𝑡) The state of vehicle 𝑢𝑖 at time 𝑡 –  
 𝜏delay Minimum delay necessary to resolve a potential conflict s  
 𝑡 Current time s  
 𝑡actual,𝑖 Actual traversal time of vehicle 𝑢𝑖 s  
 𝑡min,𝑖 Minimum possible traversal time of vehicle 𝑢𝑖 s  
 𝑡clear Minimum required clearance time of the conflict zone s  
 𝑡clock,i Current vehicle clock time of vehicle 𝑢𝑖 s  
 𝑡entry(𝑖, 𝑗) Entry time of vehicle 𝑢𝑖 into conflict zone 𝑟𝑗 s  
 𝑡exit(𝑖, 𝑗) Exit time of vehicle 𝑢𝑖 from conflict zone 𝑟𝑗 s  
 𝑇0 Base delay tolerance constant s  
 𝑇𝑖 Time-to-intersection for vehicle 𝑢𝑖 s  
 𝑇d(𝑢𝑖) Delay tolerance of AV 𝑢𝑖 s  
 𝑈 Set of vehicles in the system –  
 𝑢𝑖 A specific vehicle (𝑢𝑖) in the set 𝑈 –  
  Set of vertices in the graph –  
 𝑣 Speed m/s  
 𝑣′ Reduced speed after deceleration m/s  
 𝑣𝑖(𝑡) Speed of vehicle 𝑢𝑖 at time 𝑡 m/s  
 𝑣max Maximum speed m/s  
 𝑊 [𝑗, 𝑖] Weight matrix element, temporal feasibility of 𝑢𝑖 entering 𝑟𝑗 –  
 𝑥𝑖(𝑡) x-coordinate position of vehicle 𝑢𝑖 at time 𝑡 m  
 𝑦𝑖(𝑡) y-coordinate position of vehicle 𝑢𝑖 at time 𝑡 m  

The remainder of this paper is organized as follows. Section 2 introduces the CfDCA, detailing its framework and operational 
mechanisms, including the resource acquisition graph for AVs and conflict zones. Further, characteristics of CfDCA such as deadlock 
prevention and collision avoidance are discussed. The simulation model used to evaluate CfDCA is described in Section 3. Section 4 
presents the results of the simulations, including a comparison between CfDCA and actuated signalized intersections and FCFS 
approach. Section 5 highlights the challenges and possible solutions for measurement errors, and other road users (vulnerable road 
users, emergency vehicles, public transit, mixed traffic) to ensure safe, efficient intersection control. Finally, the conclusions and 
potential future research directions are discussed in Section 6.
4 
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2. Communication-free Distributed Control Algorithm (CfDCA)

This section lays the theoretical foundation of CfDCA, encompassing the graph–matrix framework, priority function, deadlock 
prevention strategies, tie-breaking mechanism, and the conflict zone acquisition methodology. These components are crucial for 
ensuring decentralized, collision-free, and efficient navigation in diverse traffic conditions. The key parameters and symbols used 
throughout this paper are defined in Table  1.

2.1. Assumptions and preliminaries

CfDCA defines two critical detection lengths in each approach (described in Section 2.2.1), one guaranteeing safe passage and 
another increasing throughput. By classifying AVs based on their positions and relying on these positional cues, each AV adjusts its 
acceleration accordingly. The following subsections detail the geometric constraints and vehicle groupings that ensure safety and 
efficiency of CfDCA.

In addition to these spatial considerations, the CfDCA method operates under several key assumptions:

1. AVs are assumed to follow predetermined lane-based paths. This assumption is common in AV operation and simplifies conflict 
resolution by enabling predictable trajectories.

2. Onboard sensors are capable of reliably detecting the positions and speeds of other AVs within a designated range. While 
perfect sensing is not assumed, we recognize that sensor accuracy affects performance (addressed in detail in Section 5.1).

3. All AVs are assumed to strictly adhere to the CfDCA protocol, which is embedded within their driving modules, and 
operate independently. This assumption focuses our work on the problem among AVs rather than mixed traffic scenarios. 
In Section 5.2.4 we discuss the potential for mixed traffic scenarios using CfDCA for AVs.

The physical constraints employed in our model (such as maximum acceleration/deceleration values) are within realistic bounds 
for modern vehicles, avoiding overly idealized dynamics. Furthermore, unlike approaches requiring perfect, or any, inter-vehicle 
communication or centralized control, CfDCA is designed to function with only local information available through onboard sensing.

The CfDCA can be applied to any intersection for which we can define entry lines and conflict zones. To begin, we consider a 
generic four-legged intersection model that incorporates right turns, left turns, and straight movements within dedicated lanes to 
describe and test the proposed algorithm (Three-way (T) and Two-way intersections are naturally both reduced versions of this). 
Conflict zones are defined based on the positions and destination lanes of the vehicles. As illustrated in Fig.  1(a), a conflict zone is 
defined as an area within the intersection where the paths of two AVs may intersect. The size of a conflict zone is determined by 
the maximum size of the conflicting vehicles.

The CfDCA functions by managing conflict zone acquisitions among AVs. To ensure safety, a buffer time is established based on 
vehicle dynamics, which enforces a minimum clearance time for each conflict zone. This clearance time ensures that the conflict 
zone remains unoccupied for a specified interval, 𝑡clear, between consecutive crossings by vehicles from different movements. This 
is the logic for collision-free operation while ensuring user comfort.

2.2. Problem formulation

Let us formally define the autonomous intersection management problem as follows. Consider set 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑖, 𝑢𝑘,… , 𝑢𝐼}
of autonomous vehicles approaching an intersection with set 𝑅 = {𝑟1, 𝑟2,… , 𝑟𝑗 ,… , 𝑟𝐽 } of conflict zones. Each vehicle 𝑢𝑖 follows a 
predetermined path that traverses a subset of conflict zones 𝑅𝑗 ⊆ 𝑅.

The state of vehicle 𝑢𝑖 at time 𝑡 is represented by 𝑠𝑖(𝑡) = (𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑣𝑖(𝑡)), where (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) denotes its position, and 𝑣𝑖(𝑡) its 
velocity. The control input for each vehicle is its acceleration 𝑎𝑖(𝑡) ∈ [−𝑑max, 𝑎max].

The global optimization problem to minimize the delay in the intersection system can be formulated as: 

min
{𝑎𝑖(𝑡)}𝐼𝑖=1

𝐼
∑

𝑖=1
𝛥𝑡𝑖 (1)

|𝑡entry(𝑖, 𝑗) − 𝑡entry(𝑘, 𝑗)| ≥ max
(

𝑡exit(𝑖, 𝑗) − 𝑡entry(𝑖, 𝑗), 𝑡exit(𝑘, 𝑗) − 𝑡entry(𝑘, 𝑗)
)

+ 𝑡clear, ∀𝑟𝑗 ∈ 𝑅,∀𝑢𝑖, 𝑢𝑘 ∈ 𝑈,(𝑢𝑖) ≠ (𝑢𝑘) (2)

−𝑑max ≤ 𝑎𝑖(𝑡) ≤ 𝑎max, ∀𝑢𝑖 ∈ 𝑈,∀𝑡 (3)

0 ≤ 𝑣𝑖(𝑡) ≤ 𝑣max, ∀𝑢𝑖 ∈ 𝑈,∀𝑡 (4)

Eq.  (1) defines the objective function that minimizes the total delay experienced by all vehicles crossing the intersection. Here, 
𝛥𝑡𝑖 = 𝑡actual,𝑖−𝑡min,𝑖 represents the delay experienced by vehicle 𝑢𝑖, with 𝑡actual,𝑖 being the actual traversal time and 𝑡min,𝑖 the minimum 
possible traversal time. Eq. (2) demonstrate collision avoidance by requiring that vehicles from different movements maintain a 
minimum safety gap when using the same conflict zone; 𝑡entry(𝑖, 𝑗) and 𝑡exit(𝑖, 𝑗) are the entry and exit times of vehicle 𝑢𝑖 for conflict 
zone 𝑟𝑗 and 𝑡clear is the minimum safety gap. Eq. (3) constrains vehicle accelerations to realistic physical limits. Eq. (4) enforces 
speed limits to ensure vehicles operate within safe velocity ranges.
5 
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Fig. 1. (a) Predefined paths and 16 conflict zones in yellow. The shaded areas with red demonstrate the spatial extent within which an AV in 
movement 1 monitors and evaluates other vehicles for conflict resolution. (b) Sizes and distance-based configuration of the intersection. The 
Line of Consideration (LC) defines the area within which AVs actively consider other vehicles for conflict zone acquisition. The Line of Detection 
(LD) defines the area where AVs start detecting other movements and include vehicles in the graph. AVs begin evaluating potential conflicts and 
requirements upon entering the LD. The colored shading illustrates the position-based vehicle sets: green areas represent the active set (), blue 
areas represent the buffer set (), and their combination forms the observation set ().

The challenge lies in solving this problem in a distributed manner, where each vehicle must make control decisions based only 
on local information, without centralized coordination or inter-vehicle communication. This requires decomposing the problem into 
locally solvable subproblems while ensuring safety constraints remain satisfied.

2.2.1. Line of detection and line of consideration
Two critical lines (Fig.  1(b)) are fundamental to the operation of the CfDCA: the Line of Detection (LD) (Thick blue) and the 

Line of Consideration (LC) (red). The LD is positioned at least at the safe stopping distance, denoted as 𝐷1, upstream of the LC, and 
is calculated as 𝐷1 =

𝑣2max
2𝑑max

, where 𝑣max is the maximum speed and 𝑑max is the maximum deceleration. This line simply defines the 
minimum detection range required to achieve an efficient outcome. Li The LC is placed at a distance 𝐷2 upstream of the intersection 
entry line (Eq. (5)). This line has multiple features in CfDCA. The LC serves as a decision threshold, ensuring vehicles within it are 
actively considered for conflict zone acquisition based on their priorities. However, when inflow is high, the graph becomes dense 
due to numerous conflict zone requirements, and vehicles are required to stop before reaching the LC, which prevents conflict zone 
acquisition while they are waiting. The CfDCA switches between low- and high-inflow regimes based on the number of AVs detected 
in the observation set (within 𝐷1 +𝐷2 distance). Specifically, when the vehicle count reaches 25% of the traffic jam density within 
this detection zone, the system transitions to high-inflow mode, coordinating vehicle stopping positions to reduce conflicts and form 
platoons for sequential crossing.

Additionally, the minimum distance for 𝐷2 is set to ensure that two conflicting vehicles, if they are approximately equidistant 
from the intersection, can adjust their speeds to resolve potential conflicts. To determine the minimum distance 𝐷2 required for 
vehicles to cross an intersection safely, consider two vehicles approaching a conflict zone at the maximum speed 𝑣max. If the vehicles 
start to acquire conflict zones simultaneously and one begins decelerating at the maximum rate 𝑑max, the decelerating vehicle must 
add a minimum delay of 𝜏delay to its travel time to ensure safe passage. This delay can be viewed from two perspectives:

(1) From a safety perspective, 𝜏delay = 𝐿
𝑣max

+ 𝑡clear, where 𝐿 is the total distance required to clear the conflict zone (including 
the conflict zone length and the vehicle length), and 𝑡clear is the safety clearance time.

(2) From a vehicle dynamics perspective, 𝜏delay is the difference between traversing distance 𝐷2 at maximum speed versus 
traversing it while decelerating to a reduced speed 𝑣′, where 𝑣′ =

√

𝑣2max − 2𝑑max𝐷2 is the reduced speed after constant maximum 
deceleration over distance 𝐷2.

Equating these two expressions yields: 
𝐿 + 𝑡clear =

2𝐷2 −
𝐷2 . (5)
𝑣max 𝑣′ + 𝑣max 𝑣max

6 
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This equation establishes the relationship between 𝐷2, 𝑣max, 𝑑max, 𝐿, and 𝑡clear. By solving it, we determine the minimum 𝐷2 that 
ensures vehicles can safely adjust their speeds to resolve conflicts while maintaining efficient traffic flow.

2.2.2. Position-based subsets
After defining 𝐷1 and 𝐷2 as critical distances in the CfDCA, we categorize the set of AVs (𝑈) into subsets based on their positions 

relative to these distances. These position-based classifications enable each AV to independently implement distributed conflict zone 
management, the process by which individual AVs determine whether to proceed through or yield prior to entering the intersection 
without any centralized coordination. Each AV uses its onboard sensing capabilities to detect and classify nearby vehicles, creating 
a local representation of the traffic state that guides its decision-making.

• The set of AVs that have not yet reached the conflict zone (as exemplified by the red shaded zones in Fig.  1(a) for movement 
1), is denoted as: 

 = {𝑢 ∈ 𝑈 ∣ distance(𝑢) > 𝐷2 +𝐷1}. (6)

• The observation set, denoted as , includes all vehicles within a distance of 𝐷2 + 𝐷1 from the intersection entryline. This set 
represents the vehicles that are detectable (depicted as the combination of green and blue shaded areas in Fig.  1(b)): 

 = {𝑢 ∈ 𝑈 ∣ distance(𝑢) ≤ 𝐷2 +𝐷1}. (7)

• The active set, , consists of vehicles within the smaller distance of 𝐷1. This subset includes vehicles that are closest to the 
intersection, requiring immediate distributed conflict zone management. Vehicles in this set are actively considered for conflict 
zone acquisition based on their positions and priorities (shown as green shaded areas in Fig.  1(b)): 

 = {𝑢 ∈ 𝑈 ∣ distance(𝑢) ≤ 𝐷1}. (8)

• The buffer set, , comprises vehicles in the observation set but outside the active set (illustrated as blue shaded areas in Fig. 
1(b)): 

 = {𝑢 ∈  ⧵}. (9)

The buffer set aims to ensure vehicles that may soon enter the active set are monitored but do not immediately influence 
conflict zone acquisition.

• The vehicles within the observation set that require a conflict zone are given by the intersection of the observation set and 
the set of vehicles not yet reached the conflict zone: 

require =  ∩ . (10)

• Similarly, the vehicles within the active set that are eligible for conflict zone acquisition are defined as: 
acquire =  ∩ . (11)

Note that each AV independently detects and classifies nearby vehicles into these position-based subsets using only its onboard 
sensors. Autonomous vehicles are equipped with sensor suites including cameras, LiDAR, and radar with detection ranges well 
beyond the required distances. This sensing capability enables each AV to construct a representation of the traffic state generally 
consistent with other AVs in its vicinity, allowing distributed decision-making without requiring external infrastructure or vehicle-
to-vehicle communication. While sensing errors may occasionally occur, they typically affect temporary speed adjustments rather 
than compromising safety, as discussed in Section 5.1.

2.3. Resource acquisition graph and AV’s decision making

The graph-based modeling approach we adopt is essential for formalizing the distributed intersection management problem. 
Unlike rule-based approaches, the graph representation captures the structural relationships between vehicles and conflict zones, 
enabling each AV to independently reason about multi-vehicle, multi-conflict zone interactions. This formalism provides several key 
advantages:

(1) It enables consistent distributed decision-making without communication, as each AV constructs the same graph based on 
local observations;

(2) It allows formal proof of deadlock prevention (Lemma  1) and conditional guarantee of collision avoidance (Remark  3);
(3) It provides a unified framework that handles both low-inflow and high-inflow scenarios through the same underlying 

mechanism.
The CfDCA is designed to adapt continuously across varying levels of traffic inflow. The logic of CfDCA is governed by a graph-

based model, which is independently reconstructed by each AV at every time step, using only locally sensed information. Each AV 
creates and maintains its own instance of this graph, with no exchange of graph representations between vehicles. The consistency 
of decisions across vehicles emerges from the consistent priority function and the observation that each vehicle can detect the same 
relative positions and approximate speeds of nearby vehicles using its own sensors.
7 
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The dynamic graph 𝐺 = ( , ), where  = 𝑈 ∪ 𝑅 represents the graph vertices as the union of the set of AVs 𝑈 = {𝑢𝑖} as users 
and conflict zones 𝑅 = {𝑟𝑗} as resources, and  denotes the set of directed edges 𝑒𝑖𝑗 . Each edge 𝑒𝑖𝑗 represents a requirement from 
vehicle 𝑢𝑖 to conflict zone 𝑟𝑗 . While each conflict zone inherently results from the interaction of AVs from two different movements, 
for the sake of simple indexing, we number them sequentially, ensuring each conflict zone is assigned a unique index.

Each AV independently constructs this graph by considering vehicles in proximity to the intersection and the conflict zones they 
require. Using the priority function, the AV determines which vehicles acquired the required conflict zones. The priority function 
aims to ensure an orderly and fair acquisition of conflict zones. An AV understands that it is permitted to cross the intersection only 
if it successfully acquires all the conflict zones required for its trajectory, and those who fail must wait until their priorities allow 
them to proceed.

After establishing the prerequisites for graph construction, we now proceed to describe the graph itself. The graph evolves 
dynamically as AVs traverse the intersection. Each AV within set require is aware of the conflict zone requirements of other AVs along 
their paths. This awareness is achieved through local sensing and the use of pre-defined paths. However, conflict zone acquisition 
is restricted to AVs in set acquire.

For AVs in buffer set , conflict zone acquisition is not allowed. However, their requirements are still recorded to identify potential 
conflicts.

Example with two AVs: If an AV 𝑢𝑖 in buffer set  requires a conflict zone 𝑟𝑗 that has already been acquired by another AV 𝑢𝑘 due 
to the higher priority, that AV must decide its next dynamic state. First, that AV measures the time in the future when it will enter 
the conflict zone and when the other AV exits. Second, if the entry time to conflict zone 𝑡entry(𝑖, 𝑗) minus the exit time from conflict 
zone 𝑡exit(𝑘, 𝑗) is less than the required safe gap 𝑡clear, and if the requiring AV 𝑢𝑖 is not fully stopped, it decelerates; otherwise, it 
accelerates unless it has already reached its maximum speed.

2.3.1 Graph-theoretic formulation
The CfDCA approach transforms the distributed optimization problem into a resource acquisition problem on a time-varying 

bipartite graph. At each time step 𝑡, we define a directed bipartite graph 𝐺(𝑡) = ( , (𝑡)), where the vertex set  = 𝑈 ∪𝑅 consists of 
vehicle vertices and conflict zone resource vertices. The edge set (𝑡) ⊆ 𝑈 ×𝑅 contains directed edges 𝑒𝑖𝑗 (𝑡) = (𝑢𝑖, 𝑟𝑗 ) representing a 
requirement from vehicle 𝑢𝑖 to conflict zone 𝑟𝑗 at time 𝑡.

The graph evolves according to the dynamics: 

(𝑡) = {(𝑢𝑖, 𝑟𝑗 ) ∣ 𝑢𝑖 ∈ require(𝑡), 𝑟𝑗 ∈ 𝑖(𝑡)} (12)

where require(𝑡) is the set of vehicles requiring conflict zones at time 𝑡, and 𝑖(𝑡) is the set of conflict zones required by vehicle 𝑢𝑖
at time 𝑡.

The resource acquisition problem can be formulated as finding a time-varying acquisition function 𝐴(𝑡) ∶ 𝑅 → 𝑈 ∪{∅} that maps 
each conflict zone to at most one vehicle at any time 𝑡, such that: 

If 𝐴(𝑡entry(𝑖, 𝑗), 𝑗) = 𝑢𝑖 and 𝐴(𝑡entry(𝑘, 𝑗), 𝑗) = 𝑢𝑘 with (𝑢𝑖) ≠ (𝑢𝑘),  then:
|𝑡entry(𝑖, 𝑗) − 𝑡entry(𝑘, 𝑗)| ≥ max(𝑡exit(𝑖, 𝑗) − 𝑡entry(𝑖, 𝑗), 𝑡exit(𝑘, 𝑗) − 𝑡entry(𝑘, 𝑗)) + 𝑡clear (13)

Eq.  (13) enforces temporal safety by ensuring that when the acquisition function assigns two vehicles 𝑢𝑖 and 𝑢𝑘 from different 
movements (𝑢𝑖) ≠ (𝑢𝑘) to the same conflict zone 𝑟𝑗 , their entry times must satisfy the safety constraint established in Eq.  (2). 
Specifically, the temporal separation between their entries must be at least the maximum traversal time of either vehicle plus the 
required safety clearance time 𝑡clear. This constraint directly operationalizes the safety requirement from Eq.  (2) within the resource 
acquisition framework, ensuring that the distributed allocation process respects the fundamental collision avoidance principles by 
preventing conflicting vehicles from accessing the same conflict zone too closely in time.

Example with three AVs: Consider three AVs 𝑢1, 𝑢2, and 𝑢3 approaching the intersection in Fig.  1(b), labeled according to the conflict 
zones and lane numbers shown in Fig.  1(a). Specifically, 𝑢1 is in lane 8, 𝑢2 is in lane 2, and 𝑢3 is in lane 4. The conflict zone between 
𝑢1 and 𝑢2 is denoted as 𝑟1 in this example, while the conflict zone between 𝑢2 and 𝑢3 is denoted as 𝑟2 (see Fig.  2).

Although the priority and weight mechanisms will be described in the next section, we illustrate the procedure here by assuming 
each AV with a nonnegative weight proceeds, whereas any AV with a negative weight decelerates. Under these conditions, vehicle 𝑢2
maintains a nonnegative weight and thus accelerates, while 𝑢1 and 𝑢3 both have negative weights and must decelerate. The graph is 
updated at every time step, ensuring each AV reevaluates and adjusts its behavior in real time. Complex multi-vehicle consideration 
will be discussed in Sections 2.4 to 2.7, which is repeated at every next time step, where the evaluation is re-conducted to determine 
whether the conditions for acquisition have changed.

This graph-based framework is fully decentralized, enabling each AV to independently process and resolve its interactions with 
others using only local sensing without relying on inter-vehicle communication. Each AV infers the requirements of other AVs for 
conflict zones by having the knowledge of their predefined paths and determines which conflict zones are acquired by which AVs 
based on the priority function described in the next subsections. Since the priority of all AVs is measurable and consistent throughout 
the system, every AV has full knowledge of the current state of the graph at any given moment.
8 
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Fig. 2. An illustrative example featuring three AVs creating a graph based on CfDCA as approaching an intersection. AVs 𝑢1, 𝑢2, and 𝑢3 are 
positioned in lanes 8, 2, and 4, respectively, as shown in Fig.  1(b). In this example, the conflict zone between 𝑢1 and 𝑢2 is denoted as 𝑟1, while 
that between 𝑢2 and 𝑢3 is denoted as 𝑟2.

2.4 AV longitudinal decision making in low-inflow regime

Let us consider an intersection with 𝐼 vehicles and 𝐽 conflict zones. Each conflict zone 𝑟𝑗 receives requirements from vehicles 
in two conflicting movements. We define the requirement matrix 𝑅 ∈ R𝐽×𝐼 , where: 

𝑅[𝑗, 𝑖] =

{

1, if vehicle 𝑢𝑖 requires conflict zone 𝑟𝑗 ,
0, otherwise.

(14)

Analogously in the graph representation, each edge 𝑒𝑖𝑗 connects a vehicle vertex 𝑢𝑖 to a conflict zone vertex 𝑟𝑗 and represents a 
requirement for the conflict zone by the vehicle. The presence or absence of an edge is encoded in the requirement matrix 𝑅, where 
𝑅[𝑗, 𝑖] = 1 if an edge 𝑒𝑖𝑗 exists, and 𝑅[𝑗, 𝑖] = 0 otherwise.

The priority function determines the order in which AVs gain acquisition to conflict zones. The priority of an AV 𝑢𝑖 is defined 
as the inverse of its time-to-intersection (T): 

𝑝(𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∞, if 𝑆LE,𝑖 < 0,
𝜖

𝑆LE,𝑖
, if 𝑣𝑖 ≤ 𝜖 and 𝑆LE,𝑖 ≥ 0,

1
𝑇𝑖
, if 𝑣𝑖 > 𝜖 and 𝑆LE,𝑖 ≥ 0.

(15)

where 𝑆LE,𝑖 is a signed distance to the intersection entry line, positive if 𝑢𝑖 is upstream and negative if it has passed the line, 𝑣𝑖 is 
the current speed and 𝑇𝑖 =

𝑆LE,𝑖
𝑣𝑖

 for positive 𝑆LE,𝑖, and 𝜖 is a small threshold speed. This formulation ensures that AVs with shorter 
travel times to the intersection entry line are given higher priority.

Note that this priority mechanism significantly differs from a simple first-come-first-served approach. While FCFS would only 
consider the distance to the intersection, our priority function accounts for both distance and speed, potentially giving higher 
priority to faster vehicles. This distinction is crucial for optimizing intersection throughput and reducing average delay, especially 
in mixed-speed traffic conditions. Simulation results in Section 4 compare these approaches.

In addition, two extra matrices must be introduced. The priority matrix 𝑃  assigns a numerical value to each edge according to 
the vehicle’s priority, while the weight matrix 𝑊  captures the temporal safety constraints of vehicle dynamics. Both matrices align 
with the graph’s structure and are updated at each time step to reflect real-time conditions.

We construct the priority matrix 𝑃 ∈ R𝐽×𝐼 , where: 

𝑃 [𝑗, 𝑖] =

{

𝑝(𝑖), if 𝑅[𝑗, 𝑖] = 1,
0, otherwise.

(16)

The vehicle with the highest priority for each conflict zone 𝑟𝑗 gets the acquisition of the conflict zone for the time step 
(Acquisition: 𝑢𝑘 = argmax𝑖 𝑃 [𝑗, 𝑖]).

In rare cases where two or more AVs share identical priorities, a tie occurs. Within the CfDCA, ties are resolved dynamically and 
probabilistically to prevent indefinite stalls. When a tie occurs, each tied AV independently and randomly determines whether it will 
assume the highest priority. Specifically, each AV randomly decides whether to consider itself as having the highest priority or not. 
This randomization aims to ensure that at least one AV breaks the tie and proceeds with conflict zone acquisition eventually. The 
9 
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probabilistic nature of this mechanism naturally removes the tie from the system, allowing all AVs to make progress over successive 
time steps without requiring explicit coordination or communication.

Moreover, if a tie nonetheless remains unresolved vehicles invoke a deterministic fallback tie-breaker: they each examine their 
observed arrival timestamps at the Line of Consideration for all tied vehicles and assign highest priority to the vehicle with the 
earliest arrival. This ensures guaranteed progress in worst-case scenarios as long as AVs agree to follow CfDCA, assuming each 
vehicle measures arrivals of other vehicles reasonably accurately.

Finally, one can show the probability that two AVs remain tied for 𝑘 successive steps decays as (0.5)𝑘, and for 𝑚 AVs as 2 (1∕2𝑚)𝑘, 
making extended stalemates vanishingly unlikely before vehicles clear the conflict zone and under circumstances that one vehicle 
is not on a trajectory to clear the conflict zone for any reason, others will stop before the intersection line of entry until they find 
the conflict zone cleared.

After defining the AV that gets acquisition of conflict zones, we calculate the weight matrix 𝑊 ∈ R𝐽×𝐼 , which quantifies the 
temporal feasibility of each vehicle’s entry into conflict zone 𝑟𝑗 . The weight 𝑊 [𝑗, 𝑖] is determined based on the relationship between 
the requesting AV 𝑢𝑖 and vehicles in conflicting movement 𝑢𝑘, as follows: 

𝑊 [𝑗, 𝑖] =

⎧

⎪

⎨

⎪

⎩

1, if 𝑖 = 𝑘,
min𝑢𝑘∈acquire ,(𝑢𝑖)≠(𝑢𝑘)

(

𝑡entry(𝑖, 𝑗) − 𝑡exit(𝑘, 𝑗) − 𝑡clear
)

, if 𝑅[𝑗, 𝑖] = 𝑅[𝑗, 𝑘] = 1 and 𝑝(𝑢𝑘) > 𝑝(𝑢𝑖),

0, otherwise.
(17)

Here, 𝑊 [𝑗, 𝑖] represents the weight assigned to AV 𝑢𝑖 for conflict zone 𝑟𝑗 . If 𝑖 = 𝑘, indicating that 𝑢𝑘 is the vehicle with the highest 
priority that has already acquired the conflict zone, the weight is set to 1. For other vehicles 𝑢𝑖, the weight is calculated as the 
difference between the predicted entry time of 𝑢𝑖 into the conflict zone, 𝑡entry(𝑖, 𝑗), and the predicted exit time of any other vehicle 
from conflicting movement 𝑀(𝑢𝑘) in set acquire with higher priority, 𝑡exit(𝑘, 𝑗), minus the required safety gap 𝑡clear. This condition 
applies only if the vehicle 𝑢𝑖 requests the conflict zone, denoted by 𝑅[𝑗, 𝑖] = 1. If these conditions are not satisfied, the weight is 
set to 0. This framework aims to ensure that the acquiring vehicle 𝑢𝑘 retains the highest priority with a weight of 1, while other 
vehicles are evaluated based on their temporal feasibility of entering the conflict zone, respecting the safety gap 𝑡clear.

Ultimately, for longitudinal decision making of each AV 𝑢𝑖 using CfDCA, the entries in the 𝑖th column of 𝑊  determine its action. 
The decision for AV 𝑢𝑖 is: 

𝑎𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑎max, if min𝑗 𝑊 [𝑗, 𝑖](𝑡) ≥ 0,

max(−𝑑max,
−𝑣2𝑖
2𝑆LE,𝑖

), otherwise.
(18)

where 𝑎𝑖(𝑡) is the acceleration of AV at time t, 𝑎max is the maximum allowable acceleration, 𝑑max is the maximum allowable 
deceleration, 𝑣𝑖 is the AV current speed, and 𝑆LE,𝑖 is the distance to the intersection entry line. This decision function represents 
vehicle 𝑢𝑖’s solution to its local optimization subproblem of minimizing its individual delay 𝛥𝑡𝑖 subject to safety constraints. The key 
insight is that these local optimization problems, when solved collectively using the priority and weight matrices, provide a solution 
to the global problem while incorporating safety constraints.

It is worth mentioning that when an AV has a leader vehicle, it must follow the minimum headway towards the leader in addition 
to the conflict resolution process and apply the minimum acceleration from both considerations. This aims to ensure that a vehicle 
accelerates (with maximum acceleration if its speed is lower than the maximum allowable speed) only if all its requirements across 
conflict zones are acquired (i.e., 𝑊 [𝑗, 𝑖] > 0 for all 𝑗), and it decelerates otherwise.

2.5 AV longitudinal decision making in high-inflow regime

The CfDCA adapts to varying traffic conditions by switching between low- and high-inflow regimes based on the number of AVs 
detected in the observation set. This observation set, comprising eight lanes plus the intersection space, serves as a proxy for traffic 
density; the more AVs present, the more conflict-zone requirements (edges) appear in the graph. To determine the threshold for 
changing regimes, the system examines how average delay varies with the number of AVs, identifying the point at which switching 
to high-inflow operations reduces overall delay.

As traffic inflow increases, the graph becomes denser and CfDCA coordinates AVs stopping positions to reduce conflicts and 
forming platoons for sequential crossing. In a high-inflow regime, AVs in acquire proceed similarly to low-inflow mode, but those in 
the buffer set must account for potential queue discharging. If in conflicting crossing movements the headway ℎ between the leading 
AV (in ) and its follower equals the minimum value ℎmin, the ego AV must decelerate before entering the active set. Formally, if 
ℎ ≤ ℎmin for a conflicting movement and 𝑢𝑖 ∈ , then: 

𝑎𝑖 = max

(

−𝑑max,
−𝑣2𝑖

2𝑆LC,𝑖

)

, (19)

where 𝑆LC,𝑖 is the distance to the consideration line. Otherwise, when there is no queue discharging occurring, even AVs in buffer 
set proceed similarly to low-inflow mode. This headway-based rule prevents over-saturation by halting additional conflict-zone 
requirements until existing queues subside. Once AVs in acquire have cleared their requirements, buffer set vehicles may accelerate 
and join  , provided no other conflicts persist.
acquire

10 
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Under low-inflow conditions, AVs in the buffer set may enter the consideration area while decelerating if they have negative 
weight on their edges, stopping only as needed just before the intersection entry line. This arrangement minimizes unnecessary 
delays since vehicles can acquire conflict zones as soon as they reach the active set and resolve any temporal conflicts among 
different movements.

By contrast, high-inflow scenarios require AVs in the buffer set to stop at a point before the intersection, effectively suspending 
new conflict-zone requests until they join acquire. This restriction keeps vehicles already in the intersection area unimpeded, fosters 
platooning, and maximizes throughput within each movement’s turn. CfDCA distinguishes low- from high-inflow operation based 
on vehicle density in the observation area. At each time step, the vehicle knows the total length occupied by all eight turning 
and through movements within a predefined observation zone, and already knows how many vehicles could fit that length under 
standard spacing, and counts the actual approaching vehicles. If this count exceeds 25% of the computed capacity, the mode switches 
to high-inflow mode and changes the stopping position of AVs; otherwise, it remains in low-inflow mode.

Remark 1 (Tolerance Function). To prevent excessive waiting, a tolerance function is used to modify the graph weights dynamically, 
prioritizing AVs with longer delays. The delay tolerance 𝑇d(𝑖) for AV 𝑢𝑖 is defined as 

𝑇d(𝑖) = 𝑇0 + (𝑡clock(𝑖) − 𝑡entry(𝑖))𝛽 , (20)

where 𝐶 is a base tolerance, 𝛽 is a sensitivity parameter, 𝑡entry(𝑖) is the time 𝑢𝑖 entered the detection area, and 𝑡clock is the current 
clock time. If the delay of 𝑢𝑖 exceeds 𝑇d(𝑖), the weights of its edges 𝑒𝑖𝑗 become positive until it enters set acquire, allowing 𝑢𝑖 to 
proceed and gain priority.

2.6 CfDCA pseudo code

In the following, we detail the CfDCA in two parts. Algorithm 1 addresses the setup and classification of AVs approaching the 
intersection, including the creation of position-based subsets (,,) and the sets of vehicles requiring conflict zones (require) or 
eligible to acquire them (acquire). This classification step is crucial in determining which vehicles are actively engaged in conflict 
resolution and which are placed in the buffer area.

Next, Algorithm 2 presents the core logic of CfDCA: constructing the conflict-zone graph, forming the requirement matrix 𝑅, 
priority matrix 𝑃 , and weight matrix 𝑊 , and then adjusting vehicle behavior accordingly. The method accommodates varying 
traffic inflow levels (low and high inflow), applies a tolerance function to reduce excessive waiting times, and concludes with a fully 
decentralized acceleration/deceleration decision for each vehicle. By combining these mechanisms, CfDCA ensures collision-free 
intersection traversal without the need for centralized control or inter-vehicle communication.
Algorithm 1 CfDCA — Part I: Setup and Classification

Input: Local sensing data (positions, speeds) for all AVs within 𝐷2 +𝐷1
Output: Sets ,,, require,acquire
// Initialize all sets as empty

1  , , , , require, acquire ← ∅
// Define : vehicles not yet cleared conflict zone

2  ← { 𝑢𝑖 ∈ 𝑈 ∣ 𝑢𝑖 has not cleared conflict zone}
3 1. Classification into Position-Based Subsets:
// Here, 𝑆LE,𝑖  is a signed distance to the intersection entry line, positive if 𝑢𝑖 is upstream and 

negative if it has passed the line.
4 foreach AV 𝑢𝑖 ∈ 𝑈 do
5 if 𝑆LE,𝑖 ≤ 𝐷2 +𝐷1 then
6  ←  ∪ {𝑢𝑖} ; /* Observation set: 𝑢𝑖 is inside intersection or within 𝐷2 +𝐷1 upstream of the 

entry line */
7 if 𝑆LE,𝑖 ≤ 𝐷1 then
8  ←  ∪ {𝑢𝑖} ; /* Active set: 𝑢𝑖 is inside intersection or within 𝐷1 upstream of the entry 

line */

9  ←  ⧵ ; /* Buffer set: vehicles in  but not in  (still upstream) */
10 require ←  ∩   ; /* Vehicles detected and not yet in conflict zone */
11 acquire ←  ∩   ; /* Active vehicles (within 𝐷1) that need a conflict zone */

2.7 CfDCA characteristics: deadlock prevention and collision avoidance

Remark 2 (Deadlock Prevention). Deadlock is a critical challenge in decentralized systems where multiple entities compete for limited 
resources. In the context of CfDCA, a deadlock occurs when two or more AVs are unable to proceed due to cyclic dependencies 
11 
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Algorithm 2 CfDCA — Part II: Graph, Matrices, and Acceleration
Input: Sets ,,,require,acquire from Part I
Output: Real-time acceleration 𝑎𝑖 for the ego AV 𝑢𝑖

1 2. Graph and Matrix 𝐑: Create 𝐺 = ( , ) with  = 𝑈 ∪ 𝑅 ; /* Vertices: vehicles + conflict zones */
2 foreach vehicle 𝑢𝑖 ∈ require do
3 Identify all conflict zones 𝑟𝑗 on 𝑢𝑖’s path foreach required conflict zone 𝑟𝑗 do
4 Add directed edge 𝑒𝑖𝑗 = (𝑢𝑖 → 𝑟𝑗 ) to  𝑅[𝑗, 𝑖] ← 1

5 Set 𝑅[𝑗, 𝑖] ← 0 otherwise; /* If 𝑢𝑖 does not require 𝑟𝑗 */
6 3. Priority Calculation and Tie-Breaking: foreach vehicle 𝑢𝑖 ∈ acquire do
7 if 𝑣𝑖 ≤ 𝜖 then
8 𝑝(𝑖) ← 𝜖

𝑆LE,𝑖
9 else

10 𝑝(𝑖) ← 1
𝑇𝑖

 ; /* 𝑇𝑖 =
SLE,i

𝑣𝑖
 */

11 4. Priority Matrix 𝐏: Initialize 𝐏 ∈ R𝐽×𝐼 ; /* 𝐽 conflict zones, 𝐼 vehicles */
12 foreach edge 𝑒𝑖𝑗 = (𝑢𝑖 → 𝑟𝑗 ) do
13 𝑃 [𝑗, 𝑖] ← Priority(𝑢𝑖)

14 Set 𝑃 [𝑗, 𝑖] ← 0 if 𝑅[𝑗, 𝑖] = 0

15 5. Weight Matrix 𝐖 and Conflict Zone Acquisition: Initialize 𝐖 ∈ R𝐽×𝐼 foreach edge 𝑒𝑖𝑗 = (𝑢𝑖 → 𝑟𝑗 ) do
16 if 𝑢𝑖 has highest priority for 𝑟𝑗 (i.e. already acquired) then
17 𝑊 [𝑗, 𝑖] ← 1
18 else
19 𝑊 [𝑗, 𝑖] ← min

𝑢𝑘∈acquire ,(𝑢𝑘)≠(𝑢𝑖)

(

𝑡entry(𝑖, 𝑗) − 𝑡exit(𝑘, 𝑗) − 𝑡clear
)

20 Set 𝑊 [𝑗, 𝑖] ← 0 if 𝑅[𝑗, 𝑖] = 0

21 6. Inflow Adaptability (Low vs. High Inflow): if || > threshold then
22 High-Inflow Mode: foreach vehicle 𝑢𝑖 ∈  do
23 if queue discharge detected on conflicting movements (ℎ ≤ ℎmin) then
24 Enforce stop/deceleration before  to allow clearing of platoons
25 else
26 Low-Inflow Mode: foreach vehicle 𝑢𝑖 ∈  do
27 Continue rolling into ; stop only if 𝑊 [𝑗, 𝑖] < 0 for some 𝑗

28 7. Tolerance Function: foreach vehicle 𝑢𝑖 with extended waiting time do
29 if ((𝑡clock(𝑢𝑖) − 𝑡entry(𝑢𝑖)) > 𝑇d(𝑢𝑖) then
30 Adjust weights to favor 𝑢𝑖’s progress if it waited too long: 𝑊 [𝑗, 𝑖] ← positive value for relevant 𝑗

31 Final Decision (Acceleration / Deceleration): foreach vehicle 𝑢𝑖 ∈ require do
32 if (currentMode = HIGH) then
33 if 𝑢𝑖 ∈  and ∃ conflict with ℎ ≤ ℎmin then /* Buffer-set vehicles check queue discharge */
34 𝑎𝑖 ← max

(

−𝑑max,
− 𝑣2𝑖
2𝑆LC,𝑖

)

 ; // stop before  to avoid adding more conflict requests
35 else
36 if 𝑊 [𝑗, 𝑖] ≥ 0 ∀ 𝑟𝑗 where 𝑅[𝑗, 𝑖] = 1 then
37 𝑎𝑖 ← 𝑎max;

38 else

39 𝑎𝑖 ← max

(

−𝑑max,
−𝑣2𝑖
2𝑆LE,𝑖

)

 ; // Decelerate if any 𝑊 [𝑗, 𝑖] < 0

40 return 𝑎𝑖 ; /* Acceleration for ego AV 𝑢𝑖 considering leader headway */

in resource acquisition, specifically conflict zones. This subsection formally defines deadlock conditions, identifies the variables 
involved, and demonstrates how CfDCA prevents deadlock through strict priority assignment.

Lemma 1.  A deadlock exists when there exists a closed chain of dependencies among AVs such that each AV in the chain is waiting for a 
conflict zone held by the next AV. In CfDCA, the strict priority order prevents deadlock.
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Proof.  Assume that a deadlock occurs in CfDCA. By definition, this implies the existence of a cycle 𝐶 in the dependency graph 𝐺, 
where: 

|𝐶| > 2 𝐶 ∩ 𝑈 ≠ ∅ and 𝐶 ∩ 𝑅 ≠ ∅. (21)

Since CfDCA enforces a strict priority order, there exists an AV 𝑢k ∈ 𝐶 with the highest priority: 
𝑃 (𝑢k) > 𝑃 (𝑢), ∀𝑢𝑖 ∈ 𝐶 ⧵ {𝑢k}. (22)

By the priority rule, 𝑢k is granted access to its requested conflict zones, breaking its dependency. Consequently, the cycle 𝐶 cannot 
exist. This contradiction proves that CfDCA prevents deadlock. □

Remark 3 (Collision-Free Operation Logic). The CfDCA enforces strict safety conditions, dynamic priority resolution, and deadlock 
prevention to ensure that no two vehicles occupy the same conflict zone simultaneously.

Guarantee (under ideal assumptions). Assuming (i) perfect measurement of all vehicle states, (ii) accurate short-term trajectory 
prediction within the planning horizon, and (iii) that each AV can execute the computed control commands with at most a bounded 
actuation error, then CfDCA guarantees collision-free operation as follows.

To enforce collision-free operation, any two vehicles 𝑢𝑖, 𝑢𝑘 from different movements requiring the same conflict zone 𝑟𝑗 must 
satisfy a minimum clearance time 𝑡clear , which ensures that 𝑢𝑖 cannot enter 𝑟𝑗 until at least 𝑡clear seconds have elapsed since 𝑢𝑘 exited 
that zone.

Furthermore, by construction of the dynamic weight matrix 𝑊 (𝑡), whenever both vehicles are simultaneously permitted to 
proceed (i.e. 𝑊 [𝑗, 𝑖](𝑡) ≥ 0 and 𝑊 [𝑗, 𝑘](𝑡) ≥ 0), their assigned entry times obey 

|

|

|

𝑡entry(𝑖, 𝑗) − 𝑡entry(𝑘, 𝑗)
|

|

|

≥ 𝑡clear + min(𝑡exit(𝑖, 𝑗) − 𝑡entry(𝑖, 𝑗), 𝑡exit(𝑘, 𝑗) − 𝑡entry(𝑘, 𝑗)). (23)

This inequality enforces temporal separation beyond the clearance time plus at least one vehicle’s traversal duration, precluding 
overlap.

Furthermore, CfDCA presents inherent robustness to clock asynchrony between vehicles. Since the algorithm bases decisions 
on relative positions, speeds, and priorities rather than absolute synchronized time measurements, each vehicle’s independent 
construction of the intersection state remains consistent despite potential temporal desynchronization.

Limitations. In reality, measurement noise, prediction error, and actuation delays can violate these ideal conditions. The above 
guarantee holds only if deviations remain within the assumed bounds. Results (Section 5.1) indicate that practical performance 
degrades under moderate sensor/actuator error.

Remark 4 (Upper Bound Capacity). The model demonstrates that, based on current geometry, at any given time, up to two active 
movements can achieve full acquisition of their required conflict zones, provided that the vehicles belong to at least two non-
conflicting movements. Consequently, the upper bound of the intersection’s capacity in this model is twice the maximum flow of a 
single lane.

3 Simulation model

To evaluate, the simulation model considers an intersection with four legs that are orthogonal and symmetrical (Fig.  1(b)). Each 
leg has three lanes configured for right-side driving logic (Fig.  1(a)). Due to the absence of conflicts, right turns are not considered 
for result comparison. The car following method is the IDM model (Kesting et al., 2010; Shi and Li, 2021) with a minimum headway 
of one second. When an AV approaches a slower vehicle, it uses the IDM car-following model to adjust its speed to maintain a safe 
minimum distance from the preceding vehicle, ensuring smooth and collision-free operation. The following equations describe the 
IDM car-following behavior: 

𝑎 = 𝑎max

(

1 −
(

𝑣
𝑣max

)𝛿
−
(

𝑠∗(𝑣)
𝑠

)2
)

, (24)

where 𝑎 represents acceleration (can be negative), 𝑣 denotes velocity, 𝑎max stands for maximum acceleration, 𝑣max denotes desired 
velocity, 𝛿 represents the acceleration exponent (we use 𝛿 = 2), 𝑠 indicates the current gap to the leading vehicle, and 𝑠∗(𝑣) denotes 
the desired minimum gap (ℎmin.𝑣 minus the vehicle length), which depends on the vehicle speed 𝑣.

The IDM allows each AV to dynamically adjust its speed and position to maintain a safe and efficient gap from the leading 
vehicle. Vehicle acceleration and deceleration are modeled within realistic physical constraints. Although AVs follow predefined 
paths and are treated as points in the simulation, their actual dimensions are considered when assessing collision risks and ensuring 
safety in conflict zones.

For comparison, we use an actuated signal method that employs a variant of the max pressure approach (Varaiya, 2013), 
granting the green phase to the direction with the highest queue length for a minimum of 10 s. Green time dynamically extends to 
accommodate any remaining queue, with a maximum of 50 s.

We consider three trapezoidal traffic inflow profiles with peaks of 3600, 4800, and 7200 vehicles per hour, starting from zero 
and gradually reaching peak inflow in 15 min, staying at peak inflow for one hour, and decreasing to zero again in 15 min. For 
these scenarios, the east through and left-turn movements were assigned double the inflow of other movements to evaluate CfDCA 
under asymmetric traffic conditions. The performance evaluation metrics include average delay, standard deviation of delay, queue 
length, time gap between successive entries to conflict zones (used as a proxy for safety), and maximum throughput.
13 
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Fig. 3. Performance comparison of CfDCA, actuated signalized intersections, and FCFS approaches across varying traffic inflow rates. The 
logarithmic scale on the 𝑦-axis highlights CfDCA’s superior performance at low to high inflow conditions. Error bars represent standard deviations 
across 6 simulation runs of each having the maximum traffic inflow rate for one hour.

4 Results

Fig.  3 presents a comprehensive performance comparison of CfDCA against actuated signalized intersections and FCFS approaches 
across varying traffic inflow rates with maximum from 450 to 7200 vehicles per hour. Each data point represents the average 
delay from 6 simulation runs, each having a trapezoidal inflow profile with the maximum inflow rate sustained for one hour. The 
results demonstrate CfDCA’s superior performance in low to high inflow conditions, achieving lower average delays compared to 
both baseline methods. As inflow increases beyond 3000 veh/hr, all methods experience increased delays, with CfDCA showing 
competitive performance relative to actuated signalized control and substantially outperforming FCFS (which we cut the simulation 
after inflow of 4500 due to exponential delay increase). The following subsections provide a detailed analysis of throughput, delay 
distributions, queue dynamics, and safety metrics to further characterize CfDCA’s operational effectiveness.

4.1 Throughput and delay estimation

Throughput is defined as the number of vehicles exiting the intersection per unit of time. By imposing a traffic inflow that exceeds 
the intersection capacity for the CfDCA and actuated signalized intersections, we evaluate the maximum throughput achievable 
within one-minute intervals. The results demonstrate that the maximum throughput values for both methods are comparable. For 
the signalized intersection, the maximum throughput is 835 vehicles per hour per lane (6680 vehicles per hour for eight lanes). In 
contrast, for CfDCA, it is 855 vehicles per hour per lane (6840 vehicles per hour for eight lanes). This finding indicates that the 
proposed CfDCA method maintains robustness under high-density states even without central infrastructure and communication and 
delivers throughput performance on par with an actuated signalized controller (Mohajerpoor et al., 2022).

For each vehicle in the simulation, we can determine the delay by comparing the actual travel time to the minimum travel time. 
CfDCA substantially lowers average delay and standard deviation of delay compared with actuated signal systems at lower inflow 
levels (Figs.  4(a) and 4(b)).

With high inflow, CfDCA demonstrates robust performance (Fig.  4(c)). The integration of platooning and the dynamic tolerance 
function ensures that throughput remains consistently high, comparable to the maximum capacity of a signalized intersection, close 
to 2-lane capacity. Furthermore, the tolerance function balances delays across different traffic movements, especially under heavy 
congestion.

4.2 Queue length

Figs.  5, 6, and 7 illustrate queue lengths under varying traffic conditions. Queue lengths are measured in time intervals of 60 s and 
shown in units of vehicles. The CfDCA consistently demonstrated shorter average queue lengths across most scenarios, particularly 
in low to moderate inflow conditions. For instance, in the east left turn movement for inflow with a maximum of 4800 vehicles 
per hour, the CfDCA maintained an average queue length of approximately 1.87 vehicles, significantly lower than the actuated 
signalized intersection, which averaged 8.62 vehicles.
14 
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Fig. 4. Delay distribution for trapezoidal inflow with maximum rates of (a) 3600, (b) 4800, and (c) 7200 vehicles per hour. Note the different 
x- and 𝑦-axis ranges.

Under high inflow scenarios, while queue lengths naturally increased for both methods, the CfDCA still managed to maintain a 
more efficient flow of traffic. The adaptive nature of the CfDCA, especially its ability to switch between low-density and high-density 
strategies, played a key role in reducing overall queue lengths. In contrast, the actuated signalized method, despite its responsive 
timing cycles, often led to longer queues, particularly in scenarios with imbalanced inflow across different movements. These results 
underscore the effectiveness of the CfDCA in dynamically managing traffic flow, leading to reduced congestion and more efficient 
intersection operations.

Even in high-inflow scenarios, where two specific lanes from left to right experience double the inflow compared to others, 
resulting in a higher average queue length, the CfDCA method exhibits superior performance in managing queue lengths across the 
entire intersection. In most other lanes, the CfDCA consistently achieves shorter queue lengths compared to the actuated signalized 
intersections. Additionally, the adaptability of the CfDCA model is showcased through its ability to modify queue lengths by adjusting 
tolerance function parameters, allowing calibration for specific traffic management objectives.

The longer queues in eastbound and north left-turn movements under high-inflow conditions (Fig.  7) stem from several factors. 
First, eastbound flows have double the inflow of other movements, and their conflicts with the north left turn lead to spillbacks. 
Second, CfDCA’s platooning strategy (Section 2.5) implicitly prioritizes and groups vehicles by movement, creating temporary queues 
to boost overall throughput. Third, the priority–tolerance tradeoff in CfDCA can extend queues for movements conflicting with high-
volume flows. In contrast, actuated signals adjust green time based on detected queues, often reducing peak queue lengths at the 
cost of higher average delay and lower throughput. This illustrates a core tradeoff: CfDCA prioritizes total throughput and average 
delay, while actuated signals may minimize maximum queues for specific movements.

4.3 Comparison with first-come-first-served approach

To further evaluate the effectiveness of our proposed CfDCA, we compare its performance against the FCFS approach, which is 
commonly used as a baseline in intersection management studies. In the FCFS implementation, vehicles acquire conflict zones based 
solely on their arrival order at the intersection, without considering speed or other factors in prioritization.

While Fig.  3 provides a broad range comparison between CfDCA and FCFS, Fig.  8 illustrates the difference in delay distributions 
between CfDCA and FCFS for the 3600 vehicles per hour inflow scenario. Even at this relatively low inflow level, the FCFS approach 
results in significantly higher delays (average: 23.7 s, standard deviation: 28.09 s) compared to CfDCA (average: 0.9 s, standard 
deviation: 1.07 s).

This substantial performance gap highlights the critical role of CfDCA’s prioritization mechanism that considers both distance 
and speed, rather than simply arrival order. The FCFS approach fails to efficiently manage intersection resources because it does 
not account for vehicle dynamics or optimize for throughput, resulting in inefficient sequencing decisions that compound delays 
across vehicles.

Furthermore, the large standard deviation in the FCFS results indicates inconsistent performance and poor predictability, while 
CfDCA’s small standard deviation demonstrates highly consistent performance across all vehicles. The performance degradation of 
FCFS would become even more pronounced at higher inflow levels, as the inefficient resource allocation/acquisition would lead to 
growing queues and potentially gridlock scenarios.

This detailed comparison complements the comprehensive performance evaluation presented in Fig.  3, which demonstrates 
CfDCA’s consistent superiority over FCFS across almost all traffic inflow levels.

4.4 Safety

CfDCA enforces a minimum clearance time of 1 s for conflict zones between vehicles that occupy them. To evaluate safety, we 
examined vehicles with conflicting paths that pose a risk of collision by successive entries to a conflict zone. We measured the time 
gap between their entry into the conflict zone. We determined the minimum and average time gaps by analyzing all conflict zones 
15 
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Fig. 5. The queue lengths for different traffic movements with the inflow scenario of 3600 vehicles per hour, measured every minute. The CfDCA 
method demonstrates significantly smaller queue lengths compared to actuated signalized intersections.

Fig. 6. The queue lengths for various traffic movements with the inflow scenario of 4800 vehicles per hour, measured every minute. The CfDCA 
method maintains smaller queue lengths in all lanes, showcasing its efficiency even as inflow increases.
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Fig. 7. The queue lengths for different traffic movements with the high-inflow scenario of 7200 vehicles per hour, measured every minute. While 
the queue lengths increase in lanes with double the inflow, the CfDCA method outperforms actuated signalized intersections in terms of overall 
traffic management.

Fig. 8. Delay distribution comparison between CfDCA and FCFS for the 3600 vehicles per hour inflow scenario. Note the substantially lower 
and more consistent delays achieved by CfDCA.

Table 2
Potential conflicts time gaps with the CfDCA for trapezoidal inflow profiles.
 Peak inflow (veh/h) Minimum conflict gap (s) Average conflict gap (s) 
 3600 1.55 7.36  
 4800 1.59 10.32  
 7200 1.59 30.65  

across various inflow profiles (see Table  2). Our method aims to ensure safety by maintaining a minimum time gap of 1 s. This 
includes the first AV passing through the conflict zone, followed by a minimum clearance time. The table shows that the average 
time gap increases with higher inflow, likely due to more frequent instances of platooning.
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Fig. 9. Impact of measurement errors on delay distribution for trapezoidal inflow profiles with maximum rates of (a) 3600, (b) 4800, and (c) 
7200 vehicles per hour. With realistic sensor errors (1.0 m position error, 0.5 m/s speed error), CfDCA maintains robust performance with 
moderate increases in delay.

5 Discussion

Ensuring robust and efficient intersection management goes hand in hand with addressing real-world complexities, such as 
sensing inaccuracies and the presence of diverse road users. This section discusses the influence of measurement errors on the 
proposed CfDCA, demonstrating how temporary disruptions may occur but can be mitigated through responsive adjustments in 
vehicle behavior. Additionally, we discuss extensions to accommodate emergency vehicles, pedestrians, and cyclists, emphasizing 
how CfDCA upholds safety and efficiency across various traffic scenarios.

5.1 Impact of measurement errors on CfDCA

While decentralized and communication-free, CfDCA relies on each AV’s accurate sensing and prediction to build vehicle–
conflict-zone interaction graphs. Real-world errors in position, speed, or trajectory measurements can impair its performance. The 
sensor-error model from Elmquist and Negrut (2020) uses Gaussian noise that varies with detection conditions. We add noise with 
standard deviation 1.0 (m) to position and 0.5 (m/s) to speed measurements to mimic typical AV sensor performance.

To evaluate CfDCA’s robustness to measurement errors, we simulated Gaussian noise on position and speed across three inflow 
scenarios; Fig.  9 illustrates the resulting impacts on delay distributions.

Measurement-error impacts vary across inflow levels, in low-inflow (3600 vehicles/h), mean delay increases from 0.9 (s) to 
1.3 (s) (44%); in medium-inflow (4800 vehicles/h), near the transition threshold between low- and high-inflow regimes, it almost 
doubles from 4.1 (s) to 8.1 (s) (97%); and in high-inflow (7200 vehicles/h), it rises from 180.7 (s) to 193.6 (s) (7%).

Simulation results highlight:

• Inflow sensitivity: error impact is highest at medium inflow, moderate at low inflow, and minimal at high inflow.
• Safety: no collisions occurred under all error conditions, confirming robust safety.
• Performance: CfDCA outperforms actuated signal control in every scenario despite measurement errors.

Measurement errors can cause transient deviations from optimal decisions, but CfDCA’s continuous updates correct them in the 
next time step, and reduced inter-vehicle distances near the intersection lessen position-error effects, preserving decision accuracy in 
critical zones. CfDCA remains robust under realistic measurement errors, confirming its practical viability for real-world AV systems. 
Maintaining safe operation despite sensor inaccuracies is essential for any deployable autonomous intersection management solution. 
It is important to note that as AVs approach the intersection and come closer to one another, the relative measurement errors tend to 
decrease due to improved sensor accuracy at shorter ranges (an effect not incorporated in our current simulation model). This natural 
error reduction mitigates the likelihood of significant disruptions to the CfDCA protocol in the critical areas near the intersection.

5.2 Consideration of emergency vehicles, public transit, pedestrians, cyclists, and mixed traffic

The CfDCA has the potential to adapt to diverse traffic users, including emergency vehicles, public transit, pedestrians, and 
cyclists, and remains robust against vehicles that deviate from it, ensuring safety and efficiency under various scenarios. This 
subsection outlines the strategies for incorporating these users into the CfDCA framework.
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5.2.1 Emergency vehicles and public transit
Emergency vehicles, such as ambulances, police, or fire trucks, and public transit vehicles such as buses or trams require 

prioritized access to intersections to minimize delays. The CfDCA algorithm can accommodate this by assigning emergency and 
public transit vehicles the highest priority upon detection, ensuring full acquisition of all required conflict zones for a seamless 
crossing. Specifically:

• Queue Clearance: If an emergency vehicle or bus encounters a queue at the intersection, its presence allows the vehicles in 
front of the queue to temporarily consider themselves as having higher priority. This forces other vehicles to stop and clears 
the path for the priority vehicle.

• Alternative Approach: In cases where immediate access to the intersection is needed, emergency and transit vehicles can use 
right-turn lanes, which typically have fewer or no conflict zones, to approach the intersection. Upon reaching the intersection, 
the CfDCA algorithm prioritizes the relevant vehicle, stopping all other movements to allow its crossing.

These strategies ensure that emergency vehicles and public transit can navigate intersections with minimal delay, leveraging the 
CfDCA’s dynamic prioritization mechanisms.

5.2.2 Pedestrians and cyclists
Pedestrians and cyclists are treated as vulnerable users with absolute priority in the CfDCA framework. The algorithm is equipped 

to detect their presence and adapt vehicle behaviors to ensure safety:

• Pedestrian Crossings: Pedestrian areas, such as crosswalks, can be defined as zones where AVs must stop when pedestrians 
are detected. To facilitate safe crossings, pathways can be segmented into smaller areas (e.g., median islands) on multilane 
roads, providing AVs time to adjust their behavior for approaching pedestrians. This segmented crossing approach minimizes 
disruptions to traffic flow while ensuring pedestrian safety.

• Cyclists: Cyclists are considered lane users with absolute priority. When cyclists are detected in a lane or near a conflict zone, 
AVs yield to them, ensuring their safe and uninterrupted passage. The CfDCA algorithm dynamically incorporates cyclists into 
the priority system, treating them as critical road users.

The presence of pedestrians and cyclists introduces additional delays to the system, which is expected given their absolute 
priority.

• Signalized Control for Pedestrians and Cyclists: In high-inflow scenarios, signal systems can be introduced to organize 
pedestrian and cyclist crossings, reducing their impact on vehicular flow, and the system can also benefit from a pedestrian 
scramble phase, which allows pedestrians to cross the intersection in all directions, including diagonally, while vehicles 
are stopped on all approaches simultaneously. Pedestrians would be no worse off than existing traffic signal controlled 
intersections, but would suffer more delay than if at unsignalized intersections and given right-of-way on demand.

5.2.3 Mitigating non-compliant vehicles
If one or more vehicles deviate from CfDCA, due to aggressiveness, malicious intent, or sensor or decision errors, the continuously 

updated resource-acquisition graph detects noncompliance in real time. AVs have the potential to adopt safe fallback behaviors, 
yielding right-of-way to the violator. Future research should address mitigation and enforcement mechanisms.

5.2.4 Mixed traffic and human-driven vehicles
One imagines at a non-centrally controlled and communication-free intersection, human-driven vehicles would generally adhere 

to a FCFS scheme while AVs continue to coordinate via CfDCA. AVs detect and classify human drivers as non-compliant, and 
potentially FCFS agents, accounting for larger reaction times and headways, and yield whenever a human has already claimed 
the next conflict zone. AV–AV interactions remain governed by the CfDCA, whereas AV–human and human–human encounters 
follow FCFS rules (Mohajerpoor and Ramezani, 2019). To guard against deadlocks arising from the combination of CfDCA and FCFS 
claims, a temporary FCFS grant may be conferred to human drivers to restore movement, after which AVs re-synchronize using 
the standard CfDCA protocol. Note that this integration is purely conceptual and has not been implemented in the present work; it 
serves only to illustrate one possible approach to accommodating human drivers in a CfDCA-managed environment.

5.3 Architectural benefits of CfDCA’s distributed design

CfDCA demonstrates that fully distributed intersection management can achieve near-optimal throughput of 6840 veh/h, or 95% 
of the theoretical 7200 veh/h (1-s headway), while eliminating the need for communication infrastructure and centralized control.

CfDCA forms vehicle platoons under high inflow via purely local decisions as its priority function and tolerance mechanism group 
same-movement vehicles to maximize throughput and prevent conflicts. Rather than fixed first-come, first-served rules, CfDCA shifts 
from individual optimization at low inflow to platoon-forming behavior as traffic increases.

A key feature of CfDCA is deadlock prevention without centralized coordination, by strict priority ordering, as proved in Lemma 
1, the highest-priority vehicle always secures its required conflict zones, eliminating cyclic dependencies and ensuring robust 
distributed operation.

The distributed design of CfDCA delivers key advantages:
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• Resilience: No single point of failure, so operation continues despite individual vehicle sensor or processing faults.
• No communication dependency: Avoids network degradation, latency, and security vulnerabilities.
• Manufacturer independence: Any AV vendor can adopt the priority protocol without standardized communication hardware.
• Computational scalability: Processing grows linearly with vehicle count, unlike the exponential complexity of centralized 
schemes.

As AVs move towards independent decision-making, CfDCA uses onboard sensing and computation to achieve near-optimal 
collective performance.

5.4 Extending CfDCA to complex intersection geometries

CfDCA performs strongly in our simulation and applies to any intersection with defined entry lines and conflict zones; tests 
on a generic four-legged intersection with multiple movement types support its broader applicability. As noted in Section 2.1, we 
assume lane discipline with predetermined paths for clarity. For shared lanes permitting multiple trajectories from one approach 
(e.g., straight and right turns), CfDCA can be extended via:

• Dynamic conflict zone identification: adapt the graph in real time using observed turn indicators and vehicle positions to 
assign conflict zones.

• Conventional signaling integration: use existing turn signals as intent cues to predict routes without electronic communi-
cation.

• Expanded conflict zone mapping: include all potential conflict zones for multi-trajectory approaches until a vehicle’s actual 
path is clear.

These extensions preserve CfDCA’s core strength — conflict resolution via local decision-making without communication — 
and its resource-acquisition graphs, priority-based decision-making, and deadlock prevention apply to any intersection, given 
appropriately defined conflict zones. CfDCA’s generalizable principles provide a robust framework for managing diverse intersection 
geometries, including complex layouts beyond the four-way design tested in our simulations.

6 Conclusions

This paper presents a Communication-free Distributed Control Algorithm (CfDCA) to manage AV at intersections without relying 
on centralized control or communication systems. CfDCA demonstrates its effectiveness in enhancing traffic efficiency and safety 
by dynamically adjusting to different traffic inflow levels and employing a combination of distance- and priority-based control 
mechanisms. By integrating a dynamic graph-based framework, CfDCA effectively models the interactions between AVs and conflict 
zones, enabling precise and scalable intersection management and demonstrates collision avoidance and prevents deadlocks by 
design, without the need for centralized control or communication. The algorithm excels in reducing average delays and maintaining 
high throughput, particularly in low to moderate-inflow scenarios, where it outperforms actuated signalized intersections, and a 
first-come-first-served strategy. Additionally, CfDCA’s aims to ensure robust safety measures through a minimum clearance time in 
conflict zones, preventing collisions. Even with realistic sensor measurement errors, CfDCA maintains stable operation with only 
modest increases in delay, demonstrating resilience to noisy data. The simulation results demonstrate the algorithm’s effectiveness 
in handling complex traffic conditions, making it a viable approach.

To further test CfDCA’s performance and address potential real-world challenges, we plan to implement this method on 
reduced-scale mobile robots (RSMRs) in a controlled environment. RSMRs provide a cost-effective and flexible platform for 
testing autonomous driving algorithms in physical settings, overcoming many of the limitations associated with full-scale vehicle 
testing (Tuchner and Haddad, 2017; Levy and Haddad, 2022; Xie et al., 2024). This future work will enable us to refine the CfDCA 
method based on empirical data, ensuring its readiness for real-world deployment. Future research should address the challenges 
by considering the inclusion of pedestrians, emergency vehicles, and scenarios where not all AVs adhere to CfDCA. Additionally, 
exploring the method’s feasibility and effectiveness at a network level is a research priority.
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