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 A B S T R A C T

3D Multi-object tracking (MOT) is a crucial challenge for decision-making in autonomous driving. In this 
article, we propose an online 3D MOT method based on point cloud data to enhance the accuracy of 
tracking objects in complex scenarios while the sensor is moving. The method employs a constant acceleration 
model and incorporates orientation angle variation. After undergoing Kalman filter smoothing, the method 
can effectively and accurately estimate the future states of target objects, mitigating the issue of direction 
oscillation in the object detection stage. To tackle the bidirectional pairing problem between predicted targets 
and detection candidates, we introduce a novel spatio-temporal feature-based data association model. This 
model leverages a dynamic confidence threshold to address tracking temporarily occluded objects. Moreover, 
this model can effectively formulate affinity even amidst the noisy and confusing data typically generated 
by mobile sensors. Through extensive evaluations of the KITTI dataset, our method surpasses state-of-the-art 
methods. The method performance is further validated on the nuScenes dataset, solidifying the robustness and 
effectiveness of the proposed approach.
. Introduction

Multi-object tracking (MOT), also referred to as multi-target track-
ng, is a key technique for understanding the surrounding environment 
sing sensors. The primary goals of MOT are to detect and localize 
ultiple objects in a given scene, distinguish their unique identities, 
nd generate precise tracking trajectories. The objects being tracked 
an vary widely, from vehicles and pedestrians to specific equipment, 
nimal groups, or even large-scale environments. MOT plays a criti-
al role in applications such as connected and autonomous vehicles 
CAVs) [1] and intelligent transportation systems. As an intermediate 
ask in these systems, MOT provides essential data for downstream 
rocesses such as environmental perception, behavior analysis, and 
ntelligent decision-making.
MOT is generally divided into two main categories: 2D MOT and 

D MOT. 2D MOT primarily relies on information extracted from two-
imensional spatial images, such as the OC-SORT method proposed 
y [2]. In contrast, 3D MOT incorporates depth information to gen-
rate three-dimensional bounding boxes for target objects and assigns 
hem distinct identities for differentiation. Certain sensors, such as 
tereo cameras and LiDAR, along with images captured from various 
erspectives, like bird’s-eye views (BEV), provide the necessary data 
or this type of tracking. Of these, LiDAR has garnered considerable 
ttention in both research and practical applications due to its high 

∗ Corresponding author.
E-mail addresses: ruihao.zeng@sydney.edu.au (R. Zeng), mohsen.ramezani@sydney.edu.au (M. Ramezani).

positioning accuracy and robust performance in challenging conditions, 
such as low-light environments or adverse weather like thunderstorms. 
Notable projects, including Waymo [3] and Argoverse [4], highlight the 
preference for LiDAR in these scenarios.

Mobile MOT in CAVs introduces significant challenges compared 
to static tracking in Autonomy through Infrastructure (ATI) [5], par-
ticularly due to the dynamic nature of both sensors and target ob-
jects in real-world applications. Such mobility often leads to varia-
tions in scale, perspective, and additional noise, making it difficult 
to transform coordinate measurements into a unified global system. 
This increased complexity also intensifies the challenge of identifying 
consistent features across different time frames, potentially leading to 
failed object associations, tracking interruptions, or frequent switching 
among tracked objects. The dynamic states of objects (e.g., velocity 
and acceleration) are typically derived from historical trajectories. As 
changes in the states of surrounding objects are key factors for decision-
making, accurate tracking is essential in CAV systems [6]. Furthermore, 
moving sensors are more susceptible to occlusion, which can cause 
temporarily obscured objects to be re-identified as new entities. Such 
misidentifications can critically undermine the understanding or pre-
diction of objects’ behavior. Addressing these challenges is crucial 
for improving the reliability and robustness of mobile MOT solutions, 
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ensuring their effectiveness in meeting the demands of real-world CAV 
applications [7].

Many studies have attempted to overcome the challenges of 3D MOT 
by exploring the potential information within limited point clouds. For 
instance, [8,9] employ various distance measurement metrics to deter-
mine the associations between objects. Similarly, [10–12] emphasize 
that the same object should exhibit consistent features across different 
time steps, leveraging deep neural networks to extract feature informa-
tion from bounding boxes and their internal point clouds. Furthermore, 
some approaches [13–16] focus on trajectory smoothness, examining 
the short-term and long-term associations between an object’s current 
state and its trajectory to achieve accurate tracking. However, this field 
still faces numerous challenges, not only due to the limitations of the 
data itself but also influenced by the complexity of the application 
scenarios. We can take nuScenes [17], one of the largest MOT datasets 
that includes both vision (2D) tracking and LiDAR (3D) tracking for the 
same scenarios, as an example to summarize the research gaps in 3D 
MOT.

1. Limited object information in point cloud. Point cloud data 
primarily captures the surface characteristics of reflected ob-
jects. While it enhances the spatial structure and positional 
information of object surfaces compared to 2D images, it lacks 
many semantic details such as color, material, and shape. In the 
nuScenes dataset, the average number of point clouds within 
each 3D bounding box is approximately 67, significantly fewer 
than the number of pixels in a 2D bounding box. Moreover, 
the precise reflection properties of point clouds can introduce 
additional noise, and changes in detection angles can lead to 
unpredictable spatial relationships in point cloud distributions. 
According to the nuScenes leaderboard, the average AMOTP 
(Average Multi-Object Tracking Precision), a key performance 
metric where higher values indicate better tracking accuracy, is 
around 68.04% for 3D MOT, which is substantially lower than 
the 98.99% achieved in 2D MOT.

2. Complex and dynamic scenes. In the nuScenes dataset, within 
an average tracking range of 45 𝑚, approximately 35 bound-
ing boxes are contained per frame. In such environments, the 
trajectories of tracked objects can become unpredictable due to 
the complexity of the surroundings. Furthermore, when mul-
tiple objects are in close proximity, accurately associating the 
same objects across different time steps becomes a significant 
challenge for the tracker.

3. Maintaining continuous tracking of occluded and temporar-
ily missing objects. In the leaderboard, the average IDS (Iden-
tity Switches, where a smaller value indicates more stable track-
ing) for 3D MOT is 2074, which is larger than the average 
IDS of 1420 for 2D MOT. Addressing this challenge requires 
the integration of a detector with robust object recognition 
capabilities, especially for occluded objects. Additionally, it tests 
the tracker’s ability to maintain consistent tracking, even when 
objects temporarily disappear from the field of view.

4. Low tracking efficiency. This challenge is often accompanied 
by specific requirements for input data. While sparse point cloud 
data may lack certain object details compared to 2D image 
data, it can, in some cases, provide more efficient tracking 
performance.

To address these problems, we propose a LiDAR-based dynamic-
confidence 3D MOT method using point cloud data that relies on 
spatio-temporal association. Our proposed method achieves more ac-
curate and stable tracking results compared to state-of-the-art methods, 
while maintaining a computational efficiency of nearly 300 FPS (where 
most methods operate at 100–200 FPS). Moreover, our method demon-
strates outstanding performance across various tracking tasks involving 
different categories in multiple datasets. The proposed method offers 
the following key contributions:
2 
1. The proposed method is designed to achieve multi-object track-
ing at high frame rates without the need for GPU resources, 
expanding its applicability across a wider range of scenarios.

2. The proposed method introduces a novel object association 
model, calculating spatio-temporal correlations between object 
pairs based on four factors: geometry, velocity, historical fea-
tures, and spatial distribution. This enables accurate object 
association even in complex scenarios using only point cloud 
data.

3. The proposed method enhances continuous object tracking by 
accounting for angle variations and dynamically adjusting asso-
ciation confidence.

4. The proposed method is tested on two datasets across multi-
ple object categories to validate its accuracy, efficiency, and 
robustness.

This paper is structured as follows. Section 2 examines the related 
work in three different categories of the MOT field from the perspective 
of input data.  Section 3 clarifies the foundational concepts of the 
problem and defines the states essential for the method. Section 4 pro-
vides explanations for each process. Subsequently, Section 5 presents 
comprehensive descriptions of the experiments, while conclusions are 
drawn in Section 6. The nomenclature is presented in Appendix  A.

2. Related work

According to the classification method proposed in [18], MOT 
approaches can be categorized based on several criteria: tracking de-
pendency (detection-free or detection-based), processing mode (online 
or offline), output data type (stochastic or deterministic), and input 
data type (2D or 3D). Detection-free tracking eliminates reliance on 
detection results by manually specifying the objects to be tracked 
within each frame, as opposed to detection-based methods. This ap-
proach is commonly utilized in 2D object tracking applications, such 
as the TrackAnything framework [19]. The online method refers to a 
tracker that processes only the available historical data, whereas an 
offline method enables the tracker to utilize the entire data sequence 
for tracking purposes [18]. The stochastic method describes a tracker 
whose results may vary for the same data sequence due to the proba-
bilistic nature of neural networks. Conversely, the deterministic method 
ensures that the tracker produces consistent and unique results for each 
execution.

As MOT is categorized into three distinct types based on the dif-
ferent input data types, Table  1 highlights some of the most notable 
advantages and disadvantages of each type. A major focus of most 
studies is on how to preserve the strengths of each category while 
addressing its weaknesses.

2.1. 2D MOT

2D MOT is predominantly applied in pedestrian tracking [20]. With 
advancements in deep learning, estimating the distance from the sensor 
to the target object using images from a monocular camera has become 
feasible. Due to the ubiquity of 2D images, many studies rely solely on 
video data for tracking. Scheidegger et al. [21] employed the Poisson 
multi-Bernoulli mixture filter (PMBM) [22] to correlate 3D detection 
results across frames. These 3D detection results are generated by 
the region-based convolutional neural network (R-CNN) [23], leading 
to robust tracking outcomes. Additionally, object trajectories exhibit 
a clear sequential relationship in the temporal dimension. Building 
on this concept, Hu et al. [24] introduced mono3DT, which applies 
depth sorting to consecutive frames, enabling strong correlations be-
tween tracking instances. Transformers can indeed be effective in this 
application, given the temporal continuity of tracked objects. For exam-
ple, [25] divides images into patches and embeds into a Transformer for 
learning purposes. Keypoint-based image detection technology is also 
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Table 1
Comparison of the advantages and disadvantages of 2D, 3D, and 2D+3D MOT methods.
 2D MOT 3D MOT 2D+3D MOT  
 Advantages Abundant texture, color, and shape 

information.
Rich spatial details (position, orientation, 
size).

Integration of complementary cues from 2D 
and 3D data.

 

 Effective tracking in well-lit, textured 
scenes.

Enhanced robustness against occlusions and 
viewpoint changes.

Improved scene understanding for advanced 
tasks.

 

 Disadvantages Limited depth perception and spatial 
understanding.

Complex data acquisition and processing 
needs.

High computational cost and increased 
complexity in data fusion.

 

 Vulnerability to scale changes, occlusions, 
and inconsistent viewpoints.

Lack of object texture, color, and shape 
information.

Necessity for sensor synchronization and 
calibration.

 

instrumental in the development of MOT. CenterTrack [26] leverages 
key-point features of objects. With the assistance of a long short-term 
memory network (LSTM) [27], it can achieve notable tracking perfor-
mance. The OC-SORT tracker [2] enhances this stability by combining 
object observations with a Kalman filter to address direction estimation 
errors that can occur due to object occlusion in center-based tracking.

While these methods benefit from the robust generalization capa-
bilities of deep learning, they also grapple with several issues. These 
include a lack of precision in the depth measurement of bounding boxes 
assigned to target objects, high computational demands, and challenges 
in achieving real-time tracking efficiency.

2.2. 3D MOT

3D MOT primarily relies on point cloud data and the attributes of 
3D bounding boxes generated by detectors. These methods establish 
relationships by measuring the differences between features of various 
bounding boxes. For instance, [8] uses the Hungarian algorithm [28] to 
match objects based on their overlap rates across different frames. Chiu 
et al. [9] improved this approach by incorporating the Mahalanobis 
distance [29] as a novel basis for affinity correlation. However, tracking 
objects in intricate environments remains a significant challenge. This 
is largely because point cloud-based object detection algorithms [30] 
do not exhibit the same level of stability as 2D image detection meth-
ods, leading to frequent detection discontinuities. This issue has not 
been adequately mitigated until the introduction of tracking uncer-
tainty, a concept that improves tracking performance for objects that 
intermittently reappear.

Moreover, object feature extraction [10] and filter selection [11] 
play a crucial role in determining the effectiveness of tracking out-
comes. Considering the spatio-temporal relationships of the same
tracked object, Transformers [31] can analyze the spatio-temporal 
interactions of different objects to identify those with strong spatio-
temporal correlations. [12] also utilizes attention mechanisms to clas-
sify edge features in sparse graphs, thus identifying pairs that are 
most likely to correspond to the same object. In the case of the 
VirConv tracker [10], after implementing the stochastic discard and 
noise-resistance strategies, the model is capable of learning both shape 
specifics and deep semantic features of point cloud data in terms of 
their compositional patterns in a fast and effective manner.

Cho et al. [13] employed graph convolutional networks (GCNs) 
to additionally consider long-term association information between 
objects, thereby utilizing historical trajectories to reduce the matching 
difficulty of incomplete detections. In addition to focusing on the 
association of objects across consecutive frames, analyzing the global 
information is also a viable approach. Tracklets, as a representation 
of tracking results over a short period from a global perspective, 
reflect the temporal correlations of tracked objects. Wu et al. [14] 
extended their focus beyond individual tracked targets and instead 
investigated associations among tracklets within frame sequences, reor-
ganizing them to obtain accurate object trajectories. RethinkMOT [15] 
similarly addresses tracklets, where it processes outliers within track-
lets and restores breakpoints and ID switch points in trajectories, 
thereby achieving high-precision tracking results. From a global per-
spective, single-feature analysis also incorporates more information. 
3 
For instance, PolarMOT [16] focuses on geometric relationships by 
employing graph networks to learn the spatiotemporal relationships of 
objects from detections, thereby transforming the association task into 
a classification problem.

2.3. Joint 2D and 3D MOT

In addition to methods that leverage a single type of data in-
put, many researchers have adopted techniques that utilize multiple 
data types simultaneously. For example, [32] introduces the scale-
rotation-translation score (SRTs), a novel approach enabling affinity 
correlations for 3D bounding boxes while also leveraging YOLO [33] 
to extract semantic information from 2D images, thereby improving 
tracking performance. Similarly, some similarity networks, combined 
with VGG modules [34], are used to simultaneously extract analo-
gous features from both images and point clouds. MotionTrack [35] 
establishes an end-to-end multi-class MOT baseline using Transform-
ers with multi-modality sensor inputs. Additionally, data fusion can 
be introduced during either the detection or association phase. For 
example, DeepFusion [36] uses different compositions of intersection 
over union (IoU) to merge detection results from multiple perspec-
tives. In contrast, the multi-modality MOT framework (mmMOT) [37] 
simultaneously extracts features from two dimensions and fuses them 
during the data association phase. A similar approach is also employed 
in JRMOT [38]. Moreover, bird’s-eye view (BEV) images [39] provide 
unique information that can be valuable for enhancing data association.

3. Preliminaries

In this section, we introduce the key definitions and assumptions 
that underpin the formulation of the LiDAR-based multi-object tracking 
problem. The relevant nomenclature is provided in Appendix  A.

3.1. Problem formulation

The primary goal of multi-object tracking is to assign a unique ID 
to each object across different timestamps within a given scenario. In 
typical cases involving a single LiDAR sensor, the sensor platform may 
have various configurations, including mobile setups, such as a probe 
vehicle, or stationary installations, such as a traffic light. Additionally, 
the objects within the LiDAR’s detection range may exhibit both station-
ary and dynamic behavior relative to the sensor platform. The detection 
algorithm used in these systems can classify target objects into various 
categories, such as different types of vehicles, pedestrians, and cyclists. 
For the purposes of our research, we focus on a complex scenario where 
a single LiDAR sensor is mounted on a probe vehicle (moving sensor).

In a sequence of frames with the total duration 𝑇 , when the detec-
tion results generated by the detector and point cloud data are taken as 
input, we are able to obtain the list of tracking states at each timestamp 
and the list of uniquely determined tracking IDs by applying the point 
cloud data (pcd) at 𝑡-th frame denoted as 𝑝𝑐𝑑𝑡 and the tracking process 
as  . For the data sequence from 1 ∶ 𝑇  time step, we have: In a 
sequence of frames over the total duration 𝑇 , when the detection results 
and point cloud data are used as input, we can obtain the list of tracking 
states at each timestamp and the list of uniquely assigned tracking IDs. 



R. Zeng and M. Ramezani Measurement 256 (2025) 117864 
Table 2
General nomenclature. ▴ denotes a variable that can be substituted.
 Notation Description Unit  
 ▴ Any variable or state notation Various 
 ▴̇ Velocity in the specified direction 𝑚 𝑠−1  
 ▴̈ Acceleration in the specified direction 𝑚 𝑠−2  
 ▴′ Lived variable or a state that does not exceed survival time limitation –  
 ▴̂ Predicted variable or state –  
 ▴̃ Updated variable or state –  
 ▴∗ Sub-state of a specified state –  
 𝑛(▴) Number of a variable or state –  
 𝑑▴ Number of dimensions of a variable or state −  
This is achieved by applying the point cloud data (pcd) at the 𝑡-th 
frame, denoted as 𝑝𝑐𝑑𝑡, and the tracking process represented by  . For 
the data sequence from time step 1 to 𝑇 , we have: 
(

1∶𝑇 ,𝜘1∶𝑇
)

← 
(

∗
1∶𝑇 , 𝑝𝑐𝑑1∶𝑇

)

, (1)

where 𝑡 denotes the tracked set, and ∗
𝑡  refers to the subset of detected 

state, both of which are clarified in Section 3.2. 𝜘𝑡 represents the set of 
unique identities assigned to each object at the 𝑡-th frame.

Here, we introduce two assumptions aimed at optimizing the predic-
tion process by incorporating specific constraints without significantly 
limiting overall tracking performance.

1. Constant Acceleration Assumption: We assume that each tar-
get object maintains constant acceleration in all directions over 
a short time interval of 100 ms (the unit time interval, denoted 
as 𝜏). This assumption is reasonable in many scenarios [40–42], 
where objects move smoothly without sudden changes in a short 
time in their motion patterns.

2. Linear Relationship Assumption: We assume that the initial 
state of each object can be approximated by a Gaussian distri-
bution. The state of the tracked object at the current time step 
exhibits a linear relationship with its state at the previous time 
step, under the superposition of Gaussian noise. Additionally, the 
states of different objects are considered independent.

The proposed method is primarily composed of variables, states, and 
sets. Variables represent the values of specific features of an object at a 
given timestamp. States are typically matrices that consist of multiple 
variables and are temporally unique. Sets, in contrast, encompass all 
states of a particular object throughout an entire time sequence. Basic 
naming conventions are outlined in Table  2.

For instance, if [𝑥𝑖𝑡, 𝑦𝑖𝑡, 𝑧𝑖𝑡
] (denoted as 𝑝𝑖𝑡) represents the three-

dimensional coordinates of object 𝑖 at time 𝑡, then [𝑥̇𝑖𝑡, 𝑦̇𝑖𝑡, 𝑧̇𝑖𝑡
] (denoted as 

𝑝̇𝑖𝑡) and 
[

𝑥̈𝑖𝑡, 𝑦̈
𝑖
𝑡, 𝑧̈

𝑖
𝑡
] (denoted as 𝑝̈𝑖𝑡) represent the velocity and acceleration 

of the object, respectively. If 𝜃𝑖𝑡 denotes the object’s orientation angle, 
then 𝜃̇𝑖𝑡 and 𝜃̈𝑖𝑡 represent the object’s angular velocity and angular 
acceleration. Additionally, [𝑤𝑖

𝑡, ℎ
𝑖
𝑡, 𝑙

𝑖
𝑡
] represents the width, height, and 

length of the object’s bounding box at time 𝑡, while 𝑓 𝑖
𝑡  represents the 

object’s feature values at time 𝑡. The comprehensive nomenclature and 
notations are provided in Appendix  A.

3.2. State and sub-state

As a detection-based multi-object tracking method, four states are 
introduced to represent the information extracted and inferred from 
detection results at different stages of the process. These states capture 
the evolving nature of the tracked objects and facilitate the integra-
tion of detection data into the tracking workflow. The four states are 
introduced below.
4 
3.2.1. Detected state
The set of detected states includes all the information of detected 

bounding boxes at each timestamp in the data sequence, with each 
element representing the detected information for a single bounding 
box. The detected state matrix at timestamp 𝑡 is denoted as 𝑡 =
{𝐷1∶𝑛(𝐷∗

𝑡)
𝑡 } ∈ R𝑑𝐷×𝑛(𝐷∗

𝑡). Here, 𝑛(𝐷∗
𝑡) represents the number of objects 

in the detected sub-states 𝐷∗ at time 𝑡, corresponding to the number of 
detected targets at that time. Each element 𝐷𝑖

𝑡 in 𝑡 contains informa-
tion about the position, size, orientation, and features of the bounding 
box, as well as the initialized velocities and accelerations: 

𝐷𝑖
𝑡 =

[

𝑝𝑖𝑡, 𝑝̇
𝑖
𝑡, 𝑝̈

𝑖
𝑡, 𝑤

𝑖
𝑡, ℎ

𝑖
𝑡, 𝑙

𝑖
𝑡 , 𝜃

𝑖
𝑡 , 𝜃̇

𝑖
𝑡 , 𝜃̈

𝑖
𝑡 , 𝑓

𝑖,1∶𝜉
𝑡

]𝑇
. (2)

𝑓 𝑖,1∶𝜉
𝑡  represents the selected features from 1 to 𝜉 within the bound-

ing box of the 𝑖-th object at time 𝑡. The feature selection process is 
detailed in Eq. (6). Given the dynamic nature of both the sensor and 
target objects, with variations in the sizes of detected bounding boxes 
at different times and orientations, the size variability is intrinsically 
linked to changes in object position and orientation. Therefore, we 
sample the sizes of bounding boxes at each timestamp 𝑡 to capture the 
dynamic characteristics of the object features.

3.2.2. Predicted state
The set of predicted states includes all information for predicted 

bounding boxes at each timestamp, based on the tracked states from the 
previous timestamp in the data sequence. Each element represents the 
predicted information for a single bounding box. The predicted state 
matrix at time 𝑡 is denoted as ̂𝑡 = {𝐷̂1∶𝑛(𝑆𝑡−1)

𝑡 } ∈ R𝑑𝐷̂×𝑛(𝑆𝑡−1). Here, 
𝑛(𝑆𝑡−1) refers to the number of tracked states 𝑆 that are predictable 
at the previous timestamp 𝑡 − 1. Each element 𝐷̂𝑖

𝑡 in ̂𝑡 includes the 
predicted position, orientation, velocities, features, inherited size, and 
accelerations of each bounding box: 

𝐷̂𝑖
𝑡 =

[

𝑝̂𝑖𝑡, ̇̂𝑝
𝑖
𝑡, ̈̂𝑝

𝑖
𝑡, 𝑤̂

𝑖
𝑡, ℎ̂

𝑖
𝑡, 𝑙

𝑖
𝑡 , 𝜃̂

𝑖
𝑡 ,

̇̂𝜃𝑖𝑡 ,
̈̂𝜃𝑖𝑡 , 𝑓

𝑖,1∶𝜉
𝑡

]𝑇
. (3)

3.2.3. Updated state
The set of updated states includes all the updated information for 

detected bounding boxes at each timestamp, based on data association 
in the sequence. Each element represents the updated information for 
a single bounding box. The updated state matrix at timestamp 𝑡 is 
denoted as ̃𝑡 = {𝐷̃1∶𝑛(𝐷𝑡)

𝑡 } ∈ R𝑑𝐷̃×𝑛(𝐷𝑡). Here, 𝑛(𝐷𝑡) refers to the number 
of detected states 𝐷 (including both matched and unmatched detected 
states) at time 𝑡. Each element 𝐷̃𝑖

𝑡 in ̃𝑡 includes the updated position, 
size, orientation, velocities, accelerations, and inherited features of 
each bounding box: 

𝐷̃𝑖
𝑡 =

[

𝑝̃𝑖𝑡, ̇̃𝑝
𝑖
𝑡, ̈̃𝑝

𝑖
𝑡, 𝑤̃

𝑖
𝑡, ℎ̃

𝑖
𝑡, 𝑙

𝑖
𝑡 , 𝜃

𝑖
𝑡 ,

̇̃𝜃𝑖𝑡 ,
̈̃𝜃𝑖𝑡 , 𝑓

𝑖,1∶𝜉
𝑡

]𝑇
. (4)

3.2.4. Tracked state
The set of tracked states includes all information for both detected 

bounding boxes and unmatched predicted bounding boxes at each 
timestamp in the data sequence. Each element represents the complete 
information for a single bounding box. The tracked state matrix at 
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time 𝑡 is denoted as 𝑡 = {𝑆
1∶[𝑛(𝐷̃𝑡)+𝑛(𝐷̂′

𝑡 )]
𝑡 } ∈ R𝑑𝑆×[𝑛(𝐷̃𝑡)+𝑛(𝐷̂′

𝑡 )]. Here, 
𝑛(𝐷̃𝑡) + 𝑛(𝐷̂′

𝑡) represents the number of updated states and predicted 
states that have not exceeded their survival time. Only these states 
are considered tracked and further proceed to the next timestamp for 
updates. In other words, the set of tracked states includes both updated 
states and lived predicted states. The symbol † denotes the value of the 
tracked state after updating, distinguishing it from the detected state. 
Each element 𝑆 𝑖

𝑡  in 𝑡 contains the position, size, orientation, velocities, 
accelerations, and features of each bounding box: 

𝑆 𝑖
𝑡 =

[

†𝑝𝑖𝑡,
†𝑝̇𝑖𝑡,

†𝑝̈𝑖𝑡,
†𝑤𝑖

𝑡,
†ℎ𝑖𝑡,

†𝑙𝑖𝑡 ,
†𝜃𝑖𝑡 ,

†𝜃̇𝑖𝑡 ,
†𝜃̈𝑖𝑡 ,

†𝑓 𝑖,1∶𝜉
𝑡

]

𝑇 . (5)

3.2.5. Sub-state
The concept of a sub-state is introduced to represent a partial or 

incomplete representation of a target’s state, which arises when certain 
attributes or information remain undetermined during the initialization 
and computation phases of the model. In the analysis of object detec-
tion results, it becomes clear that detection methods treat objects at 
different timestamps as separate, unrelated entities. Consequently, the 
detection outcomes exclusively provide positional information about 
these objects, excluding velocity and acceleration, which are typically 
derived from temporal changes in position. As such, the detected state 
is considered incomplete. Hence, ∗

𝑡 and 𝐷∗𝑖
𝑡 denote the subset and 

sub-state of the detected state, comprising direct information from 
the detection results, excluding velocity and acceleration. To maintain 
consistent variable dimensions, velocity and acceleration are initialized 
subsequently, transforming the detected state from 𝐷∗𝑖

𝑡 to 𝐷𝑖
𝑡. ̂∗

𝑡 and 
𝐷̂∗𝑖

𝑡 denote the sub-state of the predicted state used during prediction 
and update, without feature information. ̃∗

𝑡 and 𝐷̃∗𝑖
𝑡 refer to the sub-

state of the updated state used for the update step, also without feature 
information. ∗

𝑡 and 𝑆∗𝑖
𝑡 denote the sub-state of the tracked state 

used for prediction, excluding feature information at the subsequent 
timestamp. 

𝐷∗𝑖
𝑡 =

[

𝑝𝑖𝑡, 𝑤
𝑖
𝑡, ℎ

𝑖
𝑡, 𝑙

𝑖
𝑡 , 𝜃

𝑖
𝑡
]𝑇 , (6)

𝐷̂∗𝑖
𝑡 =

[

𝑝̂𝑖𝑡, ̇̂𝑝
𝑖
𝑡, ̈̂𝑝

𝑖
𝑡, 𝑤̂

𝑖
𝑡, ℎ̂

𝑖
𝑡, 𝑙

𝑖
𝑡 , 𝜃̂

𝑖
𝑡 ,

̇̂𝜃𝑖𝑡 ,
̈̂𝜃𝑖𝑡
]𝑇

, (7)

𝐷̃∗𝑖
𝑡 =

[

𝑝̃𝑖𝑡, ̇̃𝑝
𝑖
𝑡, ̈̃𝑝

𝑖
𝑡, 𝑤̃

𝑖
𝑡, ℎ̃

𝑖
𝑡, 𝑙

𝑖
𝑡 , 𝜃

𝑖
𝑡 ,

̇̃𝜃𝑖𝑡 ,
̈̃𝜃𝑖𝑡
]𝑇

, (8)

𝑆∗𝑖
𝑡 =

[†𝑝𝑖𝑡,
†𝑝̇𝑖𝑡,

†𝑝̈𝑖𝑡,
†𝑤𝑖

𝑡,
†ℎ𝑖𝑡,

†𝑙𝑖𝑡 ,
†𝜃𝑖𝑡 ,

†𝜃̇𝑖𝑡 ,
†𝜃̈𝑖𝑡

]𝑇 . (9)

4. Proposed MOT method

In this section, we provide a detailed description of the proposed 
3D MOT method. The overall framework is shown in Fig.  1. Each 
module is discussed in detail in the subsequent subsections, which in-
clude the processing model, prediction model, data association model, 
and update model. By explaining the workflow of the entire method 
and the functionality of each module, this section offers a thorough 
understanding of our proposed approach.

4.1. Process flow

Fig.  1 presents an overview of the proposed detection-based on-
line tracking framework along a continuous timeline, illustrating the 
two complementary data streams and their interactions. The detection 
stream (the upper part of Fig.  1) introduces new observations obtained 
from a selected object detector at each frame, while the tracking stream 
(the lower part of Fig.  1) leverages historical state information to select 
the correct target in the current frame for matching and determining 
object trajectories over time. Box A in Fig.  1 represents the main 
processing steps of our proposed method.

By utilizing instantaneous global positioning system (GPS) and iner-
tial measurement unit (IMU) data, along with the ego-vehicle’s built-in 
5 
sensor parameters, all measurements from the detection stream are an-
chored to a common reference point established at the initial frame for 
spatial consistency. Once the detected states are initialized in the global 
coordinate system, a data association procedure is executed using 
the integrated dynamically adjusted predicted confidence information 
from the previous frame. These confidence measures guide the binary 
matching rules, ensuring that each new detection is either matched 
with an existing prediction if it aligns well, or flagged as unmatched 
if no suitable counterpart is found. Similarly, some predicted states 
may remain unmatched if no current detections correspond to them. 
Matched state pairs and unmatched detected states undergo a state 
update process and are refined by a Kalman filter into tracked states. 
Unmatched predictions, meanwhile, are subjected to Survival Time 
Management to determine whether they will be retained. As the cycle 
repeats for each frame, these iterative refinements accumulate and the 
system incrementally improves its confidence and accuracy in tracked 
object states. This process flow yields stable and reliable long-term 
tracking performance, even in the presence of noisy measurements, 
target occlusions, and variations in object behavior.

4.2. Detected state initialization

As the detection results only provide the detected sub-state 𝐷∗𝑖
𝑡, 

containing details about position, size, and orientation, it is necessary 
to initialize the missing information to maintain a consistent data 
calculation format. Therefore, for the 𝑖-th target in the 𝑡-th frame, we 
have: 

Init
(

𝐷∗𝑖
𝑡
)

→

⎧

⎪

⎨

⎪

⎩

𝑥̇𝑖𝑡, 𝑦̇
𝑖
𝑡, 𝑧̇

𝑖
𝑡 = 0

𝑥̈𝑖𝑡, 𝑦̈
𝑖
𝑡, 𝑧̈

𝑖
𝑡 = 0

𝜃̇𝑖𝑡 , 𝜃̈
𝑖
𝑡 = 0

, (10)

𝑓 𝑖,1∶𝜉
𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩


[

𝑥𝑖𝑡, 𝑦
𝑖
𝑡, 𝑧

𝑖
𝑡, 𝑤

𝑖
𝑡, ℎ

𝑖
𝑡, 𝑙

𝑖
𝑡 , 𝜃

𝑖
𝑡
]

𝜉 = 7


[

𝑥𝑖𝑡, 𝑦
𝑖
𝑡, 𝑧

𝑖
𝑡, 𝑤

𝑖
𝑡, ℎ

𝑖
𝑡, 𝑙

𝑖
𝑡
]

𝜉 = 6


[

𝑥𝑖𝑡, 𝑦
𝑖
𝑡, 𝑧

𝑖
𝑡, 𝜃

𝑖
𝑡
]

𝜉 = 4


[

𝑥𝑖𝑡, 𝑦
𝑖
𝑡, 𝑧

𝑖
𝑡
]

𝜉 = 3

, (11)

where  [⋅] indicates that the matrix is processed using min–max nor-
malization. The parameter 𝜉 specifies the number of selected features 
to be retained. The effect of varying 𝜉 on the tracking performance will 
be analyzed in detail in Section 5. Following initialization, the detected 
state 𝐷𝑖

𝑡 is obtained through concatenation. 

𝐷𝑖
𝑡 =

[

Init
(

𝐷∗𝑖
𝑡
)

, 𝑓 𝑖,1∶𝜉
𝑡

]

. (12)

4.3. State prediction

Assumption 1 (constant acceleration) enables us to forecast the 
dynamic motion of targets using a basic physical model. For any 
non-initial frame 𝑡, we have: 
𝑥̂𝑖𝑡 = 𝑥𝑖𝑡−1 + 𝑥̇𝑖𝑡−1𝜏 +

1
2 𝑥̈

𝑖
𝑡−1𝜏

2, ̇̂𝑥𝑖𝑡 = 𝑥̇𝑖𝑡−1 + 𝑥̈𝑖𝑡−1𝜏,
𝑦̂𝑖𝑡 = 𝑦𝑖𝑡−1 + 𝑦̇𝑖𝑡−1𝜏 +

1
2 𝑦̈

𝑖
𝑡−1𝜏

2, ̇̂𝑦𝑖𝑡 = 𝑦̇𝑖𝑡−1 + 𝑦̈𝑖𝑡−1𝜏,
𝑧̂𝑖𝑡 = 𝑧𝑖𝑡−1 + 𝑧̇𝑖𝑡−1𝜏 +

1
2 𝑧̈

𝑖
𝑡−1𝜏

2, ̇̂𝑧𝑖𝑡 = 𝑧̇𝑖𝑡−1 + 𝑧̈𝑖𝑡−1𝜏,
𝜃̂𝑖𝑡 = 𝜃𝑖𝑡−1 + 𝜃̇𝑖𝑡−1𝜏 +

1
2 𝜃̈

𝑖
𝑡−1𝜏

2, ̇̂𝜃𝑖𝑡 = 𝜃̇𝑖𝑡−1 + 𝜃̈𝑖𝑡−1𝜏,

(13)

where 𝜏 represents the unit time interval of the data sequence. Addi-
tionally, the predicted accelerations ̈̂𝑝𝑖𝑡 and the bounding box dimen-
sions 𝑤̂𝑖

𝑡, ℎ̂
𝑖
𝑡, 𝑙

𝑖
𝑡 at frame 𝑡 remain unchanged from frame 𝑡 − 1. The 

predicted features 𝑓 𝑖,1∶𝜉
𝑡  at frame 𝑡 are directly inherited from frame 

𝑡 − 1 and are not involved in the prediction process. As a result, the 
predicted sub-state 𝐷̂∗𝑖

𝑡 and the predicted state covariance 𝑃 𝑖
𝑡  can be 

derived as follows: 
𝐷̂∗𝑖

𝑡 = 𝐀𝐷∗𝑖
𝑡−1, (14)

𝑃 𝑖 = 𝐀𝑃 𝑖 𝐀 +𝐐
(

𝑃 𝑖 = 𝐈
)

, (15)
𝑡 𝑡−1 0
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Fig. 1. Spatio-temporal correlation-based 3D multi-object tracking method. The solid orange boxes represent the external inputs to the method, while the solid green boxes denote 
the variables. The dashed blue boxes indicate the functions within this method. The light-colored boxes correspond to the upstream and downstream modules in relation to the 
current time.
where 𝐀 ∈ R15×18 represents the transformation matrix derived from 
Eq. (13). 𝐐 refers to the noise generated, which follows a Gaussian 
distribution with zero mean and zero covariance. 𝐈 denotes the identity 
matrix.

4.4. Data association model

The data association mechanism seeks to match the predicted states 
with candidate detected states in the current frame. By taking into 
account both spatial and temporal information to link objects across 
successive frames, we introduce a joint score function that leverages 
geometry, velocity, features, and the spatial distribution of point clouds 
to identify potential matching pairs. The score matrix is provided in 
Eq. (25).

4.4.1. Geometry score
The geometry score is a standard reference measure for evaluating 

the appearance discrepancy between predicted and detected states. The 
geometry score 𝑆𝐶geo(𝐷̂𝑖

𝑡 , 𝐷
𝑗
𝑡 ), which compares the 𝑖-th predicted state 

with the 𝑗-th detected state at frame 𝑡, is formulated as: 

𝑆𝐶geo
(

𝐷̂𝑖
𝑡 , 𝐷

𝑗
𝑡

)

= 𝜆1 ⋅
⎛

⎜

⎜

⎝

∑

𝑠∈{𝑤,ℎ,𝑙}

|

|

|

𝑠̂𝑖𝑡 − 𝑠𝑗𝑡
|

|

|

𝑠̂𝑖𝑡 + 𝑠𝑗𝑡

⎞

⎟

⎟

⎠

+ 𝜆2 ⋅
(

∥ 𝑝̂𝑖𝑡 − 𝑝𝑗𝑡 ∥
2
2

)

+ 𝜆3 ⋅
(

sin ||
|

𝜃̂𝑖𝑡 − 𝜃𝑗𝑡
|

|

|

)

,

(16)

where  (⋅) denotes the min–max normalization function, and ∥ ⋅ ∥2
represents the Euclidean norm (L2 norm). 𝜆1, 𝜆2, and 𝜆3 correspond to 
the respective weights for size, position, and orientation. Overall, the 
right-hand side of this equation individually computes the differences 
in size, position, and orientation between the bounding boxes of the 
predicted and detected states.

4.4.2. Velocity score
The velocity score is introduced to quantify the difference in the av-

erage velocity change of an object along its historical trajectory, taking 
into account the velocity at the current frame. Since all velocities are 
initially set to zero when the detected state is initialized, it is necessary 
to reassign the detected state’s velocity based on the historical average 
velocity of the predicted state when calculating the velocity score for 
each state pair. Thus, the average velocity change of the 𝑖-th predicted 
state, from the time the object first appears until frame 𝑡, is denoted as 
{𝛥 ̇̂𝑝𝑖𝑡|𝐷̂

𝑖
𝑡}. Given the average velocity change of the 𝑖-th predicted state 

from the time the object first appears until frame 𝑡 − 1 as 𝛥 ̇̂𝑝𝑖𝑡−1, the 
velocity of the 𝑗-th detected state at frame 𝑡 can be estimated as: 
{

𝑝̇𝑗 |𝐷𝑗
}

=
{†𝑝̇𝑖 |𝑆𝑖 }

+
{ ̇̂𝑝𝑖 |𝐷̂𝑖 }

. (17)
𝑡 𝑡 𝑡−1 𝑡−1 𝛥 𝑡−1 𝑡−1
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Therefore, the velocity score can be calculated as: 

𝑆𝐶vel
(

𝐷̂𝑖
𝑡 , 𝐷

𝑗
𝑡

)

=𝜆4 ⋅
⎛

⎜

⎜

⎝

|

|

|

𝑝̇
𝑖
𝑡 − 𝑝̇𝑗𝑡

|

|

|

𝑝̇
𝑖
𝑡 + 𝑝̇𝑗𝑡

⎞

⎟

⎟

⎠

+ 𝜆5 ⋅ exp
(

− 1
∥ ̇̂𝑝𝑖𝑡 − 𝑝̇𝑗𝑡 ∥

2
2

)

, (18)

where 𝜆4 and 𝜆5 represent different weights. 𝑝̇
𝑖
𝑡 denotes the average 

velocity across 𝑡 frames if the velocity of the predicted state 𝐷̂𝑖
𝑡 is 

considered as the velocity at frame 𝑡. Similarly, 𝑝̇𝑗𝑡  is derived when 
accounting for the detected state 𝐷𝑗

𝑡 . Therefore, the two terms on 
the right-hand side of the equation compute the velocity differences 
between the predicted and detected states from different perspectives.

4.4.3. Historical feature score
Since feature values are not included in linear prediction or Kalman 

filtering (the method for updating them is detailed in Section 4.5.3), the 
original historical information of each trajectory is preserved over time. 
Retaining the historical features of objects offers a clear approach to 
handling changes in object scale. This is particularly useful in sparse 
point cloud data, where the distance between the LiDAR and the 
target object significantly affects the object’s scale. Thus, the deviation 
between the detected state and historical features can be computed as 
follows: 
𝑆𝐶fea

(

𝐷̂𝑖
𝑡 , 𝐷

𝑗
𝑡

)

= 
(

∥ 𝑓 𝑖,1∶𝜉
𝑡 − 𝑓 𝑗,1∶𝜉

𝑡 ∥22
)

. (19)

4.4.4. Distribution score
The distribution score is designed to measure the similarity in the 

spatial distribution of point clouds within two separate bounding boxes. 
By projecting the 3D point cloud data onto three axes, the similarity can 
be calculated using the spatial probability distribution of the points. 
To ensure computational efficiency, when calculating the point clouds 
within the bounding box, we only calculate the distribution probability 
of point clouds projected onto the coordinate axes. In the Cartesian 
coordinate system where the direction of travel of the ego vehicle is 
the y-axis, we take the calculation of the distribution probability in 
the x-axis direction as an example (as shown in Fig.  2). We divide 
the bounding box into several segments (we use 10 segments in our 
experiment), and calculate the distribution probability of all points 
projections on the x-axis within these 10 segments.

Let the spatial probability distributions along the three axes be 
represented as {𝑥,𝑦,𝑧}𝐷̂𝑖

𝑡 and {𝑥,𝑦,𝑧}𝐷𝑗
𝑡 , then we have: 

𝑆𝐶dis
(

𝐷̂𝑖
𝑡 , 𝐷

𝑗
𝑡

)

= 𝜂1 ⋅ 𝑆c
(

𝑥𝐷̂𝑖
𝑡 ,
𝑥 𝐷𝑗

𝑡

)

+ 𝜂2 ⋅ 𝑆c
(

𝑦𝐷̂𝑖
𝑡 ,
𝑦 𝐷𝑗

𝑡

)

+ 𝜂 ⋅ 𝑆
(

𝑧𝐷̂𝑖,𝑧 𝐷𝑗
)

,
(20)
3 c 𝑡 𝑡
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Fig. 2. The calculation method of the distribution score stated by Eqs.  (20) and (21). 
The rectangular shape represents the bounding box, with the point clouds represented 
by red-colored points. 𝜃 denotes the orientation of this box. The orange dashed lines 
indicate dividing the bounding box into several equal parts along the horizontal 
direction.

where 𝜂1, 𝜂2, and 𝜂3 represent the proportions of distribution similarity 
in the three respective directions. 𝑆c denotes the cosine similarity. 
Given two 𝑚-dimensional attribute vectors, 𝐀 and 𝐁, the cosine simi-
larity 𝑆c (𝐀,𝐁) can be computed using the dot product and magnitudes, 
as shown in Eq. (21): 

𝑆c (𝑨,𝑩) = 𝑨 ⋅ 𝑩
∥ 𝑨 ∥∥ 𝑩 ∥

=
∑𝑚

𝑛=1 𝐴𝑛𝐵𝑛
√

∑𝑚
𝑛=1 𝐴2

𝑛

√

∑𝑚
𝑛=1 𝐵2

𝑛

, (21)

where 𝐴𝑛 and 𝐵𝑛 represent the 𝑛th components of the vectors 𝐀 and 𝐁, 
respectively.

4.4.5. Dynamic tuned association score
The joint score matrix 𝛬𝑖,𝑗

𝑡  in our proposed method is derived by 
computing the weighted sum of the geometry, velocity, feature, and 
distribution scores, as shown in the following equation, where 𝜑{1,2,3,4}
represents the weight assigned to each score. 

𝛬𝑖,𝑗
𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜑1
𝜑2
𝜑3
−𝜑4

⎤

⎥

⎥

⎥

⎥

⎦

𝑇

×

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑆𝐶geo(𝐷̂𝑖
𝑡 , 𝐷

𝑗
𝑡 )

𝑆𝐶vel(𝐷̂𝑖
𝑡 , 𝐷

𝑗
𝑡 )

𝑆𝐶fea(𝐷̂𝑖
𝑡 , 𝐷

𝑗
𝑡 )

𝑆𝐶dis(𝐷̂𝑖
𝑡 , 𝐷

𝑗
𝑡 )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (22)

Additionally, considering that prediction reliability decreases as the 
number of prediction steps increases, a dynamic prediction confidence 
is introduced. This confidence reduction strategy is applied based on 
the 2D intersection over union (𝐼𝑜𝑈) metric, leading to an adjustment 
of the joint score. Let 𝑀 and 𝑁 represent two bounding boxes, and the 
𝐼𝑜𝑈 (𝑀,𝑁) is determined by the following rule. 

𝐼𝑜𝑈 (𝑀,𝑁) =
Area of Overlap
Area of Union = 𝑀 ∩𝑁

𝑀 ∪𝑁
. (23)

Thus, the prediction confidence is introduced here to represent 
the level of trustworthiness associated with the current prediction. 
In practical situations, if a suitable detection can be found to pair 
with each prediction at every time step, the prediction confidence will 
remain at its initial value. However, if there are predictions for which 
no suitable detection can be found, then the prediction confidence for 
the next time step will decrease according to the following rules. The 
prediction confidence 𝛾̂ 𝑖𝑡  of 𝑖-th predicted state can be obtained as: 

𝛾̂ 𝑖𝑡 =

⎧

⎪

⎨

⎪

⎩

1 𝑡 = 1 or ∄ 𝑆𝑖
𝑡

𝐼𝑜𝑈 (𝐷̂𝑖
𝑡 , 𝑆

𝑖
𝑡−1) ⋅ 𝛾

𝑖
𝑡−1 𝐼𝑜𝑈 (𝐷̂𝑖

𝑡 , 𝑆
𝑖
𝑡−1) ⩾ 𝜇

𝜇 ⋅ 𝛾 𝑖𝑡−1 otherwise
, (24)

where 𝜇 is set as the static threshold for the confidence deduction 
purpose. The value of 𝛾̂ 𝑖𝑡  at current time step is influenced by the value 
of 𝛾 𝑖𝑡−1 from previous time step. Additionally, the detection confidence 
also becomes a factor during the state update stage. For further details, 
please refer to the explanation of Eq. (27) and Eq. (28) in Section 4.5.3.
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For all predicted states ̂𝑡, the corresponding joint score graph 𝛬𝑡
is: 

𝛬𝑡 =
⎡

⎢

⎢

⎣

𝛾̂1𝑡 ⋅ 𝛬1,1
𝑡 ⋯ 𝛾̂ 𝑖𝑡 ⋅ 𝛬

𝑖,1
𝑡

⋮ ⋱ ⋮
𝛾̂1𝑡 ⋅ 𝛬1,𝑗

𝑡 ⋯ 𝛾̂ 𝑖𝑡 ⋅ 𝛬
𝑖,𝑗
𝑡

⎤

⎥

⎥

⎦

. (25)

Here, 𝑖 corresponds to the sequence of predicted states, while 𝑗
corresponds to the sequence of detected states. Thus, when a predicted 
state has low confidence, we dynamically adjust its score downward to 
simplify matching, as shown in Fig.  3. These low-confidence states have 
a wider matching range, making it easier to find a suitable match.

The pairs with the lowest joint scores, determined using a greedy 
algorithm as outlined in Algorithm 1, are considered matched pairs, 
unless all joint scores for a predicted state exceed a given threshold 𝜖. In 
these instances, the matching process fails, either due to the temporary 
absence of objects or the appearance of new objects in the scene, as 
shown in Fig.  3.
Algorithm 1: Pseudo-code of greedy algorithm for association.
Input: Joint score graph 𝛬𝑡, Predicted state 𝐷̂𝑖

𝑡, Number of 
predicted state 𝑚, Detected state 𝐷𝑗

𝑡 , Number of detected 
state 𝑛, Associated threshold 𝜖

Output: Set of matched Pairs 𝑀 , Set of unmatched predicted 
states 𝑈𝑃 , Set of unmatched detected states 𝑈𝐷

Initialization 
𝑀 ← ∅, 𝑖𝑑𝑥 ← 1, 𝐿𝑖𝑠𝑡 ← ∅
𝑈𝑃 ← ∅, 𝑈𝐷 ← ∅
for 𝑖 ← 1 to 𝑚 do

for 𝑗 ← 1 to 𝑛 do
if 𝛬𝑡[𝑛][𝑚] ⩽ 𝜖 then

if 𝛬𝑡[𝑛][𝑚] ⩽ 𝐿𝑖𝑠𝑡[𝑖𝑑𝑥] then
𝐿𝑖𝑠𝑡[𝑖𝑑𝑥] ← 𝛬𝑡[𝑛][𝑚]
𝑀[𝑖𝑑𝑥] ← (𝐷̂𝑚

𝑡 , 𝐷
𝑛
𝑡 )

end 
end 

end 
𝑖𝑑𝑥 = 𝑖𝑑𝑥 + 1

end 
for ∀ 𝐷̂𝑖

𝑡 ∉ 𝑀 or ∀ 𝐷𝑗
𝑡 ∉ 𝑀 do

𝑈𝑃 ← 𝑈𝑃 ∪ (𝐷̂𝑖
𝑡)

𝑈𝐷 ← 𝑈𝐷 ∪ (𝐷𝑗
𝑡 )

end 

Based on joint score graph 𝛬𝑡, this dynamic association strategy 
can be understood as follows: Suppose there are 𝑛 predicted states 
and 𝑚 detected states in the current scene. Let us designate 𝑖-th state 
among predicted states and 𝑗-th state among detected states. In pairs 
where the prediction 𝐷̂𝑖

𝑡 is the same but different detections 𝐷1∶𝑚
𝑡  are 

involved, each pair has the same prediction confidence 𝛾̂ 𝑖𝑡 . In this case, 
finding the best match is solely determined by the association score. 
However, in pairs where the detection 𝐷𝑗

𝑡  is the same but different 
predictions 𝐷̂1∶𝑛

𝑡  are considered, some predictions may have higher 
pairing scores with the detection due to a long disappearance period. 
In such cases, lower prediction confidence can play a regulating role, 
allowing even those predictions with higher scores to have the oppor-
tunity to be matched with the detection. Indeed, from this perspective, 
low confidence expands the potential pairing range.

Consider a scenario (as depicted in Fig.  4), where an object is 
traveling on a road from 𝑡− 4 to 𝑡+ 4. At time 𝑡, it disappears from the 
detector’s field of view due to being occluded, only to reappear at 𝑡+3. 
Under the strategy of dynamic confidence, the pairing range fluctuates 
only within a small range before step 𝑡 because predicted states can 
find correct matches. However, starting from time 𝑡, predicted states 
fail to find correct matches. Assuming the object’s disappearance time 
does not exceed the survival time, the pairing range will gradually 
increase at each time step. Therefore, we can observe that at time 
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Fig. 3. Dynamic association strategy. Grey-colored car models represent predicted targets, while colored models denote detected targets. Vehicles move in the direction indicated 
by the gray arrows. The colored rings centered on each prediction represent the association range for the corresponding prediction, where detections covered by the ring are 
considered potential associations, indicated by white arrows. The color of the dot above each prediction corresponds to the color of its actual associated detection. The proximity 
between predicted and detected objects reflects the extent of their overlap.
Fig. 4. Case analysis of temporarily occluded objects. On the timeline, the positions of the same object at different time steps are depicted. The blue circles represent the detected 
states of the object, the yellow circles represent the predicted states, and the green circles represent the pairing range at each timestamp. Lines connecting circles of the same 
color at different time points represent the trajectory of that state.
 

𝑡 + 3, the detected state happens to appear at the edge of the pairing 
range, enabling predicted state to find a correct match again. Without 
this mechanism, the pairing range would remain the same as before 
the object disappeared, and the reappearing detected state might be 
identified as a new object.

4.5. State update

The update module incorporates new measurements into existing 
object tracks and refines their state estimates. By merging predictions 
with detections, it produces updated object states. The pseudo-code for 
the state update is presented in Appendix  C.

4.5.1. Kalman filter update
The Kalman filter is an optimal recursive estimator that combines 

measurements and predictions to estimate the state within a dynamic 
system over time. Based on the assumption that measurement noise 
is linear and Gaussian distributed, the Kalman filter can efficiently 
estimate the updated sub-state 𝐷̃∗𝑖

𝑡 based on predicted sub-state 𝐷̂∗𝑖
𝑡

and detected sub-state 𝐷∗𝑗
𝑡 . Specific updates is elaborated in detail in 

Appendix  B.

4.5.2. Unmatched state update
To initialize the unmatched detected sub-state 𝐷∗𝑘

𝑡 , the same method
used for detection initialization is applied. This involves setting all 
8 
velocities and accelerations in the sub-state to 0. Additionally, the 
features 𝑓𝑘,1∶𝜉

𝑡  of the updated state are directly inherited from the 
detected state. The predicted state covariance 𝑃 𝑘

𝑡  is also set to the 
identity matrix 𝐈, ensuring that the initial uncertainty is assumed to be 
equal across all dimensions. To address cases where no matching pair 
can be found for a predicted sub-state 𝐷̂∗𝑙

𝑡—due to it being temporarily 
out of view or absent from the scene—a maximum survival time is 
defined, implementing the ‘‘max-age’’ concept proposed by Benbarka 
et al. [43]. If the number of prediction steps exceeds the maximum 
survival time, the predicted state is removed from the trajectory list.

4.5.3. Tracked state update
As shown in Fig.  1, the set of updated states, ̃𝑡, is formed by merg-

ing the states updated from matched pairs with the initialized states. 
Importantly, the features of the updated state 𝐷̃𝑖

𝑡 must be updated to 
reflect the historical features as follows: 

𝑓 𝑖,1∶𝜉
𝑡 =

⎧

⎪

⎨

⎪

⎩

1
2

(

𝑓 𝑖,1∶𝜉
𝑡−1 + 𝑓 𝑖,1∶𝜉

𝑡

)

∃ 𝑓 𝑖,1∶𝜉
𝑡−1

𝑓 𝑖,1∶𝜉
𝑡 ∄ 𝑓 𝑖,1∶𝜉

𝑡−1

. (26)

As a result, the set of tracked states 𝑡 is formed by combining the 
updated states ̃𝑡 with the surviving predicted states ̂′

𝑡. Following 
this, all tracked states shift from prediction confidence to matching 
confidence, depending on the matching conditions. The specific rules 
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governing this transition are as follows: 

𝛾 𝑖𝑡 =

⎧

⎪

⎨

⎪

⎩

1 ∄ 𝛾̂ 𝑖𝑡−1 and sigmoid
(

𝜍𝑖𝑡
)

> 0.5
𝛾̂ 𝑖𝑡 unmatched predicted state
min

(

𝛾̂ 𝑖𝑡 + 𝜎𝑖𝑡 , 1
)

otherwise
, (27)

𝜎𝑖𝑡 = 1 − 𝐼𝑜𝑈
(

𝐷̃𝑖
𝑡 , 𝐷

𝑖
𝑡
)

⋅ sigmoid
(

𝜍𝑖𝑡
)

, (28)

where sigmoid(𝜍𝑖𝑡 ) denotes the detected confidence 𝜍𝑖𝑡  of detection result 
activated by sigmoid function. 𝛾 𝑖𝑡  is capped at 1 as the maximum value 
if it exceeds this value. ∄ 𝛾̂ 𝑖𝑡−1 indicates that the object appears for 
the first time, and sigmoid (𝜍𝑡𝑖) > 0.5 ensures that it can be confi-
dently identified as the corresponding object. The updated confidence 
𝛾 𝑖𝑡  at each time step is incorporated into the matching confidence set 
𝛤𝑡, which is subsequently carried forward to the next time step for 
recalculation. These two equations indicate that objects with higher 
detection confidence correspond to smaller values of 𝛾 𝑖𝑡 , while objects 
with higher uncertainty correspond to larger values of 𝛾 𝑖𝑡 . When an 
object first appears in the scene or reappears after being undetected, 
its confidence is updated to 1. If no suitable match is found, the 
predicted confidence from the predicted state is retained. Except for 
these cases, 𝛾 𝑖𝑡  is influenced by the detection confidence. According to 
Eq. (28), when the detection result is more confident, the increment 
in the update of 𝛾 𝑖𝑡  is smaller. Consequently, it becomes easier to find 
matching pairs in the next time step according to the smaller-is-better 
rule. Conversely, when the detector has a low level of confidence, the 
increment in the update of 𝛾 𝑖𝑡  is larger, making it more difficult to 
correctly match objects in the next time step.

5. Experiment result

We performed a series of experiments and ablation tests1 using the 
publicly available datasets KITTI [44] and nuScenes [17].

5.1. Experiment setup and evaluation metric

5.1.1. Experimental setup
All experiments were implemented in Python on Ubuntu 18.04 LTS, 

using an RTX 3070 graphics card and an AMD Ryzen 5-5600X processor 
with 16 GB of RAM, though our tracking method can operate without a 
GPU. The models requiring training in parallel experiments, along with 
all detectors, were trained on four NVIDIA V100 GPUs. For consistency, 
the training and testing sets consisted of 21 and 29 scenarios (each 
scenario processed as one data sequence), as officially divided by the 
datasets [44].

5.1.2. Implementation detail
The parameters in our proposed method, which are optimized with 

the goal of maximizing the MOTA on the KITTI dataset, are set as fol-
lows: {𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5} are set to {0.4, 0.4, 0.2, 0.7, 0.3}, {𝜑1, 𝜑2, 𝜑3, 𝜑4}
are set to {0.5, 0.125, 0.1875, 0.1875}, {𝜂1, 𝜂2, 𝜂3} are set to {0.4, 0.4, 0.2}, 
𝜇 is set to 0.7, and the associated threshold 𝜖 is set to 2. The maximum 
survival time is set to 12 (steps). The selected baseline detectors are 
Point-RCNN [45] and Megvii [46] to respectively generate tracking 
results on the testing data of KITTI and nuScenes.

5.1.3. Dataset
The proposed method was validated on two datasets. The primary 

dataset used is the KITTI tracking dataset,2 a specialized subset of 

1 The source codes and data storage guidelines are available on the project
page on GitHub.

2 KITTI Object Tracking Evaluation
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the KITTI dataset [44],3 designed specifically for object tracking in 
autonomous driving scenarios in real-world environments. It provides 
extensive data and annotations to support the development and evalua-
tion of tracking algorithms. The dataset includes an official leaderboard 
for easy performance validation and ranking of algorithms. It is divided 
into training and testing parts, with the training set used for parallel 
experiments and the testing set reserved for validation on the official 
website. Additionally, the nuScenes tracking dataset [17]4 was also 
used in this research to further validate the method’s performance and 
robustness. The nuScenes dataset is partitioned similarly to the KITTI 
dataset but features a wider range of scenarios and object categories. It 
includes over 1000 sequences and 1.4 million bounding boxes. Unlike 
the KITTI dataset, which focuses primarily on cars and pedestrians, 
the nuScenes dataset introduces five additional categories. However, 
sequences in nuScenes are generally shorter in duration, and its leader-
board offers fewer methods for comparison compared to the more 
extensive leaderboard of the KITTI dataset.

5.1.4. Evaluation metric
We evaluated our proposed method and benchmarks using the

higher-order tracking accuracy (HOTA) metrics, the primary evaluation 
criteria in the KITTI challenge. The widely-used CLEAR-MOT metrics 
in the object tracking field were also implemented for further evalua-
tion. The first category of metrics includes HOTA, localization accuracy
(LocA) score, association accuracy (AssA) score, and detection accuracy
(DetA) score. The second category comprises multiple object tracking 
accuracy (MOTA), multiple object tracking precision (MOTP), and their 
related indices: mostly tracked (MT), mostly lost (ML), ID switches (IDS),
fragmentation (Frag), recall, and precision. Additionally, we introduced
frames processed per second (FPS) to evaluate the algorithm’s efficiency. 
The metrics are as follows: 

HOTA𝛼 =

√

∑

𝑐∈{TP𝛼} 𝛼(𝑐)

TP𝛼 + FN𝛼 + FP𝛼
, HOTA = ∫

1

0
HOTA𝛼𝑑𝛼,

MOTA = 1 − FN + FP + IDS
gtDet , MOTP = 1

TP
∑

TP
,

Recall = TP
TP + FN , Precision = TP

TP + FP ,

LocA = ∫

1

0

1
TP𝛼

∑

𝑐∈{TP𝛼}
(𝑐)𝑑𝛼, AssA = 1

TP
∑

𝑐∈TP
(𝑐),

DetA = TP
TP + FN + FP .

(29)

Here, gtDet represents the ground-truth targets. TP (true positive) 
refers to tracking results that match with gtDet. Unmatched gtDets 
are labeled as FN (false negatives), while unmatched tracking results 
are labeled as FP (false positives), with both FN and FP indicating 
incorrect tracking outcomes. IDS represents the number of times IDs 
change inconsistently between consecutive frames, and Frag measures 
the number of times a tracker is interrupted.  denotes the average 
similarity score based on localization 𝐼𝑜𝑈 (𝐼𝑜𝑈𝐿𝑜𝑐), while  is an 
adjustable association score used to assess the degree of association. 
MOTA primarily evaluates tracking error rates, MOTP assesses local-
ization errors, and HOTA provides an integrated evaluation metric. 
MT (rate ⩾ 80%) and ML (rate ⩽ 20%) measure the overlap rate 
between the tracked and actual trajectories. LocA separately evaluates 
the accuracy of localization under multiple localization thresholds 𝛼, 
where (𝑐) represents the spatial similarity score between predicted 
detections and ground-truth. AssA primarily evaluates the allocation 
accuracy for detected targets, assessing the model’s handling of details 
for each detected object. DetA measures the overall detection capability 
of the model, focusing on missed detections and false positive results.

3 KITTI Vision Benchmark Suite
4 nuScenes Tracking Task
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Table 3
Car tracking results on KITTI testing dataset extracted from the official leaderboard. The methods are listed in descending order by year. ∗ indicates methods that use the same 
detector, Point-RCNN. 2D refers to image data, while 3D refers to point cloud data. ↑ indicates that higher values correspond to better performance, while ↓ indicates that lower 
values are better. The best results are highlighted in bold, and the second-best results are marked with underlines.
 Method Modality Source HOTA↑ MOTA↑ MOTP↑ AssA↑ DetA↑ Recall↑ Precision↑ LocA↑ MT↑ ML↓ Frag↓ IDS↓  
 Proposed method∗ 3D CPU 82.28% 90.44% 87.02% 84.82% 78.44% 92.78% 98.94% 88.14% 84.15% 5.85% 52 17  
 VirConvTrack∗ [10] 3D GPU 81.87% 90.28% 86.93% 85.19% 78.14% 93.18% 98.12% 88.04% 83.23% 5.08% 77 8  
 RethinkMOT [15] 3D GPU 80.39% 91.47% 85.63% 83.64% 77.88% 96.63% 95.95% 87.07% 89.38% 4.31% 134 46  
 LEGO [47] 3D GPU 80.75% 90.80% 86.75% 83.27% 78.19% 96.06% 96.36% 87.92% 87.69% 1.54% 109 214  
 UG3DMOT [48] 3D CPU 78.60% 88.10% 86.58% 82.28% 76.01% 92.15% 96.95% 87.84% 79.23% 5.38% 360 30  
 PolarMOT [16] 3D GPU 75.16% 85.31% 85.52% 76.95% 73.94% 92.67% 94.40% 87.12% 81.38% 2.31% 599 462  
 MSA-MOT [49] 3D GPU 78.52% 88.19% 85.47% 82.56% 75.19% 94.75% 94.53% 87.00% 87.23% 11.54% 428 91  
 PC3T∗ [50] 3D CPU 77.80% 88.88% 84.37% 81.59% 74.57% 92.62% 97.75% 86.07% 80.00% 8.31% 201 225  
 AB3DMOT∗ [8] 3D CPU 69.99% 83.92% 85.30% 69.33% 71.13% 88.17% 97.19% 71.31% 66.77% 9.08% 206 113  
 DeepFusionMOT∗ [36] 2D+3D GPU 75.46% 84.80% 85.10% 80.05% 71.54% 87.94% 98.25% 86.70% 68.46% 9.08% 472 84  
 YONTD-MOT [51] 2D+3D GPU 78.08% 85.19% 86.10% 84.01% 75.83% 89.76% 96.66% 87.23% 67.54% 7.08% 371 42  
 TripletTrack [52] 2D+3D GPU 73.58% 84.77% 86.16% 74.66% 73.18% 88.18% 98.85% 87.37% 69.54% 3.38% 522 322  
 EagerMOT∗ [53] 2D+3D GPU 74.39% 88.21% 85.73% 74.16% 75.27% 90.60% 98.69% 71.25% 76.62% 2.47% 390 239  
 JRMOT [38] 2D+3D GPU 69.61% 85.70% 85.48% 66.89% 73.05% 89.51% 97.81% 76.64% 71.85% 4.00% 273 271  
 mmMOT [37] 2D+3D GPU 62.05% 84.77% 85.21% 54.02% 72.29% 88.81% 97.93% 86.58% 73.23% 2.77% 570 733  
 aUToTrack [39] 2D+3D GPU 59.83% 82.25% 80.52% 53.68% 67.82% 89.36% 97.03% 83.10% 72.62% 3.54% 484 1424 
 FANTrack [54] 2D+3D GPU 60.85% 77.72% 82.33% 58.69% 64.36% 83.66% 96.15% 84.72% 62.62% 8.77% 701 743  
5.2. Performance evaluation

5.2.1. Benchmark comparison
The official leaderboard shows that our method outperforms state-

of-the-art models in most evaluation metrics, see Table  3. As an online 
method that only requires point cloud data and does not rely on GPU 
resources, our proposed approach outperforms most state-of-the-art 
methods in both the primary evaluation metric, HOTA, and the legacy 
metrics, MOTA and MOTP. This indicates fewer tracking errors and 
higher overlap rates with ground truth for predicting and updating 
object information. Specifically, our proposed method excels in the 
LocA metric compared to other benchmarks, indicating higher preci-
sion in localizing tracked object bounding boxes. This superiority is 
attributed to the incorporation of angle changes in the constant accel-
eration prediction model, resulting in smoother predictions. Similarly, 
the notable performance of our proposed method in the AssA and DetA 
metrics further demonstrates that our dynamic confidence mechanism 
helps stabilize the association strength between predictions and targets. 
Additionally, the proposed method exhibits high precision due to our 
aggregated data association model, which enables it to maintain correct 
pairing results even in complex scenarios.

However, the method lags behind some algorithms that utilize depth 
graph networks (such as LEGO) or perform tracklet cleaning in terms of 
the recall metric. This reflects the conservative nature of our proposed 
method, which tends to miss some true positives while ensuring that the 
majority of predicted positives are true positives. Moreover, the lower 
threshold 𝜖 in our proposed method somewhat restricts aggressive 
matching behavior. Furthermore, our proposed method achieves low 
values in the Frag and IDS metrics, indicating a strong long-term and 
stable tracking capability and the effectiveness of dynamic confidence 
in maintaining the uniqueness of tracked targets, even when they 
temporarily disappear from the detector’s field of view. Moreover, 
compared with methods (VirConvTrack, PC3T, AB3DMOT, DeepFusion-
MOT, and EagerMOT) using the same detector Point-RCNN [45], our 
method has significant advantages in all evaluation indexes. This also 
rules out the possibility that the improved tracking results are solely 
due to the advanced capabilities of the detector.

In real-time applications, the efficiency of object tracking is just 
as crucial as tracking accuracy. To evaluate this, we selected seven 
open-source tracking methods, covering two different data input types 
(3D only, 2D+3D) and two data processing requirements (GPU, CPU-
only). Each method was tested five times in the local environment, 
with the average efficiency presented in Fig.  5. The results indicate 
that methods requiring a GPU are significantly less efficient than those 
relying on CPU alone. While 60 FPS generally meets the standard for 
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Fig. 5. FPS tests on the local computer environment. All comparison methods are either 
downloadable or trainable models available through their official GitHub repositories. 
The training procedures exclusively use the KITTI dataset. Some methods may perform 
below their optimal levels, as only default parameters were applied.

real-time tracking, it also demands higher computational performance 
from the device. Compared to methods that rely solely on the CPU, 
our approach balances competitive tracking accuracy with high data 
processing efficiency.

Furthermore, we analyzed the computational complexity of our 
proposed method to verify its efficiency. As a non-neural network 
algorithm running linearly along the timeline, our method does not 
involve training or inference processes, offering a significant advantage 
in complexity compared to neural network-based methods. In terms of 
time complexity, the algorithm is primarily dominated by the 𝑂(𝑚⋅𝑛) of 
the association model, where 𝑚 and 𝑛 respectively represent the number 
of detections and predictions. This complexity is manageably low due 
to the limited number of objects in real-world scenarios.

5.2.2. Result visualization
We selected three challenging scenarios (sequence 7, 10, and 12) 

from the testing set and visualized the tracking results, as shown in 
Fig.  6. For each scenario, we projected the point cloud data and the 
corresponding tracking results of each frame onto the depth images us-
ing the official coordinate transformation parameters, producing three 
sets of 2D visualizations. These provide a clearer representation of the 
tracking performance compared to sparse 3D point cloud data.



R. Zeng and M. Ramezani Measurement 256 (2025) 117864 
Fig. 6. Visualization of tracking results on the KITTI tracking dataset (testing set) across three different scenarios. The image results are generated by projecting point cloud data 
onto the stereo images.
Fig. 7. The tracking results of three methods for the first 130 frames of scenario 28 in the testing dataset. The upper part shows a scene screenshot captured from an onboard 
camera. The lower part presents the tracking results of our proposed method, RethinkMOT, and DeepFusionMOT. Each dot represents the instantaneous position of a tracked object, 
with colors used to distinguish different objects. Red circles highlight potential ID switch occurrences.
To graphically demonstrate the stability of our proposed method in 
continuous tracking, we selected a complex roundabout scenario from 
the testing dataset, as illustrated in Fig.  7. In this roundabout, vehicles 
are intermittently occluded due to consecutive turns caused by pre-
ceding vehicles, leading to opposing-direction vehicles being partially 
obscured. We analyzed the first 130 frames of this scenario, comparing 
the tracking results of our proposed method with two other categories 
of methods (RethinkMOT [15] for 3D and DeepFusionMOT [36] for 
2D+3D). Since the red circles highlight the main areas of ID changes, 
the results demonstrate that the proposed method exhibits more stable 
continuous tracking performance with fewer ID switches, particularly 
for temporarily occluded objects.
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In addition, the effectiveness of the dynamic confidence strategy can 
be demonstrated through visualization. We selected two scenarios from 
the training dataset conducted in the experiments, as shown in Fig.  8. 
In both scenarios, there are moments when some vehicles are partially 
or completely obscured, disappearing from view. The figures on the 
left show the results without applying the dynamic confidence strategy, 
while the right ones display the outcomes with the proposed strategy 
implemented.

As shown in Fig.  8, when dynamic confidence is not applied, objects 
that reappear after being occluded are sometimes mistakenly identified 
as new objects, leading to the creation of new trajectory points and 
ID switches, especially in dense traffic or during turns. However, with 
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Fig. 8. Trajectories of tracked objects. The colored bounding boxes represent different tracked objects. White points depict the point clouds, while colored points show the historical 
trajectories of each object. The color of the trajectory corresponds to the color of the object’s bounding box. The changing trajectory points within the white dashed box indicate 
ID switches that occurred during the tracking process.
the proposed strategy, the object trajectories become smoother, and ID 
switches are less frequent.

5.2.3. Parameter fine-tuning and sensitivity
In our method, affinity association is critical, and the weight as-

signed to each score significantly impacts the quality of the association. 
To determine the optimal weight combination, we used the delta tuning 
method [55], where one weight was optimized while the others were 
kept fixed.

5.3. Ablation study

To further assess the role and importance of each module in the 
method, we conducted several ablation experiments on the training 
dataset.

5.3.1. Score
Using the optimal weight combination, we conducted ablation tests 

on the weights, as shown in Table  4. Notably, when the geometry score 
is excluded, all metrics show significant degradation, with IDS reaching 
a high value of 746, indicating highly unstable tracking. This suggests 
that, in most cases, the spatial relationships between objects across 
time steps are the key to determining their association. Additionally, 
the results in Table  4 demonstrate that the other scores primarily func-
tion as refinements in complex scenarios during the data association 
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Table 4
Score ablation study. - means the corresponding score is dropped. The best results are 
highlighted in bold.
 Geo Vel Fea Dis HOTA↑ MOTA↑ MOTP↑ IDS↓ 
 ✓ ✓ ✓ ✓ 83.47% 90.74% 89.46% 10  
 – ✓ ✓ ✓ 62.01% 77.73% 89.03% 746  
 ✓ – ✓ ✓ 81.70% 87.67% 89.21% 12  
 ✓ ✓ – ✓ 81.64% 87.63% 89.21% 13  
 ✓ ✓ ✓ – 81.50% 87.45% 89.24% 17  

process, without substantially impacting the overall performance. This 
observation is consistent with our findings during fine-tuning.

5.3.2. Detector
As an optional component, the detector naturally influences

detection-based tracking methods like ours. To evaluate this impact, we 
tested four detectors with varying performance levels: SECOND [56], 
Point-RCNN [45], PV-RCNN [57], and VirConv [10]. Table  5 ranks 
these detectors based on their detection performance. The results 
confirm that a high-performing detector yields more accurate track-
ing results. However, with fine-tuning, even a detector with average 
performance can achieve tracking results comparable to those from 
top-performing detectors.
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Table 5
Performance with different detectors. Note that the parameters of the overall method 
were fine-tuned based on the results from the Point-RCNN∗ detector (the original 
detector). The best results are highlighted in bold.
 Detector HOTA↑ MOTA↑ MOTP↑ IDS↓ Frag↓ 
 SECOND [56] 79.60% 87.20% 89.04% 18 73  
 Point-RCNN∗ [45] 83.47% 90.74% 89.46% 10 34  
 PV-RCNN [57] 82.81% 89.98% 89.96% 23 43  
 VirConv [10] 84.74% 90.00% 91.90% 9 22  

Table 6
Different predictors. The LSTM and GRU structures used are the original implementa-
tions from TensorFlow. The best results are highlighted in bold, and the second-best 
results are marked with underlines.
 Predictor HOTA↑ MOTA↑ MOTP↑ IDS↓ Frag↓ FPS↑  
 KF 81.52% 87.91% 88.60% 19 40 336.8 
 LSTM 81.76% 88.41% 89.73% 10 42 88.2  
 GRU 81.98% 88.32% 90.12% 11 37 63.3  
 Social-GAN [59] 80.47% 87.01% 89.33% 18 49 29.3  
 TPNet [60] 83.65% 89.28% 90.48% 12 26 43.8  
 Transformer-TF [61] 83.34% 90.29% 89.82% 10 33 49.6  
 Proposed method 83.47% 90.74% 89.46% 10 34 311.2 

5.3.3. Predictor
The predictor, a key component of the method, also deserves atten-

tion. Our predictor is based on physical laws and incorporates certain 
assumptions. However, since we are dealing with time-series data, 
some neural network models can bypass these assumptions and directly 
predict future object states using historical data. Therefore, in addition 
to the Kalman filter (KF) and classic time-series prediction models 
such as the LSTM network and gated recurrent unit (GRU) [58], we 
also tested several state-of-the-art motion prediction models, including 
Social-GAN [59], TPNet [60], and Transformer-TF [61]. The results are 
presented in Table  6. It can be observed that our predictor generally 
achieves lower scores than neural network-based models in terms of 
the MOTP metric. This indicates that our predictor is less precise in 
predicting the exact locations of objects compared to neural networks, 
consistent with the strengths demonstrated by neural models in recent 
years. Moreover, under the same experimental conditions, accurate 
predictions indeed enhance tracking performance. However, our pre-
dictor performs comparably to, or even surpasses, motion predictors 
on comprehensive metrics such as HOTA and MOTA. This is largely 
because our approach focuses on the position at immediate next time 
step rather than long-term trajectories, which diminishes the advan-
tages of motion predictors. In addition, the FPS results reveal that 
motion predictors often require additional external processing, such as 
transforming front-view information into bird’s-eye view coordinates. 
These coordinate transformations, combined with the computational 
demands of neural network inference, significantly reduce tracking 
efficiency. Finally, the consistent tracking performance across different 
predictors further validates the robustness of our proposed method.

5.3.4. Dynamic confidence
As an innovative module in our method, we performed an ablation 

analysis on the effectiveness of dynamic confidence. Table  7 shows that 
when the confidence module is not applied, the model achieves the best 
performance in terms of MOTP. This is primarily because confidence 
adjustments forcefully alter the state of the targets, causing slight 
deviations from the ground truth. However, this correction enables our 
tracker to perform more accurately in complex scenes, as reflected by 
higher HOTA and MOTA scores, along with fewer IDS and Frag occur-
rences. On the other hand, while linear confidence improves tracking 
performance, it results in more ID switches and tracking fragments due 
to discrepancies between the fixed proportionate change in confidence 
and the actual situation.
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Table 7
Performance under different confidence settings. ‘‘Linear’’ indicates that confidence is 
reduced and updated at a fixed rate. The best results are highlighted in bold.
 Component HOTA↑ MOTA↑ MOTP↑ IDS↓ Frag↓ 
 Dynamic confidence 83.47% 90.74% 89.46% 10 34  
 Linear confidence 81.52% 88.70% 89.53% 205 222  
 w/o confidence 79.65% 88.28% 91.62% 35 50  

Table 8
Instantaneous deflection analysis. A transient change of more than 45 degrees is 
classified as an instantaneous deflection. ‘‘Frequency’’ represents the instantaneous 
deflection frequency. The best results are highlighted in bold.
 Component Frequency↓ MOTA↑ MOTP↑ IDS↓ Frag↓ 
 Angular V/A 94 90.74% 89.46% 10 34  
 w/o angular V/A 203 89.24% 87.13% 22 51  

5.3.5. Angular velocity and acceleration
We also examined the effect of incorporating angular velocity (ab-

breviated as angular V) and angular acceleration (abbreviated as an-
gular A) in reducing direction oscillation and its impact on the results. 
Here, we introduced the instantaneous deflection frequency to repre-
sent direction oscillation. This metric measures how often an object’s 
orientation deviates by more than 45 degrees from its orientation in 
the previous and subsequent frames. As shown in Table  8, while the 
inclusion of angular V and angular A only slightly enhances overall 
tracking performance, it significantly improves the localization accu-
racy of correctly tracked objects. This improvement is also reflected in 
the notable reduction of the instantaneous direction oscillation.

5.4. Robustness evaluation

To assess the generalization capability of our method across differ-
ent datasets, we conducted additional tracking tests on the nuScenes 
dataset, which includes a wider variety of object categories such as 
various types of vehicles, non-motorized vehicles, and pedestrians. We 
used detection outputs provided by the official Megvii [46] model 
and introduced four open-sourced, CPU-based detection frameworks 
(AB3DMOT [8], UG3DMOT [48], IPRL-TRI [9], and SimpleTrack [62]) 
as baselines. The evaluation metric used is MOTA, and the local test 
results are shown in Table  9. The findings clearly demonstrate the 
superior performance of our method across multiple object categories, 
with a particularly strong advantage for vehicles and pedestrians. The 
tracking performance for trailers is slightly worse, which may be at-
tributed to the excessive length of the vehicles or the gap between 
the vehicle and the rear container, making it challenging to accurately 
compute the spatial distribution.

Furthermore, we evaluated the pedestrian tracking performance on 
the KITTI dataset. The comparison between our proposed method and 
the 2D, 2D+3D, and 3D benchmarks is presented in Table  10. Pedes-
trians have relatively small bounding boxes, which makes traditional 
3D detection methods less effective in detecting them compared to 
2D detection methods. Additionally, pedestrians exhibit greater dis-
tinguishability due to variations in clothing styles and colors. As a 
result, 2D methods demonstrate a significant advantage over the other 
two types of methods on the DetA metric. However, our proposed 
method achieves superior tracking accuracy and localization compared 
to similar methods and performs comparably to 2D methods on the 
HOTA metric. This further demonstrates the generalization capability 
of our proposed approach.

6. Summary and future research

To improve the perception capabilities of moving autonomous 
agents in complex environments, this paper presents a novel online 
3D multi-object tracking (MOT) method for moving sensors. By intro-
ducing a new affinity model, the method enhances the sensor’s ability 
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Table 9
Tracking results evaluated by MOTA in nuScenes tracking dataset with the same detector Megvii. Overall∗ results represent the average performance across all categories (including 
bicycle, bus, car, motorcycle, pedestrian, trailer, and truck). The best results are highlighted in bold.
 Method Overall∗ Bicycle Bus Car Motorcycle Pedestrian Trailer Truck  
 AB3DMOT [8] 17.9% 0.9% 48.9% 36.0% 5.1% 9.1% 11.1% 14.2% 
 UG3DMOT [48] 55.7% 25.5% 62.8% 70.6% 54.9% 66.2% 58.6% 51.4% 
 IPRL-TRI [9] 56.1% 27.2% 74.1% 73.5% 50.6% 75.5% 33.7% 58.0% 
 SimpleTrack [62] 55.7% 29.6% 60.4% 71.2% 56.3% 68.4% 56.2% 47.6% 
 Proposed method 57.1% 28.9% 75.3% 75.6% 49.8% 76.4% 32.4% 61.5% 
Table 10
Pedestrian tracking results on KITTI testing dataset extracted from the official leaderboard. The methods are listed in descending order by year. 
∗ indicates methods that use the same detector, Point-RCNN. 2D refers to image data, while 3D refers to point cloud data. ↑ indicates that 
higher values correspond to better performance, while ↓ indicates that lower values are better. The best results are highlighted in bold.
 Method Modality Source HOTA↑ AssA↑ DetA↑ LocA↑  
 Proposed method∗ 3D CPU 51.78% 59.22% 42.90% 79.01% 
 PolarMOT [16] 3D GPU 43.59% 48.12% 39.88% 71.34%  
 AB3DMOT∗ [8] 3D CPU 37.81% 44.33% 32.37% 71.31%  
 TripletTrack [63] 2D+3D GPU 42.77% 46.54% 39.54% 77.93%  
 EagerMOT∗ [64] 2D+3D GPU 39.38% 38.72% 40.60% 71.25%  
 JHIT [65] 2D GPU 54.07% 56.88% 51.63% 78.38%  
 OC-SORT [66] 2D GPU 54.69% 59.08% 50.82% 78.52%  
 MO-YOLO [67] 2D GPU 51.46% 58.39% 45.59% 77.86%  
to accurately associate target objects, while incorporating object angle 
measurements to manage unstable angle estimations caused by relative 
motion. The proposed method not only improves prediction perfor-
mance but also implements a new data association mechanism. Exper-
imental results on real-world datasets, including KITTI and nuScenes, 
show that the method achieves state-of-the-art accuracy while main-
taining high processing speed. The dynamic score adjustment strategy, 
based on detection confidence and predictive step length, effectively 
complements the newly proposed feature extraction function. With 
each update phase, this strategy significantly improves the tracker’s 
ability to follow the same object and handle occluded objects in 
complex scenes.

However, as a method that relies solely on point cloud data, the pro-
posed approach is limited in utilizing more visually intuitive features 
present in images, such as contours, colors, and textures, for object 
tracking. Additionally, our assumptions regarding noise distribution 
have certain limitations, as no scenario exhibits noise that strictly 
follows a Gaussian distribution. The dataset constraints also prevented 
us from performing long-term tracking tests and conducting a more 
comprehensive performance analysis, which can be explored in fu-
ture work. Given the efficiency of this method, it can be effectively 
applied in autonomous transport infrastructure (ATI) fields and hetero-
geneous data fusion scenarios, offering enriched information features 
for tracking.
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Appendix A. Nomenclature

All individual variables and variable sets are presented in Table  11. 

Appendix B. Kalman filter update

The Kalman filter is widely used for object tracking in fields such 
as computer vision and robotics. For the predicted sub-state 𝐷̂∗𝑖

𝑡 and 
detected sub-state 𝐷∗𝑗

𝑡  (which corresponds to the measurement in the 
Kalman filter) in well-matched pairs, the updated sub-state 𝐷̃∗𝑖

𝑡 can be 
computed using the following steps: 

𝐨̂𝐢𝐭 = 𝐇𝑃 𝑖
𝑡𝐇

𝐓 + 𝐑, (30)

𝐊𝐢
𝐭 = 𝑃 𝑖

𝑡𝐇
𝐓 (

𝐨̂𝐢𝐭
)−1 , (31)

𝐷̃∗𝑖
𝑡 = 𝐷̂∗𝑖

𝑡 +𝐊𝐢
𝐭

(

𝐷∗𝑗
𝑡 −𝐇𝐷̂∗𝑖

𝑡

)

, (32)

𝑃 𝑖
𝑡 =

(

𝐈 −𝐊𝐢
𝐭𝐇

)

𝑃 𝑖
𝑡 , (33)

where 𝐇 is the linear measurement matrix, defined as 𝐇 = [𝐈 𝐎] ∈
R𝑑𝐷∗×𝑑𝐷̂∗

. 𝐨̂𝐢𝐭 represents the uncertainty of the predicted state, calcu-
lated with the help of Gaussian noise 𝐑, which has zero mean and 
covariance. 𝐊𝐢

𝐭 is the Kalman gain, determining the relative weight 
between the predicted state estimate and the measurement update. The 
predicted state covariance 𝑃 𝑖

𝑡  is updated as shown in Eq. (15).

Appendix C. Pseudo-code of state update

The operations of concatenation, addition, and removal are all 
represented using the set notation.

Data availability

The KITTI dataset provides general access via KITTI official website. 
nuScenes dataset is also a public dataset available on the nuScenes
official website.
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Table 11
Nomenclature list of the proposed method.
 Notation Description Unit 
 𝑥𝑖𝑡 Global coordinate in 𝑥 direction of center point of 𝑖-th bounding box at 𝑡-th frame 𝑚  
 𝑦𝑖𝑡 Global coordinate in 𝑦 direction of center point of 𝑖-th bounding box at 𝑡-th frame 𝑚  
 𝑧𝑖𝑡 Global coordinate in 𝑧 direction of center point of 𝑖-th bounding box at 𝑡-th frame 𝑚  
 𝜃𝑖𝑡 Orientation (yaw with 𝑥-axis) of 𝑖-th bounding box at 𝑡-th frame 𝑚  
 ℎ𝑖

𝑡 Height of 𝑖-th bounding box at 𝑡-th frame 𝑚  
 𝑙𝑖𝑡 Length of 𝑖-th bounding box at 𝑡-th frame 𝑚  
 𝑓 𝑖,1∶𝜉

𝑡 The selected 𝜉 original features of 𝑖-th bounding box at 𝑡-th frame –  
 𝜅𝑖

𝑡 The unique identity of 𝑖-th bounding box at 𝑡-th frame –  
 𝜍𝑖𝑡 The detection confidence of 𝑖-th detected state at 𝑡-th frame −  
 𝛾̂ 𝑖𝑡 The predicted confidence of 𝑖-th predicted state at 𝑡-th frame –  
 𝛾 𝑖𝑡 The updated confidence of 𝑖-th tracked state at 𝑡-th frame –  
 𝛬𝑖,𝑗

𝑡 The association score of 𝑖-th predicted object and 𝑗-th detected object at 𝑡-th frame –  
 𝐷𝑖

𝑡 Detected state of 𝑖-th bounding box at 𝑡-th frame –  
 𝐷̂𝑖

𝑡 Predicted state of 𝑖-th bounding box at 𝑡-th frame –  
 𝐷̃𝑖

𝑡 Updated state of 𝑖-th bounding box at 𝑡-th frame –  
 𝑆 𝑖

𝑡 Tracked state of 𝑖-th bounding box at 𝑡-th frame –  
 𝑝𝑖𝑡 Global coordinates of center point of 𝑖-th bounding box at 𝑡-th frame –  
 𝑡 The set of detected states at 𝑡-th frame –  
 ̂𝑡 The set of predicted states at 𝑡-th frame –  
 ̃𝑡 The set of updated states at 𝑡-th frame –  
 𝑡 The set of tracked states at 𝑡-th frame –  
 𝜘𝑡 The set of unique identities at 𝑡-th frame –  
 𝛤𝑡 The set of predicted confidences at 𝑡-th frame –  
 𝛤𝑡 The set of matching confidences at 𝑡-th frame –  
 𝛬𝑡 The set of association score at 𝑡-th frame −  
Algorithm 2: Pseudo-code of state update.
Input: Set of unmatched predicted states 𝑈𝑃 , Number of 

unmatched predicted states 𝑙, Set of unmatched detected 
states 𝑈𝐷, Number of unmatched detected states 𝑜, Set of 
matched pairs 𝑀 , Number of matched pairs 𝑞, Survival 
time Set 𝑆, Max survival time 𝑚𝑠

Output: Set of lived predicted states 𝐿𝑃 , Set of updated states 𝑈 , 
Set of tracked states 𝑇

Initialization 
𝐿𝑃 ← ∅, 𝑈 ← ∅, 𝑇 ← ∅
for 𝑖 ← 1 to 𝑞 do

𝑈𝑖 ← Kalman Filter(𝑀𝑖)
𝑈 ← 𝑈 ∪ 𝑈𝑖

end 
for 𝑗 ← 1 to 𝑜 do

𝑈𝑗 ← State Initialization(𝑈𝐷𝑗 )
𝑈 ← 𝑈 ∪ 𝑈𝑗

end 
for 𝑘 ← 1 to 𝑙 do

if ∃𝑆𝑘 then
𝑆𝑘 = 𝑆𝑘 − 1
if 𝑆𝑘 < 0 then

𝑈𝑃 ← 𝑈𝑃 ⧵ 𝑈𝑃 𝑘
𝐿𝑃 ← 𝐿𝑃 ⧵ 𝐿𝑃 𝑘

end 
end 
else

𝑆𝑘 ← 𝑚𝑠
𝑆 ← 𝑆 ∪ 𝑆𝑘

end 
end 
𝑇 ← 𝑈 ∪ 𝐿𝑃
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